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Abstract: Hyperspectral band selection (BS) is an effective means to avoid the Hughes phenomenon
and heavy computational burden in hyperspectral image processing. However, most of the existing
BS methods fail to fully consider the interaction between spectral bands and cannot comprehensively
consider the representativeness and redundancy of the selected band subset. To solve these problems,
we propose an unsupervised effective band attention reconstruction framework for band selection
(EBARec-BS) in this article. The framework utilizes the EBARec network to learn the representa-
tiveness of each band to the original band set and measures the redundancy between the bands
by calculating the distance of each unselected band to the selected band subset. Subsequently, by
designing an adaptive weight to balance the influence of the representativeness metric and redun-
dancy metric on the band evaluation, a final band scoring function is obtained to select a band subset
that well represents the original hyperspectral image and has low redundancy. Experiments on
three well-known hyperspectral data sets indicate that compared with the existing BS methods, the
proposed EBARec-BS is robust to noise bands and can effectively select the band subset with higher
classification accuracy and less redundant information.

Keywords: hyperspectral image (HSI); unsupervised band selection; convolutional autoencoder
(CAE); band attention

1. Introduction

Hyperspectral images (HSIs) are composed of hundreds of contiguous bands contain-
ing rich spatial and spectral information, making it possible to identify objects of interest
accurately. However, in practical applications, the data redundancy brought about by a
large number of bands causes the Hughes phenomenon [1] and heavy computation burden.
Thus, effective dimensionality reduction (DR) methods are of great significance to the
subsequent tasks of HSIs.

Generally, DR methods can be divided into band selection (BS) and feature extraction.
BS is to select a band subset that contains as much effective information as possible from
the original band set. Compared with feature extraction methods [2,3], which utilize the
complex feature transformation to obtain the reduced-dimensional HSIs, BS methods [4,5]
can retain the physical information of the original HSI. In this sense, we focus mainly on
BS methods.

BS methods can basically be summarized as supervised [6] and unsupervised [7]
methods according to whether prior knowledge is required. Since prior knowledge is
often difficult to obtain in practice, unsupervised BS methods have attracted extensive
attention in recent decades. Unsupervised BS methods can be further divided into four
categories: point-wise methods, group-wise methods, ranking-based methods, and ad-
vanced machine learning-based methods. The point-wise unsupervised BS methods, such
as volume-gradient-based BS (VGBS) [8] and orthogonal-projection-based BS (OPBS) [9],
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are generally based on greedy algorithms. Specifically, VGBS is based on sequential back-
ward search (SBS), and OPBS is based on sequential forward search (SFS). The point-wise
BS methods utilize specific subset evaluation criteria to add or remove bands one by
one until the required number of bands is obtained. The design of the subset evalua-
tion criteria has a great influence on the performance of selected bands. The group-wise
unsupervised BS methods are commonly based on evolutionary algorithms, e.g., parti-
cle swarm optimization-based BS [10] and ant colony optimization-based BS [11]. The
ranking-based unsupervised BS methods sort the importance of each band through cer-
tain evaluation indicators and then directly select the bands ranked in the front with a
required number. This kind of method includes maximum-variance principal component
analysis (MVPCA) [12], covariance-based method [13], and linearly constraint minimum
variance (LCMV) [14]. The advanced machine learning-based unsupervised BS methods
have received extensive attention with the development of machine learning algorithms.
This kind of method includes clustering-based BS [15,16], sparsity learning-based BS [17],
manifold learning-based BS [18], and graph theory-based BS methods [19].

Nevertheless, most of the existing unsupervised BS methods cannot sufficiently con-
sider the relationship between spectral bands. For instance, clustering-based methods
usually treat each spectral band as an independent entity and evaluate it, making a great
deal of hidden information of the original HSI lost [15,20]. In addition, most ranking-based
methods mainly consider the information of each band while ignoring the redundancy ex-
isting between the selected bands [12,14]. Moreover, most of the BS methods only consider
the linear correlation between the bands or simply the nonlinear correlation based on the
predefined kernel function and cannot analyze the inherent nonlinear correlation between
the bands well [4,9]. In this context, some deep learning-based BS methods are proposed to
consider the underlying nonlinear relationship between the bands. However, most of the
existing deep learning-based BS methods ignore the redundant information between the
bands. For example, the state-of-the-art BS network using convolutional neural networks
(BS-Net-Conv) [21] mainly considers the representativeness of the selected bands to the
original band set. Because interdependent bands often have similar effects, this BS network
cannot guarantee that the selected bands contain less redundant information, which is not
conducive to the implementation of downstream tasks, such as classification [22], object
detection [23], and unmixing [24]. Furthermore, BS-Net-Conv calculates the evaluation
index corresponding to each band by first projecting the bands to a low-dimensional space
and then mapping them back, making the correspondence between the band and its eval-
uation index indirect. That is, the band evaluation index cannot accurately reflect the
original spectral band information. In addition, the existing BS methods based on recon-
structed networks commonly employ the mean square error (MSE) as the reconstruction
criterion [21,25]. However, the MSE means the complete reconstruction. That is, when
only the MSE is utilized as the criterion for spectrum reconstruction performance, scalable
reconstruction cannot be achieved, limiting the applicability of the model. To address these
shortcomings of the existing BS methods, a better BS architecture, which comprehensively
considers the redundancy and representativeness of the band and reveals the inherent
nonlinear relationship between bands, should be designed.

To achieve it, in this article, we propose an effective band attention reconstruction
BS (EBARec-BS) network. Specifically, we first constructed an effective band attention
reconstruction (EBARec) network to explore the underlying nonlinear relationship between
the bands. It is worth noting that, to make each band directly correspond to its weight, the
proposed method utilizes effective band attention (EBA) to calculate the weight of each
band. Then, the reweighted spectral bands are utilized to reconstruct the original HSI using
a convolutional autoencoder (CAE). In addition, to improve the applicability of the model,
the reconstruction criterion of the EBARec-BS network not only adopts the traditional MSE
constraint item but also adds a spectral angle error constraint item. After the network
training is completed, to obtain the band subset with low redundancy information and high
representativeness, we design a BS scoring function that can comprehensively consider
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the band attention weight and the redundancy between the selected bands. The main
contributions of this article can be summarized as follows:

1. We propose a novel BS scoring function that can consider the redundancy and repre-
sentativeness of the bands simultaneously. To the best of our knowledge, this is the
first time that the redundancy and representativeness of bands are explored simultane-
ously in the attention and reconstruction network-based BS method. Specifically, we
design an adaptive balance coefficient that can balance the representativeness metric
and the redundancy metric to solve the problem that the scoring function has different
sensitivities to these two metrics. According to the proposed BS scoring function, a
band subset with a good representation of the original band set and less redundant
information can be selected, which is conducive to downstream tasks.

2. The proposed attention reconstruction network-based BS architecture adds the spec-
tral angle error as one of the evaluation criteria of the reconstruction effect, which
is proposed for the first time. As a result, unlike the traditional reconstruction net-
work that only uses MSE as the reconstruction criterion, our attention reconstruction
network-based BS architecture combines MSE and spectral angle error to improve the
applicability of the model.

3. A novel unsupervised BS framework in which attention weights and bands are closely
connected is proposed, which helps to resolve the problem that correspondence between
the band and its weight is indirect in current attention mechanism-based methods.

The remainder of this article is organized as follows: Section 2 explains some related
works of this article. Section 3 specifically introduces the proposed EBARec-BS network.
Section 4 shows experiments and results on different real-world HSIs. Finally, Section 5
presents concluding remarks.

2. Related Works
2.1. Attention Mechanism

Attention was initially designed for machine translation [26]. Recently, attention has
developed rapidly in the fields of speech [27], natural language processing [28,29], and
computer vision [30] because of its ability to improve the interpretability of neural networks.
The expression of an attention module is

a = f (xa; Θ) (1)

where f denotes the attention module, Θ is the parameters of the module, xa is the input of
attention module, and a is the attention map.

Attention modules can be summarized as the channel, spatial, and joint attention
according to different domains of interest. The spatial attention is to focus more attention
on the spatial location worthy of attention; the channel attention learns the weight of each
channel through the attention module, thereby generating the attention of the channel
domain; and the joint attention mechanism is a combination of the previous two.

The basic idea of unsupervised band selection is to find the most valuable bands,
which can be abstracted as the most noteworthy channels. Thus, we expect to utilize
channel attention to calculate the importance of each spectral band and reflect the inherent
relationship between the bands. The diagram of channel attention is illustrated in Figure 1.

However, in practical applications, the band subset selected by the channel attention
method is not always the optimal combination. This is because the existing channel
attention-based BS methods [21,25] first map the band features to a low-dimensional
space and then map them back so that the correspondence between the band and its
weight is indirect. That is, the band weight cannot accurately reflect the original spectral
band information.
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Figure 1. Channel attention diagram.

2.2. Autoencoder

The autoencoder is a neural network that reproduces the input vector to the output
through certain transformations. Specifically, an autoencoder consists of two parts, namely
the encoder and the decoder. The encoder compresses the input data into a latent space
representation; the decoder uses the features of the latent space to reconstruct the original
input data. Mathematically, the encoder and decoder of a single-layer autoencoder with
input xl ∈ Rq can be, respectively, denoted as follows:

y = σ(W1xl + b1) (2)

x̂l = σ(W2y + b2) (3)

where x̂l ∈ Rq denotes the reconstruction of the input data, σ(·) is a nonlinear activa-
tion function (such as ReLU and Sigmoid, etc.), W1 ∈ Rm×q and W2 ∈ Rq×m are wight
parameters, b1 ∈ Rm and b2 ∈ Rq indicate bias vectors.

However, the autoencoder is originally designed to process one-dimensional data.
Therefore, when reconstructing image data, the traditional autoencoder has the problem
of input size processing and the drawbacks that the features are forced to be global. The
existing research on the object recognition direction [31] shows that the model whose input
is local features is better than the model whose input is global features.

In order to overcome the shortcomings of a traditional autoencoder, the formula of
convolutional autoencoder(CAE) [32] for high-dimensional input is proposed. The latent
representation of the kth feature map and the reconstruction of input, for a single-channel
input xh, are respectively expressed as follows:

yk = σ(xh ∗Wk + bk) (4)

x̂h = σ( ∑
k∈H

yk ∗ W̃k
+ c) (5)

where ∗ represents the two-dimensional convolution operator, x̂h denotes the reconstruc-
tion of the input data, W is a convolution kernel, W̃ represents the flip operation on the
two dimensions of the weight, b and c represent bias, and H denotes the potential feature
map group.

Just as for traditional autoencoders, the definition of the cost function is to minimize
the MSE. Specifically, given a set of data X = {x(1)h , x(2)h , . . . , x(n)h }, the MSE is defined as

E(Θ) =
1

2n

n

∑
i=1

(x(i)h − x̂(i)h )2. (6)

where Θ represents the trainable parameters. In the error backpropagation phase, the
gradient descent method is used to update the parameters.

3. The Proposed Method

This section introduces the proposed EBARec-BS network in detail. As shown in
Figure 2, the proposed BS framework adopts EBA to make each band directly correspond
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to its weight and reconstructs the original hyperspectral data through a CAE. Moreover,
compared with the existing attention reconstruction network-based BS methods that only
use MSE when calculating the loss function, our proposed method also constrains the spec-
tral angle error after considering the characteristics of the hyperspectral data. Furthermore,
to solve the problem that the existing methods do not consider the redundancy between
the bands when selecting the band subset, the band selection strategy of the EBARec-BS
network comprehensively considers the attention weights and the redundancy between
bands. A detailed description of each step of the proposed method is given as follows.
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Figure 2. Overview of the proposed EBARec-BS network.

3.1. EBARec

Let X ∈ RW×H×B be a spatial-spectral HSI, where W × H is the number of pixels and
B represents the number of bands. In order to ensure the quantity and quality of training
samples, our EBARec module utilizes an a× a-sized squared window to slide across the
original HSI with a step length of t to obtain three-dimensional patches containing spatial
and spectral information as input.

To select the most meaningful bands from the original band set, it is important to
analyze the cross-band interaction. This can be achieved through the feature attention mech-
anism. The proposed BS method utilizes an efficient channel attention [33] to recalibrate
each band.

As illustrated in Figure 2, EBA takes HSI cubes Xp ∈ Ra×a×B as input and produces a
band attention vector ω as output, i.e.,

ω = FEBA(Xp; Θp) (7)

where Θp is the trainable parameters of the EBA module.
To be more specific, first, we input the HSI patches into a global average pooling

(GAP) to obtain aggregated features, that is

y = G(Xp) =
1

a× a

a

∑
i,j=1

Xpi,j (8)

where G(·) denotes channel-wise GAP and y ∈ R1×1×B contains aggregated features.
Then, in order to avoid obtaining the indirect correspondence between the band and

its weight, the correlation between bands is captured by a one-dimensional convolution
with a kernel size of m, that is

ω = σ(C1Dm(y)) (9)
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where σ(·) indicates a Sigmoid function and C1D(·) denotes one-dimensional convolution.
Specifically, the weight of each aggregated feature yi ∈ y(i = 1, . . . , B) can only consider
the interaction between itself and its m neighbors, and all bands have the same learning
parameters. It can be explicitly represented as follows:

ωi = σ(
m

∑
j=1

βjyj
i), yj

i ∈ Ωm
i (10)

where βj denotes the shareable learning parameter associated with each yj
i , and Ωm

i is the
collection of m neighbors of yi.

As shown in Figure 2, we perform the band-wise production operation on the original
input HSI block and the weight obtained by EBA, and the reweighted spectral inputs can
be computed as follows:

Z = Xp ⊗ω (11)

where ⊗ is the band-wise production.
In the next step, in order to obtain the representativeness of the reweighted spectral

bands to the original data set, we use a CAE to reconstruct the original input HSI block. The
reconstruction network with the reweighted spectral bands Z as input and the predicted
value X̂p of the original image as output can be defined as follows:

X̂p = FRec(Z; Θc) (12)

where Θc is the trainable parameters of the reconstruction network.
The existing reconstruction network can reflect a certain degree of the relationship

between input and output through the MSE. However, for HSIs, the spectral similarity
measurement based on the MSE is not suitable for scalable reconstruction. In order to
establish an effective reconstruction network for HSI band selection, an architecture with
wide applicability should be proposed. Therefore, the proposed EBARec uses MSE and
spectral angle similarity to minimize the reconstruction error. We define the cost function
as follows:

L =
1

2n

n

∑
i=1
‖X̂(i)

p − X(i)
p ‖2

F + η
1
n

n

∑
i=1

a×a

∑
j=1

arccos
X̂(i)T

pj · X
(i)
pj

‖X̂(i)
pj ‖‖X

(i)
pj ‖

(13)

where n denotes the number of samples, ‖ · ‖F indicates the Frobenius norm for ma-
trices, X(i)

p (i = 1, 2, . . . , n) denotes the ith input HSI cube, η is a balance parameter,

X(i)
pj ∈ X(i)

p (j = 1, 2, . . . , a× a) denotes the jth pixel of the ith input HSI cube, and the super-
script T represents the transpose operation.

Furthermore, in order to make the weight of each band easier to interpret to facilitate
BS, we impose sparse constraints on them. From this point of view, the band weights are
constrained by the `1-norm, i.e.,

R =
n

∑
i=1
‖ω(i)‖1. (14)

Therefore, the final objective function of the proposed EBARec includes three parts:
an MSE term for the complete reconstruction of HSIs, a spectral similarity error term
for the scalable reconstruction of HSIs, and a sparse constraint term for band weights.
Mathematically, the objective function of the proposed EBARec can be given as follows:

L(Θp, Θc) =
1

2n

n

∑
i=1
‖X̂(i)

p − X(i)
p ‖2

F + η
1
n

n

∑
i=1

a×a

∑
j=1

arccos
X̂(i)T

pj · X
(i)
pj

‖X̂(i)
pj ‖‖X

(i)
pj ‖

+ γ
n

∑
i=1
‖ω(i)‖1 (15)

where γ denotes a penalty parameter.
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We utilize adaptive moment estimation (Adam) to optimize the proposed EBARec
model. After training, the representativeness of a certain band to the original band set can
be obtained by averaging the weights of this band for all training samples. The average
attention weight of the tth band is formulated as

ω̄t =
1
n

n

∑
i=1

ω
(i)
t . (16)

The obtained average band weights can be used as the representative metric in the
proposed BS method.

3.2. Band Selection Module Based on Representativeness and Redundancy

The band attention weights can reflect the contribution of each band to the original
HSI reconstruction. The larger weight represents the more significant contribution of
the corresponding band to the reconstruction, which means that the band can better
represent the original band set. However, simply selecting bands based on weights will
ignore the amount of redundant information between the selected bands and affect the
implementation of downstream tasks (such as classification). Therefore, how to make the
best use of the band attention weights to guide the selection of bands and how to construct
a BS framework to weigh the attention weights of bands and the redundancy between
bands are the challenges. In order to solve these problems, we design a BS scoring function
that comprehensively considers the band attention weight and the redundancy between
the bands.

In the process of BS, if a candidate band with plenty of redundant information with
the selected band subset is selected, it will affect the implementation of downstream tasks.
For this reason, we try to avoid selecting the band that has much redundant information
with the selected band subset. To achieve it, we measure the redundancy of the candidate
band by calculating the distance of this candidate band to the hyperplane spanned by the
selected bands. The greater the distance is, the less redundant information the candidate
band contains. This article utilizes the orthogonal subspace projection (OSP), which was
originally designed for linear spectral mixture analysis, to measure the distance between
bands. It is worth mentioning that through OSP, the distance between the candidate band
and the selected band subset can be measured jointly rather than in pairs, which ensures
the efficiency of the proposed method. Next, we introduce how to use OSP to calculate the
redundancy constraint in our BS scoring function.

Suppose that the hyperspectral data set is denoted as X2D = [x1, x2, · · · , xB] ∈ RN×B,
where B and N are the number of bands and pixels, respectively. Assuming that n bands
need to be selected from the total bands, when k bands have been selected, we use
XS = [xs(1), xs(2), · · · , xs(k)] ∈ RN×k (k < n) to represent the matrix composed of the se-
lected bands. Then, the subspace W spanned by column vectors of the matrix XS is
expressed as

W = Span{XS} = {x : x =
k

∑
i=1

ai × xs(i)} (17)

where Span{XS} denotes the set consisting of all linear combinations of the column vectors
of the matrix XS and ai represents a scalar.

Assuming that a candidate band is denoted by xt (the tth band in X2D), the relationship
between the candidate band and the selected band subset can be measured by the distance
from the candidate band xt to the subspace spanned by vector set XS, that is, the orthogonal
projection of xt on the band vector space W. Mathematically, by introducing the orthogonal
projection operator:

P = XS(XT
S XS)

−1XT
S , (18)
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the projection of xt onto W can be expressed as

x̂t = Pxt = XS(XT
S XS)

−1XT
S xt. (19)

Then, the redundancy between the candidate band xt and the set of selected bands XS
is measured by calculating the distance from xt to XS, which can be given as

d(xt) = ‖xt − x̂t‖

= [xT
t xt − (xT

t XS)(XT
S XS)

−1(xT
t XS)

T]
1
2

(20)

where d(xt) denotes the redundancy metric of candidate band xt. The smaller the distance
d(xt) is, the more the redundancy of xt is.

In order to construct a comprehensive consideration of the contribution of the selected
band subset to the original band set and the redundancy between selected bands, the
above two metrics, i.e., ω̄ and d, are used to construct the proposed BS criterion. Since
our objective is to make the selected bands better represent the original band set while
containing a small amount of redundant information, we have to find the band with high
ω̄ and d. To achieve it, the proposed EBARec-BS scoring function that can comprehensively
consider these two factors is defined as

S(xt) = ω̄t + r× d(xt)

r =
1

log(
B− k

2
)

(21)

where S(xt) represents the scoring function of candidate band xt, and the band with a
higher score is more important. r denotes a coefficient that balances the two constraints.

It is worth noting that we design the balance coefficient r to be
1

log[(B− k)/2]
. The

reason is that as the number of selected bands increases, the distance from the candidate
band to the selected band subset gradually decreases. That is, the redundancy metric
gradually declines, which means that the BS scoring function will mainly depend on the
representativeness of the candidate band to the original HSI but is not sensitive to the
redundancy metric. Therefore, to balance these two metrics, we have to appropriately
amplify the influence of the redundancy indicator, which is decreasing as the number

of selected bands increases. To this end, we design the weight r =
1

log[(B− k)/2]
that

augments as the number of selected bands increases.
Based on the proposed selection criterion, we use a sequential forward search (SFS) to

iteratively add the optimal band into the set of selected bands. Specifically, when selecting
the (k + 1)th band, the EBARec-BS method adds the candidate band with the highest score
to the selected band set, that is

xs(k+1) = arg max
xt

[S(xt)]. (22)

Then, XS is updated, and we repeat the process of adding the current optimal band
calculated according to Equation (22) to the selected band subset XS until XS contains
the required number of bands. Therefore, the proposed BS strategy can consider the
contribution of the selected band to the original HSI and the redundancy among bands
simultaneously. Note that when selecting the first band, XS does not contain any bands.
Thus, the scoring function of the candidate band only depends on the contribution of the
candidate band to the original HSI. The procedures of EBARec-BS are given in Algorithm 1.



Remote Sens. 2021, 13, 3602 9 of 20

Algorithm 1 The EBARec-BS Algorithm

Input: HSI cube X ∈ RW×H×B, the number of selected bands n, and EBARec-BS hyper-
parameters.
Step1: Preprocess HSI and generate training samples.
Step2: Train EBARec network.
while Model is convergent or maximum iteration is met do
1: Sample a batch of training samples Xp.
2: Calculate bands weights: ω = FEBA(Xp; Θp).
3: Reweight spectral bands: Z = Xp ⊗ω.
4: Reconstruct spectral bands: X̂p = FRec(Z; Θc).
5: Update Θp and Θc by minimizing Equation (15) using Adam algorithm.
end while
Step3: Calculate average attention weight of each band according to Equation (16).
Step4: Set counter k = 0.
Step5: Band selection.
while k < n do
1: For the ith band xi, (i = 1, 2, . . . , B), calculate its score according to Equation (21). Note
that if the ith band xi has already been selected, its score would not be calculated and
compared.
2: Find the band with the highest score and add it to the selected band subset.
3: k← k + 1.
end while
Output: n selected bands.

4. Experiments

In this section, the proposed EBARec-BS method and six existing unsupervised BS
methods, namely MVPCA [12], BS-Net-Conv [21], OPBS [9], exemplar component analysis
(ECA) [15], LCMV band correlation minimization (LCMVBCM) [14], and LCMV band
correlation constraint (LCMVBCC) [14], are compared on three real-world HSIs. Among
these methods, MVPCA is a classical BS method; BS-Net-Conv is a newly proposed state-
of-the-art method; OPBS is a point-wise BS method; LCMVBCM and LCMVBCC are
ranking-based BS methods; ECA is based on the density-based clustering method. To
comprehensively evaluate the effect of each BS method, the classification effect, band
correlation, and robustness of different BS methods are compared through specific analysis.
Furthermore, to facilitate the experimental results to be clearly understood, we conduct
an in-depth analysis of the selected band subsets from the two aspects of quantification
and visualization.

The Indian Pines data set (Figure 3a) contains 220 bands and 145 × 145 pixels. The
low signal-to-noise ratio and atmospheric water vapor absorption bands (i.e., bands 1–3,
103–112, 148–165, and 217–220) are removed, and the remaining 185 bands were utilized
in our experiments. This data set has 16 land-cover categories. Although the number
of samples in each category is not balanced [34], they are all used in the verification
experiment to evaluate the classification performance of the selected band subsets. The
Pavia University data set (Figure 3b) has 103 bands, 610 × 340 pixels, and 9 categories. All
bands and categories in the Pavia University data set are utilized in our experiments. The
Salinas data set (Figure 3c) was acquired by the AVIRIS sensor in Salinas Valley, CA, USA.
This data set includes 512 × 217 pixels, 224 bands, and 16 classes. Similar to the Pavia
University data set, all bands and classes are utilized in our experiments. The details of
these three data sets are listed in Table 1.

4.1. Datasets and Experimental Setup

The experiments utilize three well-known HSIs, i.e., Indian Pines, Pavia University,
and Salinas.
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Figure 3. Grayscale images of some bands of the three datasets. (a) Band 170 of Indian Pines, (b) Band
50 of Pavia University, (c) Band 100 of Salinas.

Table 1. The descriptions of three hyperspectral datasets in our experiments.

Dataset Indian Pines Pavia University Salinas

Pixel 145 × 145 610 × 340 512 × 217

Band 185 103 224

Used class 16 9 16

For the pixel classification of the selected band subsets, two different classifiers, i.e.,
support vector machine (SVM) [35] and edge-preserving filtering (EPF) [36], are respectively
utilized in our experiments. The widely used SVM classifier has good performance under
a small sample size [37]. The kernel function of this classifier adopts a Gaussian radial
basis function (RBF) [38]; moreover, the parameters of SVM are set by the cross-validation
and grid search; furthermore, the one-against-all scheme [39] is adopted for multi-class
classification. For the EPF method, we adopt it because of the availability and superiority of
this classification method. The EPF-G-g classifier among the four EPF-based methods [36]
is utilized in our experiment to evaluate the classification performance of different BS
methods. The abbreviation G represents that the edge-preserving filtering is a guided
filter, and the abbreviation g stands for the first principal component to be used as the
guidance image.

As for the hyper-parameter settings of the proposed EBARec-BS method, the mini-
batch size is set to 32. Moreover, the initial value of the learning rate is set to 1× 10−3,
which is reduced by 10 times every 8 epochs. The kernel size m of the one-dimensional
convolution in the EBARec module is set to 3, and the balance coefficients η and γ in the
objective function are set to 3.14 and 1× 10−2, respectively. For the comparison method
BS-Net-Conv, we use the same hyper-parameter settings in [21].

4.2. Classification Results

In this experiment, overall accuracy (OA) and average accuracy (AA) are utilized
as quantitative evaluation indicators for classification. For the sake of fairness, for each
hyperspectral data set, we randomly select 10% of the labeled samples from each type
of ground object as the training set and the rest as the test set. Moreover, to minimize
the instability caused by random selection, the final result is attained by averaging five
individual runs. Figure 4 shows the OA curves of using different BS methods to select
different numbers of bands on the three data sets. The number of the selected bands ranges
from 5 to 30, and the performance of all bands is also drawn in Figure 4 as an important
reference. Additionally, Table 2 lists the OAs and AAs when a fixed number of bands are
selected for different BS methods in different data sets. Moreover, Figures 5–7 show the
SVM classification maps of the band subsets obtained by different BS methods under three
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HSIs. The results illustrate that the proposed EBARec-BS method obtains the best overall
classification performances.

(a) (b) (c)

(d) (e) (f)

Figure 4. Overall classification accuracies of using the band subset selected by different BS methods from three different data
sets. (a) Indian Pines-SVM, (b) PaviaU-SVM, (c) Salinas-SVM, (d) Indian Pines-EPF-G-g, (e) PaviaU-EPF-G-g, (f) Salinas-
EPF-G-g.

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a)
20 40 60 80 100 120 140

20

40

60

80

100

120

140

(b)
20 40 60 80 100 120 140

20

40

60

80

100

120

140

(c)
20 40 60 80 100 120 140

20

40

60

80

100

120

140

(d)

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(e)
20 40 60 80 100 120 140

20

40

60

80

100

120

140

(f)
20 40 60 80 100 120 140

20

40

60

80

100

120

140

(g)
20 40 60 80 100 120 140

20

40

60

80

100

120

140

(h)

Figure 5. SVM classification maps of using the fifteen bands selected by different methods from
the Indian Pines data set. (a) Ground truth, (b) MVPCA, (c) LCMVBCC, (d) LCMVBCM, (e) ECA,
(f) OPBS, (g) BS-Net-Conv, (h) EBARec-BS.
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Table 2. Overall accuracies (OA) (%) and average accuracies (AA) (%) of using the fifteen/ten bands
selected from different datasets. (The bold denotes the best result achieved by BS methods.)

Indian (15 Bands)
SVM EPF-G-g

OA (%) AA (%) OA (%) AA (%)

1. MVPCA 64.81 50.83 79.17 67.51
2. LCMVBCC 58.95 49.74 71.17 62.01
3. LCMVBCM 66.90 60.98 80.38 73.33
4. ECA 75.16 65.25 88.80 80.03
5. OPBS 72.33 62.97 87.31 80.38
6. BS-Net-Conv 78.91 72.27 91.20 85.25
7. EBARec-BS 80.90 74.30 93.07 88.60

PaviaU (10 Bands)
SVM EPF-G-g

OA (%) AA (%) OA (%) AA (%)

1. MVPCA 70.95 55.99 82.01 70.92
2. LCMVBCC 69.70 63.76 79.79 80.29
3. LCMVBCM 77.50 67.97 85.25 83.25
4. ECA 83.86 71.88 92.46 83.87
5. OPBS 86.39 76.28 95.29 86.80
6. BS-Net-Conv 87.31 77.11 96.76 87.57
7. EBARec-BS 87.34 77.15 97.12 87.59

Salinas (15 Bands)
SVM EPF-G-g

OA (%) AA (%) OA (%) AA (%)

1. MVPCA 84.91 84.10 91.53 90.14
2. LCMVBCC 87.88 87.82 93.06 91.87
3. LCMVBCM 89.62 89.21 93.91 91.98
4. ECA 92.01 90.23 97.79 93.24
5. OPBS 92.04 90.10 94.61 92.13
6. BS-Net-Conv 90.27 89.07 97.03 92.93
7. EBARec-BS 93.42 90.97 98.21 93.35
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Figure 6. SVM classification maps of using the ten bands selected by different methods from the
Pavia University data set. (a) Ground truth, (b) MVPCA, (c) LCMVBCC, (d) LCMVBCM, (e) ECA,
(f) OPBS, (g) BS-Net-Conv, (h) EBARec-BS.
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Figure 7. SVM classification maps of using the fifteen bands selected by different methods from the
Salinas data set. (a) Ground truth, (b) MVPCA, (c) LCMVBCC, (d) LCMVBCM, (e) ECA, (f) OPBS,
(g) BS-Net-Conv, (h) EBARec-BS.

The accuracy curves in Figure 4 show the average value of OAs of five independent
running classification experiments of different BS methods in different data sets. The
training set and the test set of each experiment are re-divided.

For the Indian Pines data set (Figure 4a,d), the proposed method has obvious supe-
riority when compared with the other BS methods concerning the performances of both
classifiers. For the SVM classifier, as shown in Figure 4a, the EBARec-BS method consis-
tently achieves the best OA under different numbers of selected bands. For example, when
the number of selected bands is equal to 14, the classification accuracy of the EBARec-BS
method is 3.31% higher than that of the state-of-the-art BS-Net-Conv. Additionally, it can
be found from the results that an increase in the number of selected bands does not always
mean an improvement in classification accuracy. For example, when the number of selected
bands is greater than eight, the OA of the OPBS method shows a downward trend. This
can be explained by the Hughes phenomenon [1], i.e., in the case of a small sample, when
the data dimension increases to a certain height, increasing the dimension will actually
decrease the classification accuracy. For the EPF-G-g classifier, as shown in Figure 4d, the
EBARec-BS method consistently holds the highest classification accuracy under different
numbers of selected bands. The classification accuracy of the EBARec-BS method reaches
90.38% when the number of selected bands is equal to 8, while the best competitor, i.e., the
BS-Net-Conv method, obtains approximate accuracy only when the number of selected
bands is greater than 15. This result indicates that the EBARec-BS method can achieve ex-
cellent classification performance in a limited number of selected bands. It is worth noting
that when the number of selected bands is equal to 15, the classification accuracy of the pro-
posed EBARec-BS method is higher than the ones of compared methods and approximates
the classification accuracy of all bands. Moreover, since spatial information is utilized in
the EBARec-BS method and BS-Net-Conv method, these two methods are significantly
better than the other comparison BS methods (i.e., OPBS, ECA, LCMVBCC, LCMVBCM,
and MVPCA). Furthermore, the classification accuracy of the proposed EBARec-BS is
significantly higher than that of the state-of-the-art BS-Net-Conv, which illustrates the
importance of considering the characteristics of HSI and the redundancy among bands
when selecting band subset.

For the Pavia University data set (Figure 4b,e), although OPBS and BS-Net-Conv
obtain relatively good classification results, the proposed EBARec-BS still achieves the
best overall classification performance. As shown in Figure 4b, for the SVM classifier,
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when the number of selected bands is equal to five, the proposed EBARec-BS method and
the advanced BS-Net-Conv achieve similar classification performance, whereas when the
number of selected bands is greater than five, the proposed EBARec-BS method achieves
higher classification accuracy than BS-Net-Conv. From Figure 4e, when the number of
selected bands is higher than 12, the classification accuracy of the proposed EBARec-
BS method using EPF-G-g classifier is higher than that of the compared methods and
approximates the classification accuracy of all bands.

For the Salinas data set (Figures 4c,f), EBARec-BS obtains the best classification results
when the size of the selected band subset is between 8 and 25. For the SVM classifier,
as shown in Figure 4c, EBARec-BS achieves higher OAs than BS-Net-Conv, LCMVBCM,
LCMVBCC, and MVPCA. When the size of selected band subset is greater than eight, the
EBARec-BS method achieves the best classification performance. From Figure 4f, for the
EPF-G-g classifier, EBARec-BS, BS-Net-Conv, and ECA achieve better classification results
than all bands. This phenomenon can also be explained by the Hughes phenomenon [1],
that is, the classification accuracy will first increase and then decrease as the number of
selected bands increases. Nevertheless, when the number of selected bands is greater than
9 and less than 25, the proposed method has obvious advantages over the comparative
methods. Moreover, the EBARec-BS method achieves higher classification accuracy than
the state-of-the-art BS-Net-Conv when the number of selected bands is greater than nine,
indicating the superiority of the proposed method and the importance of well-considering
representativeness and redundancy when selecting the optimal band subset.

The OAs and AAs when a fixed number of bands are selected for different BS methods
in different data sets are listed in Table 2. To avoid the contingency of the experiment,
the results in Table 2 are the average of five independent runs. It can be found from the
results that the proposed EBARec-BS method consistently obtains the best OAs and AAs
for three different data sets and two classifiers. For the Indian Pines data set, the proposed
EBARec-BS method obtains the AAs of 74.30% and 88.60% when using the SVM classifier
and the EPF-G-g classifier, respectively, which are at least 2.03% and 3.35% higher than the
comparison methods. For the Pavia University data set, the proposed EBARec-BS method
consistently achieves the highest OAs and AAs for two classifiers. For the Salinas data
set, although most comparison methods (such as ECA, OPBS, and BS-Net-Conv) obtain
relatively high OAs and AAs, the proposed EBARec-BS method is still superior to all
comparison methods. Moreover, when using the SVM classifier, the OA of the proposed
EBARec-BS method is at least 1.38% higher than that of the comparison methods.

To visually observe the classification performance of the band subsets selected by
different BS methods, the classification accuracy diagrams of the SVM classifier used on
the three data sets are shown in Figures 5–7. Specifically, the SVM classification maps and
ground truth on the Indian Pines data set containing 16 feature categories are shown in
Figure 5. Moreover, Figures 6 and 7 show the ground truth and SVM classification maps of
the Pavia University data set and Salinas data set, respectively. As shown in Figures 5–7,
the EBARec-BS method achieves better classification results than other BS methods on
three different data sets.

To analyze the parameter sensitivity of the proposed model (15), the OA change trend
of different combinations of balance parameters η and γ on the Indian Pines dataset is
shown in Figure 8. The value of parameter η is set as {1, 3, 3.14, 4, 5, 6}, and the value of
parameter γ is set as {5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1}. The grid in Figure 8a shows
the OA results on the SVM classifier under different combinations of parameters η and γ.
It can be seen from Figure 8a that when γ is set to 1× 10−2 or 5× 10−2, the classification
performance is better, but when the value of γ is too large or too small, the performance is
significantly degraded. For parameter η, better classification performance is achieved when
the value is 3.14. For the EPF-G-g classifier, as shown in Figure 8b, the best classification
performance is obtained when η and γ are 3.14 and 1× 10−2, respectively. Hence, we set η
to 3.14 and γ to 1× 10−2 through all the experiments.
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(a) (b)

Figure 8. Parameter sensitivity analysis of the proposed EBARec-BS method in terms of η and γ on
the Indian Pines dataset. (a) SVM classification, (b) EPF-G-g classification.

In summary, the proposed EBARec-BS framework achieves the best overall classifica-
tion performance on three different data sets, demonstrating that EBARec-BS can select
the band subset that best represents the original band set and contains less redundant
information. The results confirm the effectiveness of the proposed BS method.

4.3. Band Correlation Comparison

If the selected bands contain much redundant information, it is not conducive to
subsequent classification tasks. To analyze the redundant information contained in the
bands selected by different BS methods, we plot the distribution of the bands selected
by different BS methods and the reflectance spectrum curves of different ground feature
types on three different data sets in Figures 9–11, respectively. Each vertical line in the
figure represents the position of each selected band. The results in Figures 9–11 show
that the bands selected by the proposed EBARec-BS method are more widely and evenly
distributed than those selected by other BS methods. Since adjacent bands in HSIs often
contain redundant information, based on this fact, experimental results verify that the
proposed BS method can select bands with little redundant information.
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Figure 9. Spectrum curves of the categories on the Indian Pines data set. The vertical lines denote
the fifteen bands selected by the different BS methods. (a) MVPCA, (b) LCMVBCC, (c) LCMVBCM,
(d) ECA, (e) OPBS, (f) BS-Net-Conv, (g) EBARec-BS.
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Figure 10. Spectrum curves of the categories on the Pavia University data set. The vertical lines denote
the ten bands selected by the different BS methods. (a) MVPCA, (b) LCMVBCC, (c) LCMVBCM,
(d) ECA, (e) OPBS, (f) BS-Net-Conv, (g) EBARec-BS.
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Figure 11. Spectrum curves of the categories on the Salinas data set. The vertical lines denote the
fifteen bands selected by the different BS methods. (a) MVPCA, (b) LCMVBCC, (c) LCMVBCM,
(d) ECA, (e) OPBS, (f) BS-Net-Conv, (g) EBARec-BS.

As shown in Figure 9, on the Indian Pines data set, the bands selected by the EBARec-
BS method have the most extensive and uniform distribution. For the Pavia University
data set, as shown in Figure 10, the bands selected by the MVPCA method are concentrated
between band 85 and band 100, and the bands selected by the LCMV-based methods are
mainly distributed between band 20 and band 40. Although the bands selected by the ECA
method are widely distributed, they are mainly concentrated between bands 1 to 5 and
bands 75 to 80. The OPBS method selects four bands between sequence numbers 1 to 5,
and the bands selected by the BS-Net-Conv method are concentrated between band 25 and
band 35. The EBARec-BS method selects the least adjacent bands. Similarly, the result on
the Salinas data set (Figure 11) is that the bands selected by the EBARec-BS method are
the most widely distributed, and the adjacent bands are the least selected, while twelve of
the fifteen bands selected by the BS-Net-Conv method are distributed between band 5 and
band 23. These results demonstrate that the proposed EBARec-BS method is able to select
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bands with less redundant information than the comparison BS methods, which verifies
the effectiveness of the proposed method.

Subsequently, we found a specific connection between the classification results and
the redundancy results through a comprehensive analysis of these two types of results.
Taking the Salinas data set as an example, it can be seen from Figure 11f that the state-of-
the-art BS-Net-Conv does not consider the redundancy between the bands, resulting in a
large number of adjacent bands being selected, so the redundancy between the selected
bands is relatively high. Moreover, it can be seen from Figure 4 and Table 2 that the
classification accuracy of BS-Net-Conv is not as good as that of the EBARec-BS method.
Since OPBS considers the correlation between bands, the selected bands, as shown in
Figures 4 and 11e, have low redundancy and high classification accuracy. However, OPBS
does not consider the contribution of the selected band to the original HSI and the complex
nonlinear relationship between the bands, and thus the classification performance of
OPBS is not as good as that of the EBARec-BS method. As shown in Figure 11d, the
redundancy between the bands selected by ECA, which is based on clustering, is not
very high. However, the ECA method evaluates each spectral band as an independent
point, so the classification accuracy is also lower than the proposed EBARec-BS method.
As shown in Figure 11a–c, the distributions of the bands selected by the LCMV-based
methods and the MVPCA method are relatively concentrated. That is, the redundancy is
relatively high, and the corresponding classification effect is poor. The proposed EBARec-
BS method has the highest classification accuracy and the lowest redundancy due to the
consideration of redundant information and nonlinear relationships between bands and
the representativeness of each band to the original band set. Similar results can be found in
the Indian Pines data set and the Pavia University data set.

In conclusion, the proposed EBARec-BS method can accurately select the bands that
are important to the original band set and ensure that redundant information is relatively
small. Moreover, through the comprehensive analysis of the classification results and the
redundancy results, it can be known that an effective BS method needs to be able to take
into account the redundancy between the bands and the representativeness of each band
to the original HSI simultaneously.

4.4. Robustness to Noisy Bands

To test the robustness of different BS methods to noise bands, as shown in Table 3, we
select fifteen bands from the Indian Pines data set with all bands, that is, without removing
noise bands. If a specific BS method selects fewer noise bands, it means that this BS method
has strong robustness to noise bands.

Table 3. Fifteen bands selected by different methods from the Indian Pines dataset (the bold denotes
noisy bands).

Fifteen Selected Bands

MVPCA 21 22 23 24 25 26 27 28
29 30 31 32 33 41 42

LCMVBCC 108 119 152 154 155 156 158 159
160 161 162 165 196 218 220

LCMVBCM 119 120 123 130 153 155 159 160
165 171 174 185 196 199 209

ECA 1 2 18 31 32 35 36 37
46 57 61 62 75 100 101

OPBS 1 18 20 23 29 32 34 35
42 57 61 74 75 88 89

BS-Net-Conv 1 6 42 68 99 105 106 107
108 123 150 153 162 194 203

EBARec-BS 17 18 19 20 27 33 53 130
141 167 168 169 173 182 202
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As shown in Table 3, the EBARec-BS and MVPCA methods do not select any noise
band, whereas the band subsets selected by the other BS methods all contain some noise
bands. In particular, the band subsets selected by the state-of-the-art BS-Net-Conv method
and the LCMV-based methods all contain more than five noise bands. Experimental results
show that the proposed EBARec-BS method can select a subset of bands that represent the
original HSI and is robust to noise bands, which confirms the effectiveness of the proposed
BS method.

4.5. Summary

From all the experiments, some significant results can be summarized. The unsuper-
vised BS method needs to consider the representativeness of each band to the original
HSI and the correlation between bands simultaneously. Moreover, from the experimental
results, it can be seen that the high correlation of the band subset often corresponds to the
low classification accuracy. The proposed EBARec-BS method comprehensively considers
representativeness and redundancy when selecting the band subset, so the selected band
subset has the best overall classification performances and relatively low correlations on
three different data sets. The classification performances of the EBARec-BS method are even
better than that of the state-of-the-art BS-Net-Conv method. These results demonstrate
the rationality and superiority of the proposed EBARec-BS method. In addition, EBARec-
BS achieves stable and excellent classification performances on two different classifiers,
which indicates the strong robustness of our proposed method. Additionally, the proposed
EBARec-BS method has good robustness to noise bands. In conclusion, the experimental
results verify the effectiveness of the proposed EBARec-BS method.

5. Conclusions

This article proposes a novel unsupervised EBARec-BS network for HSI. The main
idea of the proposed architecture is to learn the contribution of each band to the original
HSI by considering the inherent nonlinear relationship between the bands and consider
the correlation among the bands by measuring the distance of a candidate band to the
hyperplane consisting of the selected bands. Subsequently, we design the BS scoring
function that comprehensively considers the redundancy between the selected bands
and the contribution of the selected band subset to the original band set. The obtained
framework can select a band subset that is not only well representative of the original band
set but also has low redundancy. The experimental results demonstrate that the band subset
selected by the implemented EBARec-BS method obtains significantly better classification
performance and lower correlation than the band subsets selected by other BS methods. At
the same time, the EBARec-BS method has good robustness to noise bands. In the future,
we will explore other suitable ways to integrate the two measures of representativeness
and redundancy.
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