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Abstract: Satellite data are the main source of information for operational data assimilation systems, 
and Advanced Microwave Sounding Unit-A (AMSU-A) data are one of the types of satellite data 
that contribute most to the reduction of numerical forecast errors. However, the assimilation of 
AMSU-A data over land lags behind that over the ocean. In this respect, the accuracy of cloud de-
tection over land is one of the factors affecting the assimilation of AMSU-A data, especially for the 
window and low-peaking channel (23–53.59 GHz and 89 GHz) data. Strong surface emissivity and 
high spatial and temporal variability make it difficult to distinguish between the radiative contribu-
tions of clouds and the atmosphere. Based on the differences in the response characteristics of dif-
ferent channels to clouds, five AMSU-A window and low-peaking channels (channels 1–4 and 15) 
were selected to develop a new index for cloud detection over land. Case studies showed that the 
AMSU-A cloud index can detect most of the convective clouds; additionally, by further matching 
the MHS (Microwave Humidity Sounder) cloud detection index, we can effectively distinguish be-
tween cloudy and clear-sky observations. Batch test results also verified the accuracy and stability 
of the new cloud detection method. By referring to the MODIS (Moderate Resolution Imaging Spec-
troradiometer) cloud product, the POD (probability of detection) of the cloud fields of view with 
the new method was nearly 84%. By using the new cloud detection method to remove the cloudy 
data, the bias and standard deviation of the observation-minus-simulated brightness temperature 
(O−B) were significantly reduced, with the bias of O−B for channels 2–4 being below 1.0 K and the 
standard deviation of channels 5 and 6 being nearly 1.0 K. 

Keywords: brightness temperature; MHS; cloud index 
 

1. Introduction 
By the end of the 20th century, direct assimilation of satellite radiance data into var-

iational assimilation systems had begun to help with the problem of insufficient observa-
tional data, thus greatly improving the accuracy of numerical forecasts. In particular, the 
accuracy of forecasts in the southern hemisphere, where conventional observations are 
scarce, was rapidly improved to be consistent with that in the northern hemisphere [1]. 
The contribution of satellite observations in operational data assimilation systems is in-
creasing; for example, the proportion of satellite information in GRAPES (Global/Regional 
Assimilation and Prediction System)—the numerical weather prediction system of the 
China Meteorological Administration—is more than 70%, and that of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) exceeds 90% [2]. Amongst all the sat-
ellite instruments currently in operation, AMSU-A (Advanced Microwave Sounding 
Unit-A) is notable for its ability to retrieve information on the vertical distribution of at-
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mospheric conditions and contributes significantly towards reducing global NWP fore-
cast errors; additionally, it has also been demonstrated to be beneficial in many ways to 
regional forecasting systems [3,4]. 

Launched with the polar-orbiting satellites NOAA15-19 and Metop-A\B\C, AMSU-
A is a passive microwave remote-sensing instrument that detects information on the state 
of the earth–atmosphere system by receiving upward radiance. Fifteen channels are avail-
able in AMSU-A, including three window channels (23.8, 31.4, and 89.0 GHz) for detecting 
clouds and rain and providing information on surface temperature and emissivity. There 
are also twelve oxygen absorption channels distributed at 50–60 GHz for detecting atmos-
pheric temperature profiles from the troposphere to the stratosphere. Many studies have 
demonstrated that the assimilation of AMSU-A observations can significantly improve 
the accuracy of models in forecasting severe weather [5–7]. The long-term and continuous 
atmospheric temperature profile observations of AMSU-A also make it important for 
studying atmospheric temperature under climate change [8–10]. 

The brightness temperature (BT) observed by AMSU-A is not a model variable, so 
assimilation of AMSU-A observations requires a radiative transfer model (RTM) for vari-
able conversion. According to the theory of radiative transfer, the surface state and hy-
drometeor particles have significant effects on the observed BT of AMSU-A. In the case of 
cloud-contaminated fields of view (FOVs), not only does the RTM need to input more 
complex information about the phase, size, and number of particles in the clouds, but, 
owing to the limitations of the model’s cloud and rain microphysical processes and non-
linear radiation processes, the simulated BT will deviate considerably from the observed 
BT [11]. If cloud-contaminated observations are assimilated without any specific treat-
ment, there will be a negative impact on the forecast [12]. Over the past few decades, many 
researchers have developed various methods to detect cloud-contaminated observations 
over the ocean and subsequently eliminate them, thereby only assimilating clear-sky ob-
servations in what is referred to as ‘clear-sky assimilation’. 

The most common cloud detection method is based on the deviation between the 
observed and simulated BT (O−B) of AMSU-A channels. For instance, the |O−B| value of 
channel 4 being greater than 0.7 K was used to detect and reject scenes that were contam-
inated by cloud and/or precipitation in the ECMWF model [13]. In addition, the FOVs are 
considered to be cloud-contaminated when the cloud liquid water path (LWP), which is 
retrieved from the window channels 1 and 2 of AMSU-A, is greater than a specific thresh-
old [14]. Zou et al. [15] developed a one-stream cloud detection method by merging the 
LWP and ice water path (IWP) retrieved from window channels 1 and 2 of the Microwave 
Humidity Sounder (MHS). When the LWP or IWP is larger than the threshold, the FOV is 
considered to be cloud-contaminated, and the IWP captures some of the ice clouds missed 
by the LWP [16]. The scattering index is defined by a linear regression model of channel 
15 and channels 1–3 of AMSU-A, used by the AAPP (AVHRR (Advanced Very High Res-
olution Radiometer) Pre-processing Package) to detect cloud [17]. Aires et al. [18] used the 
MSG-SEVIRI (Meteosat Second Generation–Spinning Enhanced Visible and Infrared Im-
ager) cloud product as a reference to train AMSU-A/B observations with a neural network 
algorithm and proposed a land and ocean cloud classification method. Cloud detection 
methods based on channel |O−B| and retrieved cloud water variables require ancillary 
data such as model output data. In contrast, neural network algorithms rely on a vast 
number of accurately labeled datasets to train microwave information, which is prone to 
overfitting and increases the computational burden. In recent years, researchers have de-
voted themselves to the development of all-sky assimilation, which assimilates thin 
clouds and non-precipitating-cloud-contaminated observations over the ocean by intro-
ducing a cloud-related variable into the model and resetting the background error of 
cloudy observations. The method has yielded positive results and is now being used op-
erationally [19–23]. However, regardless of whether clear-sky or all-sky assimilation 
methods are employed, accurate identification of clear-sky or cloudy-sky observations is 
a prerequisite. 
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The spatial and temporal variability of surface parameters, such as surface tempera-
ture and surface emissivity, are much stronger over land than ocean, and soil composition, 
moisture, and roughness all affect surface emissivity [24]. Surface parameters are difficult 
to measure accurately, which leads to more difficulties and challenges in assimilating 
AMSU-A observations over land than ocean, even with clear-sky assimilation [25]. To im-
prove the accuracy of model-simulated BT over land, various surface temperatures and 
surface emissivity estimation methods have been proposed, and these methods have 
yielded significant improvements in the clear-sky assimilation of AMSU-A terrestrial ob-
servations [26–28]. However, in most of these methods, cloud product retrievals from 
other space-based instruments (e.g., MODIS (Moderate Resolution Imaging Spectroradi-
ometer) cloud masks) are used to detect clouds, because most cloud detection methods 
over the ocean, such as LWP retrieval, are not applicable over land owing to the significant 
effect of surface emissivity. When using those cloud products, spatiotemporal interpola-
tion is required between AMSU-A and other instruments, which is neither economical nor 
convenient for operational applications. While there are only a few empirical solutions 
available for terrestrial cloud detection based on the AMSU-A instrument itself; the accu-
racy of these methods is heavily dependent on the accuracy of the ancillary data. For ex-
ample, in the GSI (Gridpoint Statistical Interpolation) assimilation system, terrestrial 
cloud detection is based on empirical scattering indices and precipitation indices [22]; 
whereas, GRAPES directly excludes the observations of the low-peaking channels 1–4 and 
15, and mid-peaking channels 5 and 6, over land. A large number of AMSU-A terrestrial 
observations are excluded or discarded, which results in wasted information. Therefore, 
in this work, we attempted to develop a new AMSU-A terrestrial cloud detection method 
and, based on it, we evaluated the bias characteristics of different channels affected by 
clouds and different surface types under clear-sky conditions, and prepared for assimilat-
ing the observations of AMSU-A mid- and low-peaking channels over land in GRAPES. 

The paper is structured as follows: Following this introduction, Section 2 introduces 
the datasets. Section 3 describe the new cloud detection method. Section 4 evaluates the 
effectiveness of the new cloud detection method and assesses the bias and standard devi-
ation characteristics of different channels affected by clouds and different surface types 
under clear-sky conditions. Section 5 provides a discussion and conclusion. Finally, Sec-
tion 6 gives a summary. 

2. Datasets 
2.1. AMSU-A and MHS Onboard NOAA19 

NOAA19 was launched on 6 February 2009, when it took over from NOAA18 as 
NOAA’s primary afternoon satellite. The local equatorial crossing time at the launch of 
NOAA19 was 13:30; however, due to orbital drift, this had become 16:30 by 2019. Like its 
predecessor, NOAA19 carries two microwave instruments: AMSU-A and MHS, and the 
general characteristics of both instruments are listed in Table 1. AMSU-A is designed to 
detect the vertical temperature profile from the Earth’s surface to a pressure height of 
about 2 hPa (45 km). Vertical profiles are obtained through the measurements of scene 
radiance in 15 channels, ranging from 23.8 to 89 GHz. The instrument has an instantane-
ous FOV of 3.3° at the half-power points. The antenna provides a cross-track scan, scan-
ning ±50° from nadir with a total of 30 FOVs per scan line. The swath of AMSU-A is 2226.8 
km and the spatial resolution at nadir is nominally 48 km. 

MHS observes the Earth with five frequency channels ranging from 89 to 190 GHz. 
The instrument has two window channels (89 and 157 GHz) and three water vapor chan-
nels distributed around 181.3 GHz, mainly observing water vapor and cloud and rain in-
formation in the troposphere, which is more sensitive to the cloud, especially ice particles. 
MHS is also a cross-track instrument, with 90 contiguous scene resolution cells sampled 
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in a continuous scan, covering 50° on each side of the sub-satellite path, and with an an-
tenna beam width of 1.11° at the half-power point. The swath of MHS is 2348 km and the 
spatial resolution at nadir is nominally 17 km. 

MHS and AMSU-A are carried on the same satellite platform, meaning the temporal 
difference between the two instruments is negligible and their swaths are similar, making 
it convenient to merge the two data streams. The number of MHS scan lines and FOVs on 
a scan line are three times greater than those of AMSU-A, which means 3 × 3 FOVs from 
the MHS can match one AMSU-A FOV. 

Table 1. NOAA-19 AMSU-A and MHS channel characteristics. 

Instrument Channel 
Central  

Frequency 
(GHz) 

Polarization 
Height of Peak  

Energy  
Contribution (hPa) 

NEΔT 
(K) 

AMSU-A 

1 23.80 V Window 0.30 
2 31.40 V Window 0.30 
3 50.30 V Window 0.40 
4 52.80 V 850 0.25 
5 53.59 ± 0.115 H 700 0.25 
6 54.40 H 400 0.25 
7 54.94 V 270 0.25 
8 55.50 H 180 0.25 
9 f0 = 57.29 H 90 0.25 

10 f0 ± 0.217 H 50 0.40 
11 f0 ± 0.322 ± 0.048 H 25 0.40 
12 f0 ± 0.322 ± 0.022 H 12 0.60 
13 f0 ± 0.322 ± 0.010 H 5 0.80 
14 f0 ± 0.322 ± 0.004 H 2 1.20 
15 89.00 H Window 0.50 
1 89.0 V Window 0.37 

 2 157.0 V Window 0.84 
MHS 3 183.31 ± 1.0 V 300 1.06 

 4 183.31 ± 3.0 H 500 0.70 
 5 190.0 V 800 0.60 

2.2. MODIS Cloud Classification Product 
MODIS is the instrument aboard NASA’s Terra and Aqua satellites, which can ac-

quire high radiometric-sensitive data (12 bit) in 36 spectral bands (wavelengths ranging 
from 0.4 to 14.4 μm) and sweep the entire surface of the Earth every 1 to 2 days. It has a 
viewing swath width of 2330 km and spatial resolutions of 250 m, 500 m, and 1 km 
(https://space.oscar.wmo.int/instruments/view/modis, accessed on 8 October 2020). Terra 
is a morning satellite, while Aqua is an afternoon satellite with a fixed local equatorial 
crossing time of 13:30. Therefore, in the present study, we used the MODIS data onboard 
Aqua, which has a 3-h time lag with NOAA19. 

MODIS cloud products are widely used as benchmarks for verification and evalua-
tion of satellite cloud products. The retrieval algorithms of MODIS cloud properties have 
evolved over the past two decades, and cloud products have been validated by comparing 
them with active remote-sensing observations. For example, in 2008, Ackerman [29] as-
sessed the performance of the MODIS cloud mask algorithm using three years of radar 
and LiDAR data and showed that 85% of the MODIS cloud mask data agreed with the 
active remote-sensing data. Since then, the inversion algorithm of MODIS has undergone 
several updates, and the accuracy has been further improved. Based on the cloud classifi-
cation criteria proposed by the ISCCP (International Satellite Cloud Climatology Project), 
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cloud optical thickness and cloud-top pressure were obtained from the MYD06_L2 prod-
uct (https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MYD06_L2--61, accessed on 
8 October 2020) and combined to obtain clear skies and nine cloud classes (Figure 1b) 
[30,31]. The resolution of the obtained MODIS cloud product is 1 km. 

The AMSU-A observational data can be used to retrieve the LWP over ocean, 
wherein an LWP value greater than 0.02 g/kg is conventionally considered to indicate 
cloud contamination of this FOV. Therefore, we can use observations from both instru-
ments over the ocean to verify the effect of the time difference between the two instru-
ments on the matching results. Figures 1a and 1b respectively show the spatial distribu-
tion of the whole-layer-integrated LWP from NOAA19 during 0300–0900 UTC and the 
MODIS cloud classification products during 0000–0600 UTC over the western Pacific on 
12 August 2019. We focused on the locations of the clouds retrieved by the two instru-
ments. Comparing the locations of the three pairs of cloud clusters that we marked in 
Figure 1, we can see that, although there is roughly a three-hour gap between the two 
instruments, the retrieved cloud locations are barely visible differences. Therefore, it is 
reasonable to assume that this three-hour gap will have a minimal effect when matching 
MODIS information to the coarse AMSU-A FOV. When matching with AMSU-A obser-
vations, we counted the MODIS sky category with the maximum proportion of the 
AMSU-A FOV within a 30-km radius as the sky category for this FOV. 

 
(a) 

1 

2 
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(b) 

Figure 1. Spatial distribution of the whole-layer-integrated LWP (a) from NOAA19 during 0300–
0900 UTC and (b) from the MODIS cloud classification products during 0000–0600 UTC over the 
western Pacific on 12 August 2019. 

3. Methods 
Figure 2 shows the spatial distribution of the O−B of AMSU-A channel 3 from 

NOAA-19 and MODIS cloud classification products in East Asia at 0600 UTC on 26 June 
2019. The weighting function peak heights of channel 3 are located at the ground, which 
is the first temperature measurement channel of AMSU-A. To avoid the influence of topo-
graphic height, we chose to restrict the study to East Asia only. We used the Community 
Radiative Transfer Model (CRTM) developed by the Joint Center for Satellite Data Assim-
ilation to simulate the AMSU-A BT. CRTM can provide fast, accurate satellite radiance 
simulations and Jacobian calculations at the top of the atmosphere. The model supports 
the simulation of sensor measurements covering wavelengths ranging from the visible 
through the microwave [32]. We used the FNL (final analysis) data [33] as the background 
field, and the NPOESS (National Polar-orbiting Operational Environmental Satellite Sys-
tem) dataset to determine the land-surface type of each FOV. As we did not input hydro-
meteor information into CRTM, we considered all-sky to be clear-sky. Comparing Figures 
2a,b, it can be seen that the O−B in the thick cloud areas showed significant negative val-
ues, such as in the convective cloud system from Lake Baikal to northeast China and the 
convective cloud system over the Korean Peninsula, as well as in the stratocumulus over 
the eastern coast of China (black dashed circle). In the clear-sky area, meanwhile, the ab-
solute value of O−B was smaller. The observed radiance of channel 3 in the clear-sky area 
was primarily from the surface-emitted radiance; whereas, the radiance observed by sat-
ellites in deep cloud areas was basically the cloud-top radiance, which was significantly 
lower than the surface radiance. Even for clouds penetrated by ground radiation, the scat-
tering and absorption of water and ice particles in the clouds leads to the radiance received 
by satellites being significantly lower than the simulated clear-sky radiance. Although 
there are many factors that lead to differences between observed and simulated BTs, most 
O−B values in cloud areas were negative, which proves that clouds have an important 
impact on O−B. If cloud and clear-sky data cannot be distinguished, it results in false as-
similation effects. 
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(a) (b) 

Figure 2. Spatial distribution of (a) the O−B of AMSU-A channel 3 (unit: K) and (b) MODIS cloud classification products 
in East Asia at 0600 UTC on 26 June 2019. 

Clouds have a significant effect on the BT observed by AMSU-A, but the response to 
clouds varies from channel to channel owing to frequency differences. AMSU-A window 
channels are sensitive to the presence of cloud and precipitation [34]. A scatterplot of the 
BTs observed by AMSU-A channels 3 and 15 over East Asia is given in Figure 3, where 
the circle colors indicate the matched simultaneous and the closest MODIS cloud classifi-
cation results. It can be seen that the observed BT of channel 15 is higher than that of 
channel 3 in the clear-sky area. In the microwave region, Planck’s formula can be simpli-
fied to the Rayleigh–Jeans radiation law, given the frequency ν and the thermodynamic 
temperature T of a black body: 

2

2

2( , ) .kB T T
c
νν =  (1)

where c is the speed of light and k is the Boltzmann constant, such that the BT is proportional 
to the quadratic of the frequency. This approximate theory has an accuracy of better than 
1% for an object at 300 K viewed at a frequency less than 125 GHz [35]. In the clear-sky area, 
the AMSU-A observed radiance is mainly dependent on the radiance emitted from the sur-
face; this can be simplified as the following Equation (2): 

( , ) ( , ) ( , ) ( , ).Clr
sfc sfc sL B Tν θ ε ν θ ν τ ν θ=  (2)

where LClr(ν,θ) is the clear-sky upwelling radiance, εsfc is the surface emission, Tsfc is the 
surface temperature, τs is the transmittance from the surface to the top of the atmosphere, 
and B(ν,T) is the Planck function for a frequency ν and temperature T. Then, combined 
with Equation (1), the observed radiance ratio of the two channels in the same FOV is: 

2
89.0

2
50.3

89.0 (89.0, ) (89.0, )

50.3 (50.3, ) (50.3, )
sfc s

sfc s

L
L

ε θ τ θ
ε θ τ θ

⋅ ⋅
=

⋅ ⋅
 (3)

In the same FOV, the surface emissivity and atmospheric state are fixed, but the fre-
quency of channel 15 is larger than that of channel 3, so the observed BT of channel 15 is 
warmer than that of channel 3, and the ratio of the BT of channel 15 to that of channel 3 is 
close to a constant value. 
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Figure 3. Scatterplot of BT (unit: K) observed by NOAA-19 AMSU-A channels 3 and 15 in East Asia 
at 0600 UTC 26 June 2019. The colors of the circles indicate the matched simultaneous MODIS cloud 
classification products. 

In cloudy sky, the relationship between the BTs of the two channels is more compli-
cated. The cloud attenuates the BT of both channels, and the thicker and higher the clouds, 
the more pronounced their attenuation effect and the lower the observed BT of channels 
3 and 15, with the lowest BT observed in deep convective clouds and cirrostratus. How-
ever, microwaves can penetrate some thin clouds, so the observed BT under cirrus and 
some cirrostrati is not distinguishable from the observed BT under clear sky. Many cloud-
related factors will lead to a decrease in BT—for instance, the size and distribution char-
acteristics of water and ice particles, as well as the shape of ice particles. Besides, there is 
a significant difference in the attenuation of cloud BT between the two channels, with 
channel 15 being more sensitive to clouds than channel 3, meaning the BT of channel 15 is 
more significantly reduced by clouds than that of channel 3. In Figure 3, the BT of channel 
15 is remarkably smaller than that of channel 3 in the deep convective cloud area. 

Therefore, we can try to define a cloud index based on the different responses of these 
two channels to clouds. Qin and Zou [36], based on MHS channel 2 being more sensitive 
to clouds than channel 1, used the standardized BT of channel 1 as the numerator and the 
BT of channel 2, which was adjusted to the same magnitude as the numerator, as the de-
nominator to define a terrestrial cloud detection index. The index can detect mostly cloudy 
FOVs. Zhu et al. [37] introduced this method to the Microwave Humidity Sounder II in-
strument onboard China’s FY-3C satellite, also achieving satisfactory cloud detection re-
sults. In this work, five low-peaking channels (channels 1–4 and 15) of AMSU-A were 
selected to define the cloud index: 
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where Tb,i is the observed BT of the ith channel of the five channels 1–4 and 15 of AMSU-A. 
The normalized brightness of channel 3 is used as the numerator, and the exponentiation-
adjusted brightness of channel 15 is used as the denominator. 

The spatial distribution of the numerator, denominator, and the AMSU-A cloud in-
dex at the same moment in time as in Figure 2a is given in Figure 4. Comparing with 
Figure 2b, because channel 3 is less sensitive to clouds, the normalized BT of channel 3 
therefore showed a larger positive value in the cloudy areas but a smaller value in clear 
sky. To further amplify the difference between cloudy and clear sky, we added the BT of 
the cloud-sensitive channel 15 and used the exponentiated BT of channel 15 as the denom-
inator. The difference between the clear-sky and cloud-contaminated BT of channel 15 is 
amplified by the exponentiation, having been multiplied by a coefficient to adjust the 
magnitude to be comparable in size to the numerator. As the cloud attenuates the BT of 
channel 15 more significantly, the value of the denominator will thus be smaller in the 
cloud area, which ultimately gives the cloud index a large positive value in cloudy sky, 
while the value is smaller in clear sky, as shown in Figure 4c. 

  
(a) (b) 

 
(c) 

Figure 4. Same as in Figure 2a but for the spatial distribution of the (a) numerator, (b) denominator, and (c) AMSU-A 
cloud index. 

Figure 5 presents scatterplots of the numerator (horizontal axis) and denominator 
(vertical axis) of the cloud index for two moments, 0600 UTC 26 June and 0600 UTC 28 
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June 2019, when NOAA-19 had more observations in East Asia, in which the colors rep-
resent the matched MODIS cloud classification products. It can be seen that the clear-sky 
observations are almost all clustered in the upper-left corner, while the cloudy-sky obser-
vations are scattered on the right-hand side. This corresponds to the previous analysis, 
where cloud-free observations have a smaller numerator and a larger denominator, and 
thus would be clustered in the upper-left corner, while cloudy observations are the oppo-
site. There is a clear distinction between cloud and cloud-free observations in the scatter-
plots in Figure 5a,b, and the slopes of the two parts of the data after fitting are significantly 
different. Based on this feature, the threshold for distinguishing between the cloud and 
cloud-free observations can be determined. Of course, some cloudy and clear-sky obser-
vations were incorrectly distinguished, which we improved upon below. 

(a) 

 
(b) 

Figure 5. Scatterplots of the numerator (horizontal axis) and denominator (vertical axis) of the 
AMSU-A cloud index from NOAA-19 over East Asia at (a) 0600 UTC 26 June and (b) 0600 UTC 28 
June 2019, where the colors represent the matched MODIS cloud classification products. The solid 
black line on the left in (a,b) is the fitted line for observations with the Aindex less than 0.1, and the 
solid black line on the right is the fitted line for the remaining observations. 

In order to ensure the stability of the results, one month of AMSU-A observations 
were used to determine the thresholds of Aindex. Figure 6 shows the fitted slope of the de-
nominator and numerator of the Aindex for different thresholds, in which the Aindex was cal-
culated from AMSU-A observations of NOAA-19 over land areas of East Asia from 0000 
UTC 15 June to 1800 UTC 15 July 2019. As can be seen from the figure, the slope for data 
with the Aindex bigger than the threshold (black curve) increased slowly with the threshold 
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value increasing to 0.14, and then basically stayed the same. However, for data with the 
Aindex less than the threshold (red curve), the slope increased rapidly before the threshold 
value reached 0.02, and then held steady from 0.02 to 0.1, after which it kept increasing 
and eventually got close to the black dotted curve. When the threshold value was less than 
0.02, there were fewer clear-sky observations with the Aindex less than the threshold, so the 
absolute value of the fitted slope was large and increased rapidly. When the threshold 
value was in the range from 0.02 to 0.1, the data included by respecting the Aindex less than 
the threshold were mostly the same clear-sky observations, so the fitted slope stayed 
nearly the same. However, after the threshold value exceeded 0.1, the slope increased 
steadily and eventually got close to the slope of the observations in the cloudy area. This 
means that cloudy observations have been included. So, Aindex = 0.1 can be used to distin-
guish between cloudy and clear-sky FOVs. 

 
Figure 6. Fitted slope of the denominator and numerator with AMSU-A index values smaller than 
(red line) or greater than (black line) the threshold, along with the mean fitting errors shown with 
vertical lines. The AMSU-A cloud index was calculated using AMSU-A observations of NOAA from 
15 June to 15 July 2019. 

4. Analysis of Cloud Detection Results 
4.1. Accuracy of the New Cloud Detection Method 

Two examples of AMSU-A cloud index results are given in Figure 7, where the black 
circles are the cloudy FOVs detected by the AMSU-A cloud index. It can be seen from the 
results that the cloud index can detect most of the cloudy areas, such as the banded cloud 
system from Lake Baikal to northeast China in Figure 7a, the high clouds over the Korean 
Peninsula, and the low clouds along the eastern coast of China (i.e., the area encircled by 
the black dotted line in Figure 2b). For the large convective clouds in northeast China 
(within 120–130° E and 35–48° N) in Figure 7b, these are mostly detected. However, the 
cloud index also has some shortcomings, such as its relative failure in detecting the cirrus 
and cirrostratus clouds around the convective cloud system in Figure 7; plus, the perfor-
mance is unsatisfactory at high latitudes, where low clouds are missing in Figure 7a. 
Meanwhile, a small amount of over-detection was found over the area south of Lake 
Baikal in Figure 7a. 

The detection accuracy of the AMSU-A cloud index obviously cannot meet the re-
quirements for operational application, probably because the AMSU-A observations are 
more sensitive to water clouds and relatively insensitive to ice clouds, which makes iden-
tification by the index difficult. To address this problem, referring to the study of Zou et 
al. [14], we considered the addition of the MHS cloud index (Mindex), which was defined 
as follows: 
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where 𝑇௕,௜ is the observed BT of the ith channel of the five channels 1–5 of MHS. The MHS 
cloud index was matched to the FOV of AMSU-A according to the method of nine MHS 
FOVs corresponding to one AMSU-A FOV proposed by Qin et al. [34]. Mindex > 0.35 is the 
threshold value to identify cloudy FOVs. 

The blue circles in Figure 7 are the cloudy FOVs supplemented by the MHS cloud 
index. Compared with the MODIS cloud classification product, the addition of the MHS 
cloud index is a good remedy for the missed detection problem of the AMSU-A cloud 
index. The MHS cloud index alone misses some of the low clouds (not shown). However, 
by combining the cloud indices of the two instruments, the majority of cloud observations 
can be eliminated, and the structure and edges of the cloud system are detected accurately, 
with only a small fraction of cirrus and scattered point clouds being missed. It is worth 
mentioning that the result was compared to infrared cloud products, which are more sen-
sitive to clouds than microwaves, and microwaves can penetrate some thin clouds, so 
some cirrus clouds missed by the cloud index may not have any effect on microwave ob-
servations. 

  
(a) (b) 

Figure 7. Clear-sky FOVs (white circles) and cloudy FOVs detected by the AMSU-A cloud index (black circles) and MHS 
cloud index (blue circles), along with the matched MODIS cloud classification products at the same moment, at (a) 0600 
UTC 26 June and (b) 0600 UTC 28 June 2019. 

Figure 8 compares the accuracy of the new cloud detection method with the empirical 
cloud detection method (|OെB| > 1.5 K for channel 4) at the same moment as in Figure 7. 
It is clear that the old method misses some deep convective clouds, such as the edge of the 
banded convective cloud within 110–120° E and 50–55° N in Figure 8a and the cirrostratus 
within 110–120° E and 45–50° N in Figure 8b, which can be accurately detected by the new 
method (blue circles). Meanwhile, the old method over-detected more clear-sky observa-
tions. 
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The above two examples validate the effectiveness of the new cloud detection 
method. To quantitatively compare the new method with MODIS cloud products, we in-
troduce three statistical scores: the probability of detection (POD), false-alarm ratio (FAR), 
and hit rate (HR). The definitions of the POD, FAR, and HR of binary events (i.e., clear 
sky/cloudy) are as follows [38]: 
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For a certain event (e.g., cloudy, denoted by 0), N00 and N11 represent the number of 
collocated FOVs that are all identified as cloudy and clear, respectively, by the method 
and MODIS; N01 represents the number of matched FOVs determined as cloudy by the 
method but clear by MODIS; and N10 represents the number of collocated FOVs classified 
as clear by the method but cloudy by MODIS. 

Table 2 shows the POD, FAR, and HR scores of three methods: the new method 
(AMSU-A and MHS indexes), the method only using the MHS index, and the empirical 
(old) method, respectively. The collocated MODIS cloud product was employed as a 
benchmark. The new method performed significantly better than the other two methods. 
Specifically, the new method achieved an average POD of 83.85% under cloudy sky, 
which is higher than the MHS-index-only method by about 15%, and the old method by 
about 22%. The MHS-index-only method has the highest clear-sky POD, but the HR was 
lower than the new method. Comparing the FARs of the two methods, the new method 
had a lower clear-sky (higher cloudy-sky) FAR than the MHS-index-only method, mean-
ing fewer cloudy observations are missed by using the data of both instruments. Com-
pared to the loss of some clear-sky observations, the negative impact on the forecast is 
more significant if the cloudy FOVs are misidentified as clear sky. 

Figure 9 presents a histogram of the O−B data volume distribution before and after 
the removal of cloud observations for AMSU-A channels 1–6 and 15 onboard NOAA-19 
from June to August 2019. The results show that, before removing cloud-contaminated 
observations, the data distributions of O−B for the middle- and low-peaking channels are 
significantly skewed, with more observations having negative O−B values. The window 
channels (channels 15, 1, and 2) are more sensitive to clouds, and the clouds can make the 
O−B values of a few observations greater than 50 K. These observations can be excluded, 
after removing cloud-contaminated observations, and most of the observations were 
within the range of |O−B| < 10 K. The temperature channels (channels 3–6), meanwhile, 
are affected by clouds, as the weighting function peak heights become higher and de-
creases. After cloud detection, most of the observations fall within the range of |O−B| < 5 
K. Figure 10 gives the O−B probability distribution curves for the original observations 
and after removal of cloudy observations for the three AMSU-A channels at the same time 
as in Figure 9. The O−B of the middle- and low-peaking channels after removing cloudy 
observations are more in line with the normal distribution. 
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(a) (b) 

Figure 8. As in Figure 7 but with the black circles representing cloudy FOVs detected by both cloud detection methods, 
the blue circles denoting cloudy FOVs detected by only the new method, and the cyan circles showing the cloudy FOVs 
detected by only the old method, at (a) 0600 UTC 26 June and (b) 0600 UTC 28 June 2019. 

 
Figure 9. Distribution of data volume in different O−B intervals (interval: 1 K) before (left-hand side) 
and after (right-hand side) removal of cloudy observations for AMSU-A channels 1–6 and 15 from 
NOAA-19 from June to August 2019, with the colors representing the data volume. 
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(a) (b) (c) 

Figure 10. The O−B probability distribution curves for the original observations (black line) and after removal of cloudy 
observations (blue line) for AMSU-A (a) channel 1, (b) channel 3, and (c) channel 5 from NOAA-19 from June to August 
2019. 

Table 2. The POD, FAR, and HR scores of three methods for cloudy sky and clear sky over the land area of East Asia from 
June to August 2019. In the statistics, the MODIS cloud product was used as a benchmark. 

Mon 

 

% 

AMSU-A and MHS MHS Old 
No. 

FOVs 
Cloudy Clear 

HR 
Cloudy Clear 

HR 
Cloudy Clear 

HR 
POD FAR POD FAR POD FAR POD FAR POD FAR POD FAR 

Jun. 86.57 28.08 50.72 21.43 70.18 71.53 23.29 68.57 29.49 69.96 63.23 34.94 51.17 40.32 56.75 48,932 

Jul. 82.89 23.15 58.21 24.00 70.08 68.84 18.03 74.37 30.33 71.21 64.95 29.57 51.97 40.34 59.16 50,329 

Aug. 82.09 18.87 58.48 27.12 72.94 68.24 12.89 78.37 32.28 71.73 58.06 26.04 51.16 45.73 55.81 51,486 

All 83.86 23.37 55.80 24.18 71.73 69.54 18.07 73.77 30.70 70.97 62.08 30.18 51.10 42.13 57.24 150,747 

4.2. Assessment of Bias and Error Characteristics 
Figure 11a shows the O−B deviation characteristics of the AMSU-A lower- and mid-

dle-peaking channel observations under cloudy and clear-sky conditions over East Asian 
land areas from June to August 2019. It can be seen that the average O−B value of the low- 
and middle-peaking channels is negative. In other words, the simulated BT is higher than 
the observed BT on average, regardless of cloudy or clear sky, except for channel 6. How-
ever, in cloudy sky, the average O−B value of the middle- and low-peaking channels is 
significantly negative compared with the clear-sky condition. Among the three window 
channels, channel 15 has the most significant deviation for simulated BT owing to the in-
fluence of clouds, followed by channel 2. The higher the peaking height of the temperature 
channel’s weighting function, the weaker the influence of clouds; additionally, by channel 
6, there was no significant difference between the average O−B in the cloudy and clear 
sky. Therefore, in the middle- and high-peaking channels, cloud detection should take 
into account the cloud-top height. If the cloud-top height is lower than the peaking height 
of the channel’s weighting function, the observations of that channel should not be re-
jected, which is work that we plan to carry out in the future. The average O−B of channel 
15 is still the most significant negative value in clear sky, being close to −2.0 K, followed 
by channel 1 and channels 2–4, which are around −1.0 K, and channels 5 and 6 were close 
to 0 K. 

Figure 11b gives the standard deviation of O−B values for all observations and ex-
cluding cloudy observations in this period. Before excluding cloudy observations, the 
standard deviation of O−B is significantly larger than that of the clear-sky data, and grad-
ually decreased with the increase in the weighting function peak height. After excluding 
the cloudy observations, the standard deviations of the O−B values of the middle- and 
low-peaking channels were significantly reduced, and the standard deviation of channel 



Remote Sens. 2021, 13, 3646 16 of 20 
 

 

2 was still the largest. However, the standard deviation of channel 1 is larger than that of 
channel 15, while the simulated BT bias of channels 5 and 6 are smaller than 1.0 K. 

(a) 

(b) 

Figure 11. Histograms of the (a) average OെB of observations under cloudy (red) and clear sky 
(blue), and (b) OെB standard deviations of observations under all-sky (red) and clear-sky (blue) 
conditions over East Asian land areas from June to August 2019. 

In addition to the effect of clouds, there is another major source of error in the simu-
lation error of AMSU-A, which is the vegetation types. Based on the accurate identifica-
tion of the clear-sky observations, we also analyzed the simulation error characteristics of 
each low- and middle-peaking channel of AMSU-A for different vegetation types, and 
Figure 12a–c give the histograms of data volume, the average O−B, and standard deviation 
of O−B, respectively, wherein observations with |O−B| > 5.0 K in each channel are ex-
cluded. 

Additionally, other vegetation types were not considered because the number of ob-
servation samples was too small. The four vegetation types with the largest number of 
observation samples in the study area were broadleaf forest, pine forest, grass, and scrub, 
in that order. Because the simulation error was smaller in the middle-peaking channel, the 
amount of data was larger. As can be seen in Figure 12b, the simulated BT deviation was 
smaller for broadleaf forest between the two forest types, except for channel 6, where the 
simulated BT deviation was within 1 K for all channels, and within 0.5 K for channels 5 
and 6. The simulated BT deviation of channel 5 was slightly larger for pine forest, but also 
less than 1 K. For scrub, the deviation was less than 0.5 K for all channels except channel 
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6, which is close to 1.0 K. The simulated BT deviation was larger for grassland, which was 
around 1.5 K for the lower channels and within 1.0 K for channels 5 and 6. The standard 
deviation of O−B for the four surface types was more consistent for the different channels, 
with a simulated BT error for the four low-level channels of around 2.5 K, a simulated 
error for channels 5 and 6 of around 1.0 K, and a simulated error less than 1 K for pine 
forest and grassland. The simulated BT error for channel 5 is larger for scrub, being close 
to 1.5 K. 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Histograms of (a) data volume, (b) the average OെB of observations, and (c) standard 
deviation of observations for AMSU-A channels 1–6 and 15 on four vegetation types in East Asian 
land areas from June to August 2019. 

5. Discussion and Conclusions 
The three-month analysis of cloud detection results reported in this paper validated 

the reliability of the new method, and the vast majority of cloud-contaminated FOVs 
could be detected. The new method only uses the observations, which helps to success-
fully avoid the influence of the model background field on the detection results, thus mak-
ing this method promising for operational data assimilation. However, as with the old 
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method, the FAR is slightly higher, and we will focus on solving this problem in the fu-
ture. 

The present work focused only on the summer season, and so we need to use more 
and different seasonal data to analyze the effect of atmospheric temperature on the in-
dexes in subsequent studies. Of course, this method is still based on the principle that 
clouds have a significant impact on the BT of each channel of AMSU-A and MHS. In some 
cases, the impact of clouds on the BT is very weak. For example, the thin cirrus cloud at 
high altitude has little impact on microwave radiation, and the low surface temperature 
at high latitudes and on glacial surfaces also causes the surface radiance to be similar to 
that of clouds, which may influence the effectiveness of the new method. The effect of the 
method on detection in winter also needs more data to be fully evaluated. In future re-
search, we need to quantitatively evaluate the characteristics of clouds that influence the 
BT in these cases through idealized experiments based on the RTM, so as to determine a 
more reasonable detection threshold and further improve the method. At present, we do 
not recommend applying the method in areas with low surface temperature—for exam-
ple, at high latitudes north of 60° N in winter or areas covered by perennial glaciers. 

In addition, due to data availability, we used MODIS cloud products to verify the 
method. The 3-h time difference between the cloud detection index and cloud products 
inevitably has an impact on the verification results. We believe that by using the better-
matched AVHRR cloud product data carried by the same satellite as the verification data, 
evaluation of this new method will more reasonable, which is also a direction for our 
group’s work in the future. In addition, the effectiveness of the new cloud detection 
method still needs to be tested by assimilation experiments. Specifically, the effect of the 
method on assimilation needs to be judged in terms of actual assimilation results. There-
fore, next, based on the new method, we intend to assimilate the clear-sky data of channels 
5 and 6 over land areas in GRAPES to verify the improvements the new method can de-
liver in terms of achieving better forecast results. 

6. Summary 
Because of the strong surface emissivity and high spatial and temporal variability, 

the cloud detection of AMSU-A over land has been a challenge. In this work, based on the 
characteristics of AMSU-A and MHS channels, we developed a new terrestrial cloud de-
tection method that relies only on the observations by merging the AMSU-A data and 
MHS data. Practical testing showed that the AMSU-A cloud index could detect most of 
the deep convective clouds, but missed the cirrus and some cirrostratus clouds. The addi-
tion of the matched MHS cloud index made up for the majority of clouds missed by the 
AMSU-A index. By comparing with the cloud classification product of MODIS, the cloud 
detection method after merging the information from both instruments could eliminate 
most of the cloudy observations. 

The effectiveness and stability of the new cloud detection method were verified by 
collecting AMSU-A and MHS observations for three months. By referring to the MODIS 
cloud product, the POD, FAR, and HR of the three cloud detection methods were calcu-
lated, revealing that the new method performed the best. On average, the POD with the 
cloud FOVs of the new method could reach 83.85%; additionally, the new method was 
found to have a lower clear-sky (higher cloudy-sky) FAR than the MHS-index-only 
method, meaning fewer cloudy observations are missed by using data from both instru-
ments. 

After removing cloudy observations, the O−B of the low- and middle-peaking chan-
nels were found to be more in line with the normal distribution. Based on the accurate 
identification of the clear-sky observations, we also analyzed the O−B distribution charac-
teristics of the AMSU-A low- and middle-peaking channel observations over land areas. 
Among the window channels, channels 1 and 15 had the largest bias and standard devia-
tion in their simulated BT owing to the influence of clouds, which gradually decreased as 
the weighting function peak height of the channel increased. After removing the cloudy 
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observations, the bias and standard deviation of O−B of the low- and middle-peaking 
channels of AMSU-A were found to reduce significantly; additionally, the bias of the O−B 
of channels 5 and 6 was within 1.0 K under clear-sky conditions, and standard deviation 
was around 1.0 K. The bias and standard deviation of the O−B for the middle- and lower-
peaking channels also differ among vegetation types under clear sky. The bias of broad-
leaf forest was smaller than that of pine forest, but the observation error was slightly larger 
than that of pine forest; the bias of grassland is larger, but the error was the smallest; and 
the observation error on scrub is the largest. Overall, the bias and standard deviation of 
the O−B of channels 5 and 6 are smaller among all channels. 
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