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Abstract: Information on the ground fissures induced by coal mining is important to the safety of 

coal mine production and the management of environment in the mining area. In order to identify 

these fissures timely and accurately, a new method was proposed in the present paper, which is 

based on an unmanned aerial vehicle (UAV) equipped with a visible light camera and an infrared 

camera. According to such equipment, edge detection technology was used to detect mining-in-

duced ground fissures. Field experiments show high efficiency of the UAV in monitoring the min-

ing-induced ground fissures. Furthermore, a reasonable time period between 3:00 a.m. and 5:00 a.m. 

under the studied conditions helps UAV infrared remote sensing identify fissures preferably. The 

Roberts operator, Sobel operator, Prewitt operator, Canny operator and Laplacian operator were 

tested to detect the fissures in the visible image, infrared image and fused image. An improved edge 

detection method was proposed which based on the Laplacian of Gaussian, Canny and mathemat-

ical morphology operators. The peak signal-to-noise rate, effective edge rate, Pratt’s figure of merit 

and F-measure indicated that the proposed method was superior to the other methods. In addition, 

the fissures in infrared images at different times can be accurately detected by the proposed method 

except at 7:00 a.m., 1:00 p.m. and 3:00 p.m. 

Keywords: unmanned aerial vehicle; infrared image; visible image; mining-induced ground fissure; 

ground fissure identification; edge detection method; fissure detection 

 

1. Introduction 

It’s important to collect the information on mining-induced ground fissures quickly, 

timely and accurately for the safety of coal mine production and comprehensive manage-

ment of the environment in the mining area. In recent years, new technologies employed 

in investigating and monitoring ground fissures are various, such as interferometric syn-

thetic aperture radar (InSAR)/synthetic aperture radar (SAR) [1,2], unmanned aerial ve-

hicles (UAVs) [3,4] and 3D laser scanning [5,6]. While it is notable that, InSAR/SAR and 

3D laser scanning have high operating costs and long data acquisition cycles. Compared 

to these techniques, the monitoring technology of a UAV equipped with a digital compact 

camera has higher image resolution, more flexible maneuverability, higher efficiency, and 

lower operating costs. But these images can be easily influenced by severe conditions, 
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such as bad weather and night environment, unfortunately, limited studies have been car-

ried out to monitor mining-induced ground fissures by UAV equipped infrared camera. 

The image edge detection method has been used in numerous fields by many re-

searchers [7–12]. The typical image edge detection methods include the Roberts operator 

[13], Sobel operator [14], Prewitt operator [15], Krisch operator [16], Laplacian operator 

[17], Laplacian of Gaussian (LoG) operator [18], Canny operator [19], edge detection based 

on mathematical morphology [20–22], wavelet transform edge detection methods [23,24]. 

The detection and extraction of linear features is a fundamental operation in digital image 

processing [25,26]. Cracks typically have linear edges. At present, crack detection based 

on the edge detection method is mainly used for pavement crack detection and concrete 

crack detection. For example, Ikhlas, Abdel-Qader et al. used edge detection technology 

to identify and detect cracks in bridges [8]. Qin Zou et al. developed CrackTree, which 

was a fully-automatic method to detect cracks from pavement images, and demonstrated 

the method had a better performance [27]. Oliveira, H et al. proposed an automatic system 

for crack detection and characterization following the guidelines defined by the Portu-

guese Distress Catalog with promising results [28]. However, the detection of ground fis-

sures caused by mining collapse, in particular, ground fissure detection from infrared im-

ages collected by UAVs, has seldom been investigated with the edge detection method. 

Coal mining is conducted through the day and night. Thus, 24 h of uninterrupted 

observation are needed to observe the surface fissures. The existing methods have diffi-

culty achieving the continuous observation of ground fissures. The visible images col-

lected by UAVs can be restricted by bad weather, and the infrared images are less affected 

by the external environment [29]. In this research, for the first time, a UAV equipped with 

a visible light camera and an infrared camera was used to collect images used to monitor 

mining-induced ground fissures. Various edge detection methods have been applied to 

detect mining-induced ground fissures. Furthermore, to improve the fissure detection ef-

fect, an improved edge detection method of detecting mining-induced ground fissures 

was proposed in this study. 

2. Materials and Methods 

2.1. Mining-Induced Ground Fissure Monitoring 

In this study, a UAV (M600Pro, Dajiang, China) equipped with an infrared camera 

(Tau2-640R high-definition infrared camera, FLIR, America) and a visible light camera 

(ZENMUSE Z3 visible light camera, Dajiang, China) was chosen to collect ground fissure 

information above working face No. 12401 of the Shangwan Coal Mine, which is a typical 

shallow coal seam mine with large mining height. The targeted mining height of working 

face No. 12401 is 8.6 m. The elevation range of the ground surface is between 1188 and 

1300 m. And the elevation of the coal seam floor is between 1043 and 1066 m. The Tau2-

640R infrared camera was used to record the ground temperature. The ZENMUSE Z3 vis-

ible light camera was used to collect high-resolution images of the ground fissures. In 

order to obtain infrared images and visible images of mining-induced ground fissures, the 

UAV equipped with an infrared camera and a visible light camera was used to observe 

the fissures in spring. The images were captured at different times in one day (1:00 a.m., 

3:00 a.m., 5:00 a.m., 7:00 a.m., 9:00 a.m., 11:00 a.m., 1:00 p.m., 3:00 p.m., 5:00 p.m., 7:00 p.m., 

9:00 p.m., and 11:00 p.m.). A total of 12 groups of infrared images and 6 groups of visible 

images of the region of interest (ROI) at different times were obtained. The ROI was se-

lected on the surface directly above the central position of the working face, where the 

advancing distance is 238 m. The ROI with its boundaries drawn with lime is an approxi-

mately square area of 5.9 m × 6 m. And in one corner of the ROI, a square object with a 

size of 45 cm × 45 cm was placed as a size reference, as shown in Figure 1. Within the ROI, 

there are two groups of fissures, which are 40 m ahead from the longwall. Furthermore, 

the fissures appeared after 6 days of advancing the working face. A schematic diagram of 

UAV monitoring of mining-induced ground fissures is shown in Figure 1. 
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Figure 1. Schematic diagram of UAV monitoring of mining-induced ground fissures. 

2.2. Infrared and Visible Image Fusion Method 

Visible images are suitable for human visual perception because of their high spatial 

resolutions, rich scene details, and clear textures [29,30]. In contrast, infrared images high-

light targeted areas effectively and exhibit less texture, contrast and resolution [30]. Infra-

red and visible images can complement each other. Therefore, fusion method was selected 

to fuse the collected infrared images and visible images in this study. In recent years, var-

ious infrared and visible image fusion methods have been explored. The hybrid methods 

based on multiscale transform and sparse representation are more suitable to fuse the de-

tailed information of visible images and the target regions of infrared images. The fusion 

performance of the hybrid methods based on multiscale transform and sparse represen-

tation are better than others [31,32].To obtain content-rich fusion image, the hybrid meth-

ods curvelet transform and sparse representation (CVT-SR) was chosen to fuse the infra-

red image and visible image. The code of the fusion method is publicly available, and the 

parameters are set according to the parameters in the original study. 

2.3. Edge Detection Methods 

Edge detection methods were used to detect mining-induced ground fissures in the 

images collected by UAV. In this paper, 6 edge detection algorithms were implemented 

in MATLAB and used to process the same infrared image, visible image and the fused 

image. 
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2.3.1. Classical Edge Detection Methods 

The classical edge detection methods used in this study include first-order differen-

tial operator and second-order differential operator. The first-order differential operator 

such as Sobel, Roberts and Prewitt operator, take the pixel with maximum value of gray 

gradient as edge information, whose first derivative is zero. The second-order differential 

operator, such as Laplacian operator, detect the edge pixels with maximum change rate 

of gray scale by calculating the second derivative is zero. 

Canny operator can obtain an optimal compromise between noise suppress and edge 

detection. Canny operator is based on three criteria. The basic idea is to use Gaussian 

function to smooth the image, and then the maximum value of the first derivative also 

corresponds to the minimum value of the first derivative. In other words, the point with 

sharp gray change (strong edge) and the point with slight gray change (weak edge) cor-

respond to the zero-crossing point of the second derivative. Thus, these two thresholds 

are used to detect strong edges and weak edges. The fact that Canny algorithm is not 

disturbed by noise which makes it possible to detect real weak edges. 

2.3.2. Improved Edge Detection Method 

In this study, we proposed an improved edge detection method, which based on the 

Laplacian of Gaussian, Canny and mathematical morphology operators. The proposed 

method combined the merits of the Laplacian of Gaussian (LoG) filter, Canny operator 

and mathematical morphology, and overcame the difficulty of traditional edge detectors 

for handling the line structures in cluttered background. The diagram of edge detection 

process with the proposed method is shown in Figure 2. It consists of three main pro-

cesses, and the image-processing steps of the proposed method are as follows. 

1. Step 1: The LoG filter is used to perform preliminary fissure detection in the image. 

LoG arithmetic is the convolution of Laplacian arithmetic and Gaussian arithmetic. 

To reduce noise, all acquired images are smoothed with a two-dimensional Gaussian 

filter. it may be desirable to first smooth the image by a convolution with a Gaussian 

kernel of width σ, 

 
2 2

22

1
, exp

22

x y
G x y 

 
   

   

(1)

Then, Laplacian filter is applied to make the edges of the image appear more distinct 

and emphasize the contrast. Therefore, LoG filter not only enhances the edges and details 

of the image, but also suppresses noises. And the LoG arithmetic is more accurate than 

other operator in fissure edge detection [33]. For simplicity, we have omitted the normal-

izing coefficient 
21 2 . LoG arithmetic is defined as follows[18]. 
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 


 

(2)

where � denotes the parameter of LoG operator, which represents the size of the filter 

and how smooth this operator filtering an input image, while x and y denote spasial coor-

dinates of any pixels of input image. 

2. Step 2: Canny operator is selected to detect fissures in the initial detection image. Due 

to the use of multi-level algorithm, each step can refine the results, so it has a good 

performance. Canny operator uses Gaussian function to calculate gradient, which 

works at multi threshold level based on primary edge and secondary edge, and has 

a good signal-to-noise ratio. 
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3. Step 3: Finally, the closed operation of mathematical morphology is used to postpro-

cess the fissure detection image of step 2. Mathematical morphology has two basic 

operations, namely dilation and erosion, are defined as follows [34]: 

 Dilation: 

  ,
xy

A B x y B A   
 

(3)

 Erosion: 

  ,
xy

A B x y B A 
 

(4)

where A is the input image, B is the structuring element.  

Morphological closing, denoted A B , is a dilation followed by an erosion: 

 A B A B B  
 

(5)

Generally, closing operations join narrow breaks and fill holes smaller than the struc-

turing element. 

 

Figure 2. Diagram of edge detection process with the proposed method. (a) Input image. (b) Result 

of LoG filter in step 1. (c) Result of Canny operator in step 2. (d) Result of closed operation in step 

3. 

2.4. Quantitative Approaches to Edge Detection Evaluation 

The objective and quantitative evaluation of solutions is indispensable in edge detec-

tion. In this paper, we selected four evaluating methods: the peak signal-to-noise rate 

(PSNR) [35], effective edge rate [36], Pratt’s figure of merit (PFoM) [37], and F-measure 

[38], respectively. 
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2.4.1. Peak Signal-to-Noise Rate 

The peak signal-to-noise rate (PSNR) can be used to measure whether the result of 

the source image processed by a certain algorithm is satisfactory, is calculated by follow-

ing equation [35]: 

 
2

2 1
10 lg

b

PSNR
MSE


 

 

(6)

where b is bits number of an image, and in this paper, b = 8. MSE denotes the mean square 

error between source image ( OI ) and end edge image ( RI ), can be estimated as follows 

[35]: 

   
2

1 1

1
, ,

m n

R O
i j

MSE I i j I i j
m n  

   


 

(7)

where m, n denotes the number of pixels rows and columns, respectively.  ,OI i j  and 

 ,RI i j  represents the gray value of the pixel at i-th row and j-th column in OI  and RI

, respectively. 

2.4.2. Effective Edge Rate 

In this paper, the effective edge is defined as the edge of fissures. The number of 

pixels on the edges of fissures and the total number of pixels on all edges were named 

fN  and N , respectively. By erasing the irrelevant edges in the edge image manually, 

the image with only edges of fissures was obtained. Then, these two numbers can be ob-

tained by counting the pixels with gray value is 0 or 255 using MATLAB. fN N  shows 

the effective edge rate of edge image, and the higher the fN N  is, the better the detec-

tion effect is. 

2.4.3. Pratt’s Figure of Merit 

Pratt’s figure of merit (PFoM) reported by Pratt [37] was utilized to evaluate the edge 

detection performance. PFoM illustrates the deviation of the calculated edge from the 

ground truth, given by 

   21

1 1
o

max , 1

AI

i
I A

PF M
I I d i





 

(8)

where ��  and �� are the number of ideal and actual edge points, respectively. �(�) de-

notes the distance from the ith actual edge to the corresponding detected edge, and � is a 

scaling constant which is set to be 1/9 in Pratt’s work. PFoM returns a number between 0 

and 1 depends the quality of the edge detection, with 1 being the best.  

2.4.4. F-Measure 

The F-measure is a measure of the accuracy and it can be interpreted as a weighted 

average of the precision and recall. It can be computed as follows [38]: 

2P R
F

P R






 
(9)

where Precision 0 1P N N , Recall 0 2R N N , and 0N  is the number of the pixels 

in an edge image which can be matched in its ground truth image, 1N  and 2N  are the 
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whole number of the pixels in ground truth image and in edge image, respectively. F-

measure reaches its best value at 1 and worst value at 0 [38]. 

According to the calculation and comparison of PSNR, fN N , PFoM and F-meas-

ure, the optimal algorithm for image data in this paper was determined. Then, fissure 

extraction was conducted on 12 infrared images at different times with the optimal algo-

rithm. 

2.5. Calculation of the Length of Fissure in Images 

In order to calculate the length of the fissure in the images, a method was given in 

this paper. As shown in Figure 3, the fissure is regarded as the overlap of the heads and 

ends of multiple line segments, and the length of each line segment is calculated by Py-

thagorean Theorem and then accumulated to obtain the length of the fissure expressed in 

pixels. The actual length of the fissure can be calculated according to the resolution of the 

image. The length of fissure can be calculated as following equation: 

2 2

1 1

=
100 100

n n

i i i
i i

R R
L l r c

 

  
 

(10)

where ir represents the pixel number of the fissure in the i-th row and ic  represents the 

pixel number of the fissure in the i-th column. R in units of ‘cm/pixel’ is the image resolu-

tion, L in units of ‘m’ denotes the cumulative length from the head of the fissure to the i-

th row representing the different positions along the fissure. 

 

Figure 3. Schematic diagram of the method for extracting fissure length from an image. 

In accordance with the above method, the length of Fissure Ⅰ1 in fissure detection 

results of 12 infrared images with the optimal algorithm was calculated. And the length 

of Fissure Ⅰ1 in the infrared images was also calculated as the reference for fissure detection 

results with the optimal algorithm. By comparing and analyzing the results of fissure de-

tection and the length of Fissure Ⅰ1 at different times, the optimal time for identifying the 

ground fissures with the optimal algorithm under the conditions studied in this paper 

was given.  
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3. Results 

3.1. Mining-Induced Ground Fissure Identification Result 

12 infrared images and 6 visible images with approximately the same resolution and 

in the same direction were selected for analysis from the captured images at different 

times. The visible images are shown in Figure 4. The infrared images are shown in Figure 

5. The images in Figure 4 and Figure 5 were clipped for convenience to study the ROI. 

The visible light camera cannot collect information on mining-induced ground fis-

sures at night. Only the visible images collected during the daytime are shown (although 

the 9:00 a.m. and 3:00 p.m. visible images were lost) in Figure 4. The results showed that 

the visible images have a higher spatial resolution and more clearly show the fissures than 

the infrared images. But the visible images can be easily influenced by bad weather, 

ground vegetation and night environment. 

 

Figure 4. Visible images at different time points. (a) 5:00 a.m; (b) 7:00 a.m; (c) 11:00 a.m; (d) 1:00 p.m; (e) 5:00 p.m; (f) 7:00 

p.m. 

As shown in Figures 5a–c and 5j–l, from 7:00 p.m. to 5:00 a.m., the mining-induced 

ground fissures appear as white, indicating high temperatures. From 9:00 a.m. to 3:00 

p.m., the fissures appear black, indicating lower temperatures, as shown in Figure 5e–h. 

Interestingly, the identification effect of mining-induced ground fissures in the infrared 

images between 3:00 a.m. and 5:00 a.m. is the best result by comparing the photos collected 

among other periods. Compared with the images at alternative time points, the fissures 

in the infrared images from 3:00 a.m. to 5:00 a.m. are clearer and more complete. The re-

sults show that the fissure identification effect of infrared image is worst at 7:00 a.m. and 

5:00 p.m. The color of the fissures is very close to sand, which makes the fissures difficult 

to distinguish from the surrounding objects (Figure 5d,i). In conclusion, the mining-in-

duced ground fissures can be identified, and the fissures identification effect of infrared 

images collected at night are better than that of images collected during the day. 
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Figure 5. Infrared images at different time points. r represents the image resolution. (a) 1:00 a.m., r = 1.53 cm/pixel; (b) 3:00 

a.m., r = 1.27 cm/pixel; (c) 5:00 a.m., r = 1.43 cm/pixel; (d) 7:00 a.m., r = 1.43 cm/pixel; (e) 9:00 a.m., r = 1.29 cm/pixel; (f) 11:00 

a.m., r = 1.32 cm/pixel; (g) 1:00 p.m., r = 1.30 cm/pixel; (h) 3:00 p.m., r = 1.29 cm/pixel; (i) 5:00 p.m., r = 1.43 cm/pixel; (j) 7:00 

p.m., r = 1.18 cm/pixel; (k) 9:00 p.m., r = 1.32 cm/pixel; (l) 11:00 p.m., r = 1.36 cm/pixel. 

3.2. Mining-Induced Ground Fissure Detection 

Figure 6a–c shows the infrared image, visible image and fused by the CVT-SR, which 

was collected at 5:00 a.m. The three images are selected to analyze the mining-induced 

ground fissures marked by the red squares in Figure 6a–c. The fissures are divided into 
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two parts: fissure groups Ⅰ and Ⅱ. And the ground truth image of fissures is obtained by 

hand drawing, which is shown in Figure 6d. 

 

Figure 6. Mining-induced ground fissures (marked with the red squares) in the (a) infrared image, 

(b) visible image, (c) fused image using CVT-SR, (d) ground truth image. 

The results of ground fissure detection using multiple edge detection methods (Rob-

erts operator, Sobel operator, Prewitt operator, Canny operator, Laplacian operator and 

proposed method) for the visible image, infrared image and fused image are shown in  

Figure 7 Figure 8 Figure 9. To evaluate a fissure detection result, we compute six measures: 

PSNR, fN N , PFoM, F-measure, Precision and Recall by comparing the detected fissure 

against the human annotated ground truth fissure. 

3.2.1. Fissure Detection Results for the Visible Image 

Figure 7 shows the detailed qualitative edge detection results of the multiple edge 

detection algorithms for the visible image. The evaluation indexes scores of multiple edge 

detection methods for the visible image are shown in Table 1. Figure 7a–c are the results 

of the fissure detection using Roberts operator, Sobel operator and Prewitt operator. The 

detected fissure groups Ⅰ and Ⅱ have been marked in red squares. Overall, the results are 

quite similar across the three methods. As shown in Figure 7a–c , the edges of fissure 

groups Ⅰ and Ⅱ can be basically detected. However, the most severe fissure loss is observed 

in edge detection results, particularly loss of fissure group Ⅱ. The background noise in the 

visible image is relatively less, except white boxes marked areas. According to the results 

of four evaluation indexes in Table 1, there are no significant disparity between Sobel op-

erator and Prewitt operator. While the fN N , PFoM of Roberts operator are lower than 

that of Sobel operator and Prewitt operator. Figure 7d is the result of the fissure detection 

using Canny algorithm. As can be seen from the detection result, fissure groups Ⅰ and Ⅱ 

can be detected by Canny operator. But the edge of fissure is incomplete, and there is a 
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certain amount of noise. In Table 1, the Canny operator has the highest fN N  of 0.0828, 

and its PSNR, PFoM are larger than that of Roberts operator, Sobel operator, Prewitt op-

erator and Laplacian operator. But F-measure ranks fourthly among all algorithms. Figure 

7e shows the edge detection result of the Laplacian operator. The main edges of fissure 

groups Ⅰ and Ⅱ are retained. However, the detected edges are discontinuous. The Lapla-

cian operator is second-order operator method, which is relatively sensitive to noise [39]. 

There is more noise in the fissure detection results, indicating that the ability to filter false 

edges is insufficient. In addition, edge detection using the Laplacian operator alone often 

results in a double pixel wide edge. As a result, except for fN N , the PSNR, PFoM and 

F-measure of Laplacian operator significantly lower than others. For these reasons, Lapla-

cian operator is not considered a very good operator for detection of edges. Figure 7f is 

the result of the fissure detection using the improved edge detection method for the visible 

image. In Figure 7f, fissure groups Ⅰ and Ⅱ can be detected, but some edges of fissures are 

lost. The background noise is relatively less, except the edges of white boxes. As shown in 

Table 1, the proposed method has the highest PSNR of 18.8102, PFoM of 0.1297 than other 

five. In particular, the PFoM value of the improved method is significantly larger than 

that of other methods. Compared with the ground truth shown in Figure 6d, the fissure 

loss observed in Figure 7a–d is more serious than that of the fissure detection result using 

the improved method in Figure 7f. And more noise is observed, although the fissure 

groups Ⅰ and Ⅱ are relatively complete in Figure 7e. Therefore, the PFoM value of the im-

proved method is the maximum. The fN N  of the proposed method is slightly smaller 

than that of Canny operator, significantly larger than other four. However, the F-measure 

of the proposed method for the visible image is only greater than that of Laplacian oper-

ator, ranks fifth among all algorithms. 

 

Figure 7. Results of mining-induced ground fissure detection using multiple edge detection methods for the visible image. 

(a) Roberts operator. (b) Sobel operator. (c) Prewitt operator. (d) Canny operator. (e) Laplacian operator. (f) Proposed 

method. 
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Table 1. The evaluation indexes scores of multiple edge detection methods for the visible image. 

Evaluation 

Indexes

Methods 

PSNR fN
N  

PFoM F-Measure Precision Recall 

Roberts 18.8059 0.0119 0.0558 0.6309 0.4649 0.9814 

Sobel 18.8059 0.0299 0.0809 0.6316 0.4650 0.9840 

Prewitt 18.8059 0.0336 0.0803 0.6316 0.4650 0.9839 

Canny 18.8076 0.0828 0.0827 0.6297 0.4648 0.9756 

Laplacian 10.1105 0.0767 0.0087 0.0000 0.4000 0.0000 

Proposed 18.8102 0.0819 0.1297 0.6255 0.4734 0.9217 

3.2.2. Fissure Detection Results for the Infrared Image 

The results of the fissure detection using the edge detection algorithms for the infra-

red image are shown in Figure 8. Figure 8a–c are the results of the fissure detection using 

Roberts operator, Sobel operator and Prewitt operator. The detected edges of ground fis-

sure in the infrared image are more informative and can identify two fissure groups. How-

ever, the infrared image displays higher background noise, which leads to relatively more 

false edges. Consistent with the other results, the Roberts operator’s detection result is 

relatively low in noise. In Table 2, PSNR of Roberts operator, Sobel operator and Prewitt 

operator are almost the same, but fN N , PFoM and F-measure of Roberts operator are 

higher than that of Sobel operator and Prewitt operator. Figure 8d is the result of the fis-

sure detection using Canny algorithm. Only fissure group Ⅰ was detected. However, the 

background noise suppression effect of Canny operator is better than Roberts operator, 

Sobel operator and Prewitt operator. The number of false edges is fewer, and the edges of 

fissure are continuous. Except for PSNR, the fN N  and PFoM of Canny operator are 

obviously larger than that of Roberts operator Sobel operator and Prewitt operator. And 

F-measure value of Canny operator is 0.6342, which is highest than others. Figure 8e 

shows the edge detection result of the Laplacian operator. Fissure groups Ⅰ and Ⅱ can be 

detected. The detected edges are discontinuous. Except for fN N , the PSNR, PFoM and 

F-measure of Laplacian operator are still the smallest. As shown in Table 1 and Table 2, 

the four evaluation indexes scores are larger than that of the visible image, since the back-

ground noise is relatively less than that of the visible image. Figure 8f is the result of the 

fissure detection using the proposed method for the infrared image. The edges of fissure 

groups Ⅰ and Ⅱ can be detected completely, and the noise is less. The fissure detection 

result of the infrared image is obviously better than that of other methods in this paper. 

The results in Table 2 show that PSNR, fN N  and PFoM of the proposed method is 

18.8209, 0.6259, 0.5708, respectively, which are obviously larger than that of other edge 

detection methods. And F-measure is 0.6331, which is slightly smaller than that of Canny 

operator. 
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Figure 8. Results of mining-induced ground fissure detection using multiple edge detection methods for the infrared im-

age. (a) Roberts operator. (b) Sobel operator. (c) Prewitt operator. (d) Canny operator. (e) Laplacian operator. (f) Proposed 

method. 

Table 2. The evaluation indexes scores of multiple edge detection methods for the infrared image. 

Evaluation 

Indexes

Methods 

PSNR fN
N  PFoM F-measure Precision Recall 

Roberts 18.8096 0.2763 0.3540 0.6321 0.4643 0.9896 

Sobel 18.8104 0.1714 0.2434 0.6294 0.4639 0.9787 

Prewitt 18.8104 0.1712 0.2448 0.6295 0.4639 0.9790 

Canny 18.8086 0.5513 0.4448 0.6342 0.4650 0.9974 

Laplacian 16.5738 0.1974 0.0660 0.0001 0.4340 0.0000 

Proposed 18.8209 0.6259 0.5708 0.6331 0.4659 0.9876 

3.2.3. Fissure Detection Results for the Fused Image 

Figure 9 is the results of the fissure detection using multiple edge detection algo-

rithms for the fused image. As shown in Figure 9a–e, the edges of ground fissure can be 

identified in the fused image which is similar to the infrared image. Compared with the 

fissure detection results of the infrared image, since the white boxes used to mark the 

ground fissure is incorporated into the fused image, more false edges are observed in the 

detection results. As can be seen in Table 3, fN N  and PFoM of Roberts operator are 

higher than that of Sobel operator and Prewitt operator. However, F-measure of Roberts 

operator are smaller than that of Sobel operator and Prewitt operator. PSNR of Roberts 

operator, Sobel operator and Prewitt operator are almost the same. And the fN N , 

PFoM and F-measure values of the algorithms are all smaller than that of the infrared 

image. For the infrared image and fused image, the Roberts operator, Sobel operator and 

Prewitt operator still have shortcomings in filtering out false edges, resulting in false edge 

features in edge detection images. Therefore, the edge detection effect of images with com-

plex noise is not good. In the case of a large number of background noises, many false 

edges can be detected in such images if the threshold is improperly set. In Table 2 and 
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Table 3, except the PSNR values are nearly the same, the fN N , PFoM and F-measure 

of Canny algorithm for the infrared image and fused image are obviously higher than that 

of Roberts Operator, Sobel operator and Prewitt operator, indicating that the effect of fis-

sure detection using the Canny operator is better than Roberts Operator, Sobel operator 

and Prewitt operator. Canny operator has good edge detection performance[19,40]. The 

four evaluation indexes scores of Prewitt operator and Sobel operator for the three images 

are nearly equal. This shows that the performance of the two methods is roughly simi-

lar[41]. As shown in Figure 9f, the edges of ground fissure can be identified completely 

by the proposed method. However, compared with the fissure detection result of the in-

frared image, there is more background noise, which are the edges of white boxes used to 

mark the ground fissure. Thus, except for PSNR, the fN N  of 0.3444, PFoM of 0.3337 

and F-measure of 0.6321 are smaller than that of the infrared image, but still larger than 

that of the other edge detection methods. 

 

Figure 9. Results of mining-induced ground fissure detection using multiple edge detection methods for the fused image. 

(a) Roberts operator. (b) Sobel operator. (c) Prewitt operator. (d) Canny operator. (e) Laplacian operator. (f) Proposed 

method. 

Table 3. The evaluation indexes scores of multiple edge detection methods for the fused image. 

Evaluation 

Indexes

Methods 

PSNR fN
N  PFoM F-Measure Precision Recall 

Roberts 18.8095 0.2030 0.2678 0.0401 0.3726 0.0212 

Sobel 18.8106 0.1510 0.2065 0.3039 0.4298 0.2351 

Prewitt 18.8107 0.1553 0.2086 0.3064 0.3401 0.2787 

Canny 18.8091 0.2848 0.2892 0.6321 0.4647 0.9877 

Laplacian 18.0569 0.1630 0.0910 0.3569 0.2894 0.4655 

Proposed 18.8230 0.3444 0.3337 0.6321 0.4693 0.9679 

From a comparison of the results shown in  Table 1 Table 2 Table 3, the PSNR, 

fN N , and PFoM of the proposed method for the three images are all at a relatively high 
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scores when compared with all the other methods in this paper, indicating that the pro-

posed method outperforms the others. Moreover, the proposed method is effective in 

noise suppression and false edge filtering, resulting in making the fissure features visually 

significant. These results thereby imply the reliability of the improved edge detection ap-

proaches. Therefore, the proposed method in this study can detect the ground fissures in 

the three images accurately. As shown in Figure 10, by analyzing the four evaluation in-

dexes scores of the proposed method for the visible image, infrared images and fused 

image, it can be found that the effect of fissure detection in infrared image is clearly supe-

rior to that of the fused image and also to that of the visible image.  

 

Figure 10. The four evaluation indexes of the improved method for three images. 

3.3. Fissure Detection and Length Calculation of Infrared Images 

3.3.1. Fissure Detection for Infrared Images at Different Times 

As described in the Section 3.2, the proposed method has good edge detection per-

formance. And the effect of fissure detection in infrared image outperforms that of the 

fused image and the visible image. Thus, the proposed method was used to detect the 

fissures in 12 infrared images showed in Figure 5 and the results of fissure detection are 

shown in Figure 11. The detected fissures are marked by the red squares in Figure 11. 
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Figure 11. Results of fissure detection in infrared images at different time points using the proposed method. (a) 1:00 a.m.; 

(b) 3:00 a.m.; (c) 5:00 a.m.; (d) 7:00 a.m.; (e) 9:00 a.m.; (f) 11:00 a.m.; (g) 1:00 p.m.; (h) 3:00 p.m.; (i) 5:00 p.m.; (j) 7:00 p.m.; 

(k) 9:00 p.m.; (l) 11:00 p.m. 

According to the edge detection results shown in Figure 11, the fissures in infrared 

images at different times can be detected except 5:00 p.m. Because the fissures in the in-

frared images collected at 5:00 p.m. could not be identified. However, the effect of fissure 

detection varies from each other, particularly that of infrared images taken during the day 

and night. From 7:00 p.m. to 5:00 a.m., the edges of fissures group Ⅰ and Ⅱ can be detected 

completely with less noise in the results. Contrast with the detection results of infrared 
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images taken at night, the fissure loss is relatively serious in results of 7:00 a.m. to 3:00 

p.m., and that display higher background noise, which are mostly the edges of plants. In 

particular, the length loss of Fissure I1 detected from 1:00 p.m. to 3:00 p.m. is the most. 

3.3.2. Fissure Length in Infrared Images and Detection Results 

The visible image of the target observation area at 7:00 a.m. is shown in Figure 12, 

and the resolution is 0.30 cm/pixel. The measured width of the Fissure I1 location marked 

by the red rectangle in Figure 12 is 12.50 cm. The number of horizontal pixels at the 

marked Fissure I1 location is counted as 41, and the calculated length is 12.38 cm. The error 

with the actual value is −0.96%. Therefore, the recognition accuracy of visible image is 

high enough, and the calculated length of Fissure I1 in visible image can be taken as the 

real length to evaluate the fissure detection effect.  

 

Figure 12. Visible image of the target observation area at 7:00 a.m. 

Using the method shown in Section 2.5, the calculated length of Fissure I1 in fissure 

detection results and that in visible image captured at 7:00 a.m. are shown in Table 4. The 

Fissure I1 length in fissure detection results from 9:00 p.m. to 5:00 a.m. is longer than that 

for the rest of the time. Moreover, the Fissure I1 length is larger than that in the visible 

image between 1:00 a.m. and 5:00 a.m. The maximum length of Fissure I1 is 3.16 m at 5:00 

a.m., and the minimum length is 0.40 m at 7:00 a.m., 3:00 p.m. According to Table 4, the 

differences and errors in Fissure I1 length between fissure detection results and visible 

image are small from 9:00 p.m. to 5:00 a.m. In these times, the absolute differences and 

errors are less than or equal to 0.15 m, 4.98%, respectively. The average absolute difference 

and error is 0.07 m, 2.39%. As shown in Table 4, the differences are −0.26 m, −0.29 m and 

−0.29 m at 9:00 a.m., 11:00 a.m., 7:00 p.m., and the absolute errors are 8.64%, 9.63% and 

9.63%, respectively, which are higher than those of 9:00 p.m. to 5:00 a.m. As shown in 

Table 4 and Figure 13, the absolute differences and errors at 7:00 a.m., 3:00 p.m. and 1:00 

p.m. are obviously larger than other times. At 7:00 a.m., 3:00 p.m. and 1:00 p.m., the dif-

ferences are −2.61 m, −2.61 m and −1.78 m, which results in 86.71%, 59.14%, 86.71% error, 

respectively. Since the fissure cannot be identified in the infrared image at 5:00 p.m., the 

Fissure I1 length cannot be calculated. To sum up, the differences and errors in Fissure I1 

length between the detection results at night and that of visible image are small. The dif-

ferences and errors are relatively large at day, especially at 7:00 a.m., 3:00 p.m. and 1:00 

p.m.  



Remote Sens. 2021, 13, 3652 18 of 23 
 

 

Table 4. The Fissure I1 length in fissure detection results and that in visible image captured at 7:00 

a.m. 

Time 

Fissure I1 Length (m) 

Difference (m) Error (％) 
Visible Image 

Fissure Detection 

Results 

1:00 a.m. 

3.01 

3.02 0.01 0.33 

3:00 a.m. 3.07 0.06 1.99 

5:00 a.m. 3.16 0.15 4.98 

7:00 a.m. 0.40 −2.61 −86.71 

9:00 a.m. 2.75 −0.26 −8.64 

11:00 a.m. 2.72 −0.29 −9.63 

1:00 p.m. 1.23 −1.78 −59.14 

3:00 p.m. 0.40 −2.61 −86.71 

5:00 p.m. - - - 

7:00 p.m. 2.72 −0.29 −9.63 

9:00 p.m. 3.01 0.00 0.00 

11:00 p.m. 2.87 −0.14 −4.65 

 

Figure 13. Differences and errors in Fissure I1 length between visible image captured at 7:00 a.m. 

and fissure detection results. 

As shown in Table 5, the maximum length of Fissure I1 is 3.19 m at 3:00 a.m., and the 

minimum length of Fissure I1 is 0.71 m at 7:00 a.m. The Fissure I1 length in infrared images 

from 9:00 p.m. to 5:00 a.m. is longer than that for the rest of the time. According to Table 

5, the differences of Fissure I1 length between in fissure detection results and that in the 

infrared images are relatively small, the average absolute difference is 0.10 m except at 

7:00 a.m., 1:00 p.m. and 3:00 p.m. The absolute errors in the Fissure I1 length are approxi-

mately 8% or even smaller most of the time, and the average absolute error is 3.49%, except 

at 7:00 a.m., 1:00 p.m. and 3:00 p.m. In contrast, Table 5 and Figure 14 show that the dif-

ferences and errors are higher at 7:00 a.m.,1:00 p.m. and 3:00 p.m. At these times, the 

length of Fissure I1 in fissure detection results is 0.31 m, 1.50 m and 2.36 m shorter than 

that in the infrared image, which results in 43.44%, 54.95%, 85.58% error, respectively. As 
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shown in Table 5 and Figure 14, the Fissure I1 length in fissure detection results is longer 

than that in the infrared image at 1:00 a.m., 5:00 a.m. and 9:00 p.m., when the average 

difference and error in length are 0.06 m, 1.84%, respectively. The error is considered ac-

ceptable. The error may be caused by the closed operation in mathematical morphology. 

In conclusion, the identification accuracy of the proposed method is high enough to be 

acceptable except at 7:00 a.m., 1:00 p.m. and 3:00 p.m. 

Table 5. The Fissure I1 length in infrared images and that in fissure detection results. 

Time 

Fissure I1 Length (m) 

Difference (m) Error (％) 
Infrared Images 

Fissure Detection 

Results 

1:00 a.m. 3.00 3.02 0.02  0.75 

3:00 a.m. 3.19 3.07 −0.12  −3.65 

5:00 a.m. 3.04 3.16 0.12  4.03 

7:00 a.m. 0.71 0.40 −0.31  −43.44 

9:00 a.m. 2.86 2.75 −0.11  −3.72 

11:00 a.m. 2.88 2.72 −0.16  −5.59 

1:00 p.m. 2.73 1.23 −1.50  −54.95 

3:00 p.m. 2.76 0.40 −2.36  −85.58 

5:00 p.m. - - - - 

7:00 p.m. 2.94 2.72 −0.22  −7.35 

9:00 p.m. 2.99 3.01 0.02  0.73 

11:00 p.m. 3.04 2.87 −0.17  −5.60 

 

Figure 14. Differences and errors in Fissure I1 length between infrared images and fissure detection 

results. 

4. Discussion 

Figure 5 showed that the identification effect of mining-induced ground fissures in 

the infrared images was better at night relatively, and worst at 7:00 a.m., 5:00 p.m. Objects 

radiate electromagnetic waves with different frequencies, named thermal radiation 

[29,42]. Infrared images are obtained by infrared sensor to record the thermal radiation of 
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different objects [29]. Sandy soil, vegetation, and mining-induced ground fissures have 

distinct thermal behaviors, as shown in Figure 5. The infrared camera collects information 

on ground fissures by detecting the different temperatures of the object surface. Due to 

the small specific heat capacity of sandy soil, the temperature variation range is large, and 

the temperature drops fastly at night [43]. However, the decrease in temperature of the 

fissures is slower than that of the vegetation and sandy soil because they extend deep into 

the ground, resulting in a large temperature difference. Due to this difference, the ground 

fissures can be effectively monitored. The temperature of the sandy soil rose rapidly at 

7:00 a.m. and dropped rapidly at 5:00 p.m. It is difficult to monitor the fissures when the 

temperature of the sandy soil is close to the temperature inside the fissures. Therefore, 

collecting images during large temperature differences can obtain the best fissure moni-

toring effect. However, some shallow ground fissures, which have little or no difference 

in temperature from the surrounding environment, cannot be recorded by the infrared 

camera. To solve this problem, three solutions were proposed, improving the thermal sen-

sitivity of infrared camera, adjusting the flying height of the UAV to get higher resolution, 

being used with visible images to make them complementary. 

Fissure detection results showed that the proposed method had an excellent fissures 

detection capacity. Although this method had a good effect on noise suppression, there 

were still some false fissure edges or isolated points induced by noise in the resulting 

image. For the image de-noise is very important to improve the image edge detection per-

formance, image noise reduction pre-processing should be further enhanced in the next 

step. From the experiment of ground fissure detection with various edge detection meth-

ods, it is found that a larger threshold value can filter out false edges well. However, the 

information of the fissure edge is lost, and not all fissures can be detected completely [44]. 

For example, the fissure detection results of the fused image using the improved edge 

detection method at different thresholds are shown in Figure 15. With larger threshold 

values, the false edges (marked with red squares) are fewer, and some fissure edges 

(marked with blue squares) are missing. Therefore, there is a contradiction between the 

noise suppression ability and edge detection accuracy of an edge detection algorithm. This 

contradiction is prominent in the infrared image and fused image considered in this re-

search. A suitable threshold can not only suppress noise effectively but also acquire a bet-

ter edge detection effect. However, manually choosing a threshold is time-consuming, and 

it is difficult to find the optimal value. Therefore, the selection of a threshold is a difficult 

problem. An automatic method to determine the optimal threshold is urgently needed.  

 

Figure 15. The results of fissure detection using the improved edge detection method at different 

thresholds. (a) The upper limit of Canny is 0.12. (b) The upper limit of Canny is 0.15. 

In addition, the fissure images collected in this study are few and only targeted at 

fissure groups Ⅰ and Ⅱ in ROI. Therefore, the excellent performance and applicability of 

the proposed method need to be further verified in the later stage, such as more fissure 
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images with complex background and different fissure widths. And we find that the 

ground fissures induced by the collapse of the mined-out area have a certain direction and 

exhibit linear characteristics. According to the directional and geometric characteristics of 

ground fissures, appropriate algorithms should be developed by applying mathematical 

theory and artificial intelligence to remove false edges effectively and detect ground fis-

sures accurately. Furthermore, the edge detection methods based on deep learning are a 

key research direction in the future study. It has good edge detection performance [45]. 

However, there are too few fissure images in this paper, which is not convenient for deep 

learning method. In the next research, more different types of mining-induced ground 

fissure images should be collected to train the deep learning model, so as to explore a 

better edge detection method. 

In this study, image processing is carried out offline. Firstly, the UAV equipped with 

cameras is used to collect the images, and then the images are exported to the work com-

puter. Finally, the fissures in the images are detected by MATLAB. The time between im-

ages being taken and the analysis being completed can be very quickly, but not real-time. 

Therefore, in order to make it more convenient to be applied in practical engineering, we 

plan to convert the proposed method to run on an embedded system on the UAV to realize 

real-time automatic fissure detection in the next step. 

5. Conclusions 

In this research, UAV remote sensing and edge detection technology were used to 

study mining-induced ground fissures. Some main conclusions and contributions of this 

paper are briefly summarized as follows. 

We proposed that a UAV equipped with an infrared camera and a visible light cam-

era can be used to monitor mining-induced ground fissures effectively. This approach was 

more efficient and less cost than other approaches. The infrared images collected during 

3:00 a.m. and 5:00 a.m. were sharper and had more complete fissure information than the 

images collected at other times under the conditions studied in this paper. A variety of 

edge detection methods were selected to detect mining-induced ground fissures for the 

visible image, infrared image and fused image. However, the results of classical edge de-

tection methods were not satisfactory. The improved edge detection method given by the 

author was effective in noise suppression and could detect mining-induced ground fis-

sures in the three images accurately. Compared with the other edge detection methods, 

this method showed good ground fissures detection performance according to the PSNR, 

fN N , PFoM and F-measure. And the effect of fissure detection in infrared image was 

clearly superior to that of the fused image and also to that of the visible image. The fissures 

in infrared images at different times can be detected by the proposed method except 5:00 

p.m. Contrast with the detection results of infrared images taken at daytime, the edges of 

fissures can be detected completely with less noise in the results from 7:00 p.m. to 5:00 

a.m. The identification accuracy of the proposed method is high enough except at 7:00 

a.m., 1:00 p.m. and 3:00 p.m. in this season. The average absolute difference and error of 

Fissure I1 length between in fissure detection results and that in the infrared images is 0.10 

m, 3.49%, except at 7:00 a.m., 1:00 p.m. and 3:00 p.m. Therefore, the improved edge detec-

tion method is not suitable for indentifying the fissures in the images collected in the day-

time. Because the color of fissure in the daytime is not prominent compared with that of 

the surrounding ground objects, which will produce more background noise in the fissure 

detection results. In addition, the improved edge detection method is only applied to min-

ing-induced fissures images collected in this study, and its detection effect on other fis-

sures of different types and scales needs to be further verified. 
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