
remote sensing  

Article

Guaranteed Robust Tensor Completion via ∗L-SVD with
Applications to Remote Sensing Data

Andong Wang 1,2,3 , Guoxu Zhou 1,3 and Qibin Zhao 1,2,*

����������
�������

Citation: Wang, A.; Zhou, G.; Zhao

Q. Guaranteed Robust Tensor

Completion via ∗L-SVD with

Applications to Remote Sensing Data.

Remote Sens. 2021, 13, 3671. https://

doi.org/10.3390/rs13183671

Academic Editors: Karen Egiazarian,

Aleksandra Pizurica and Vladimir

Lukin

Received: 30 July 2021

Accepted: 9 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
w.a.d@gdut.edu.cn (A.W.); gx.zhou@gdut.edu.cn (G.Z.)

2 Tensor Learning Team, RIKEN AIP, Tokyo 103-0027, Japan
3 Key Laboratory of Intelligent Detection and The Internet of Things in Manufacturing, Ministry of Education,

Guangzhou 510006, China
* Correspondence: qibin.zhao@riken.jp

Abstract: This paper conducts a rigorous analysis for the problem of robust tensor completion,
which aims at recovering an unknown three-way tensor from incomplete observations corrupted by
gross sparse outliers and small dense noises simultaneously due to various reasons such as sensor
dead pixels, communication loss, electromagnetic interferences, cloud shadows, etc. To estimate
the underlying tensor, a new penalized least squares estimator is first formulated by exploiting the
low rankness of the signal tensor within the framework of tensor ∗L-Singular Value Decomposition
(∗L-SVD) and leveraging the sparse structure of the outlier tensor. Then, an algorithm based on the
Alternating Direction Method of Multipliers (ADMM) is designed to compute the estimator in an
efficient way. Statistically, the non-asymptotic upper bound on the estimation error is established
and further proved to be optimal (up to a log factor) in a minimax sense. Simulation studies on
synthetic data demonstrate that the proposed error bound can predict the scaling behavior of the
estimation error with problem parameters (i.e., tubal rank of the underlying tensor, sparsity of the
outliers, and the number of uncorrupted observations). Both the effectiveness and efficiency of the
proposed algorithm are evaluated through experiments for robust completion on seven different
types of remote sensing data.

Keywords: remote sensing data restoration; robust tensor completion; tensor SVD; statistical
performance; ADMM

1. Introduction

Despite the broad adoption of advanced sensors in various remote sensing tasks,
the quality of data remains a critical issue and can significantly influence the actual per-
formances of the backend applications. Many types of modern remote sensing data in the
modality of optical, hyperspectral, multispectral, thermal, Light Detection and Ranging
(LiDAR), Synthetic Aperture Radar (SAR), etc., are typically multi-way and can be readily
stored, analyzed, and processed by tensor-based models [1–7]. In some extreme circum-
stances, the data tensor may encounter missing entries, gross sparse outliers, and small
dense noises at the same time, as a result of partial sensor failures, communication errors,
occlusion by obstacles, and so on [8,9]. To robustly complete a partially observed data
tensor corrupted by outliers and noises, the problem of robust tensor completion arises.

When only a fraction of partially corrupted observations are available, the crucial
point of robust tensor completion lies in the assumption that the underlying data tensor
is highly redundant such that the main components of it remain only slightly suppressed
by missing information, outliers, and noises, and thus can be effectively reconstructed by
exploiting the intrinsic redundancy. The tensor low-rankness is an ideal tool to model
the redundancy of tensor data, and has gained extensive attention in remote sensing data
restoration [5,10,11].
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As higher-order extensions of low-rank matrix models [12], low-rank tensor mod-
els are typically formulated as minimization problems of the tensor rank function [13].
However, there are multiple definitions of tensor ranks, such as the CP rank [14], Tucker
rank [15], TT rank [16], TR rank [17], etc., which focus on low rank structures in the orig-
inal domains (like the pixel domain of optimal images) [18,19]. Recently, a remarkably
different example named the low-tubal-rank tensor model [20,21] was proposed within
the algebraic framework of tensor Singular Value Decomposition (t-SVD) [20,22], which
captures low-rankness in the frequency domain defined via Discrete Fourier Transform
(DFT). As discussed in [18,19,21,23], the low-tubal-rank tensor models are capable to exploit
both low-rankness and smoothness of the tensor data, making it quite suitable to analyze
and process diverse remote sensing imagery data which are often simultaneously low-rank
and smooth [5,10].

Motivated by the advantages of low-tubal-rankness in modeling remote sensing data,
we resolve the robust tensor completion problem by utilizing a generalized low-tubal-
rank model based on the tensor ∗L-Singular Value Decomposition (∗L-SVD) [24], which
leverages low-rankness in more general transformed domains rather than DFT. What needs
to be pointed out is that the ∗L-SVD has become a research focus in tensor-based signal
processing, computer vision, and machine learning very recently [18,23,25,26]. Regarding
the preference of theory in this paper, we only introduce several typical works with
statistical analysis as follows. For tensor completion in the noiseless settings, Lu et al. [26]
proposed a ∗L-SVD-based model which can exactly recover the underlying tensor under
mild conditions. For tensor completion from partial observations corrupted by sparse
outliers, Song et al. [27] designed a ∗L-SVD-based algorithm with exact recovery guarantee.
Zhang et al. [25] developed a theoretically guaranteed approach via the ∗L-SVD to for
tensor completion from Poisson noises. The problem of tensor recovery from noisy linear
observations is studied in [18] based the ∗L-SVD with guaranteed statistical performance.

In this paper, we focus on statistical guaranteed approaches in a more challenging
setting than the aforementioned ∗L-SVD-based models, where the underlying signal tensor
suffers from missing entries, sparse outliers, and small dense noises simultaneously. Specif-
ically, we resolve the problem of robust tensor completion by formulating a ∗L-SVD-based
estimator whose estimation error is established and further proved to be minimax optimal
(up to a log factor). We propose an algorithm based on Alternating Direction Method of
Multipliers (ADMM) [28,29] to compute the estimator and evaluate both the effectiveness
and efficiency on seven different types of remote sensing data.

The remainder of this paper proceeds as follows. We first introduce some notation
and preliminaries in Section 2. Then, the proposed estimator for robust tensor completion
is formulated in Section 3. We compute the estimator by using an ADMM-based algorithm
described in Section 4. The statistical performance of the proposed estimator is analyzed in
Section 5. Experimental results on both synthetic and real datasets are reported in Section 7.
We summarize this paper and discuss future directions briefly in Section 8. The proofs of
the theoretical results are given in Appendix A.

2. Preliminaries

In this section, we first introduce some notations and then give a brief introduction to
the ∗L-SVD framework.

2.1. Notations

Main notations are listed in Table 1. Let [d] := {1, . . . , d}, ∀d ∈ N+. Let a ∨ b =
max{a, b} and a ∧ b = min{a, b}, ∀a, b ∈ R. For i ∈ [d], ei ∈ Rd denotes the standard
vector basis whose ith entry is 1 with the others 0. For (i, j, k) ∈ [d1]× [d2]× [d3], the outer
product ei ◦ ej ◦ ek denotes a standard tensor basis in Rd1×d2×d3 , whose (i, j, k)th entry
is 1 with the others 0. For a 3-way tensor, a tube is a vector defined by fixing indices
of the first two modes and varying the third one; A slice is a matrix defined by fixing
all but two indices. For any set Θ, |Θ| denotes its cardinality and Θ⊥ its complement.
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Absolute positive constants are denoted by C, c, c0, etc whose values may vary from line to
line. When the field and size of a tensor are not shown explicitly, it is defaulted to be in
Rd1×d2×d3 . The spectral norm ‖·‖ and nuclear norm ‖·‖∗ of a matrix are the maximum and
the sum of the singular values, respectively.

Table 1. List of notations.

Notations Descriptions Notations Descriptions

t a scaler T a matrix
t a vector T a tensor

L∗ the true low-rank tensor L̂ the estimator of L∗
S∗ the true sparse tensor Ŝ the estimator of S∗
yi a scalar observation ξi Gaussian noise
X i a design tensor N number of observations
Nι number of uncorrupted observations Ns N − Nι

Θs support of corruption tensor S∗ Θ⊥s complement of Θs
X(·) design operator X∗(·) adjoint operator of X(·)

L an orthogonal matrix in Rd3×d3 L(T ) := T ×3 L tensor L-transform
T block-diagonal matrix of L(T ) ‖T ‖sp := ‖T‖ tensor spectral norm
T ijk (i, j, k)th entry of T ‖T ‖? := ‖T‖∗ tubal nuclear norm
T (i, j, :) (i, j)th tube of T ‖T ‖1 := ∑ijk |T ijk | tensor l1-norm

T (:, :, k) kth frontal slice of T ‖T ‖F :=
√

∑ijk T 2
ijk tensor F-norm

T(k) T (:, :, k) ‖T ‖∞ := maxijk |T ijk | tensor l∞-norm
T(k) mode-k unfolding of T 〈A,B〉 := ∑ijkAijkBijk tensor inner product

2.2. Tensor ∗L-Singular Value Decomposition

The tensor ∗L-SVD is a generalization of the t-SVD [22]. To get a better understanding
of ∗L-SVD, we first introduce several basic notions of t-SVD as follows. For any tensor
T ∈ Rd1×d2×d3 , its block circulant matrix bcirc(T ) is defined as

bcirc(T ) :=


T (1) T (d3) · · · T (2)

T (2) T (1) · · · T (3)

...
. . . . . .

...
T (d3) T (d3−1) · · · T (1)


We also define the block vectorization operator and its inverse operator for any

T ∈ Rd1×d2×d3 by:

bvec(T ) :=


T (1)

T (2)

...
T (d3)

, bvfold(bvec(T )) = T

Then, based on the operators defined above, we are able to give the definition of the
tensor t-product.

Definition 1 (T-product [22]). For any tensors A ∈ Rd1×d2×d3 and B ∈ Rd2×d4×d3 , their
t-product is a tensor C of size d1 × d4 × d3 computed as follows:

C = A ∗B := bvfold
(
bcirc(A)bvec(B)

)
If we view the 3-way tensor C ∈ Rd1×d4×d3 as a d1-by-d4 “matrix” C of tubes

C(i, j, :) ∈ Rd3 , then the t-product can be analogously conducted like the matrix mul-
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tiplication by changing scalar multiplication by the circular convolution between the tubes
(i.e., vectors), as follows:

C(i, j, :) =
d2

∑
k=1
A(i, k, :)~B(k, j, :) (1)

where the symbol ~ denotes the circular convolution of two tubes a, b ∈ Rd3 defined as
follows [22]:

(a ~ b)j =
d3

∑
k=1

akb1+(j−k)modd3

where mod(·) is the modulus operator. According to the well-known relationship between
circular convolution and DFT, the t-product is equivalent to matrix multiplication between
all the frontal slices in the Fourier domain [22], i.e.,

C = A�B (2)

where T denotes the tensor obtained by conducting DFT on all the mode-3 fibers of any
tensor T , i.e.,

T = T ×3 Fd3
(3)

where Fd3 is the transform matrix of DFT [22], and ×3 denotes the tensor mode-3 prod-
uct [30].

In [24], Kernfeld et al. extended the t-product to the tensor ∗L-product by replacing
DFT by any invertible linear transform L(·) induced by a non-singular transformation
matrix L, and established the framework of ∗L-SVD. In the latest studies, the transformation
matrix L defining the transform L is restricted to be orthogonal [18,26,31,32] (unitary
in [25,27]) for better properties, which is also followed in this paper.

Given any orthogonal matrix L ∈ Rd3×d3 (though we restrict L to be orthogonal for
simplicy, our analysis still holds with simple extensions for unitary L [27]), define the
associated linear transform L(·) with inverse L−1(·) on any T ∈ Rd1×d2×d3 as

T = L(T ) := T ×3 L, and L−1(T ) := T ×3 L−1 (4)

Definition 2 (Tensor ∗L-product [24]). The ∗L–product of any A ∈ Rd1×d2×d3 and B ∈
Rd2×d4×d3 under the invertible linear transform L in Equation (4), denoted byA ∗L B, is defined
as the tensor C ∈ Rd1×d4×d3 such that L(C) = L(A)� L(B).

Definition 3 (∗L–block-diagonal matrix [18]). For any T ∈ Rd1×d2×d3 , its ∗L–block-diagonal
matrix, denoted by T, is defined as the block diagonal matrix whose i-th diagonal block is the i-th
frontal slice T(i) of T = L(T ), i.e.,

T := bdiag(T ) :=


T(1)

. . .

T(d3)

 ∈ Rd1d3×d2d3

Based on the notions of tensor ∗L–transpose, ∗L-identity tensor, ∗L-orthogonal tensor,
and f-diagonal tensor [24], the ∗L–SVD (illustrated in Figure 1) is given.

Theorem 1 (Tensor ∗L–SVD, ∗L-tubal rank [24]). Any T ∈ Rd1×d2×d3 has a tensor ∗L–
Singular Value Decomposition (∗L–SVD) under any L in Equation (4), given as follows

T = U ∗LD ∗L V> (5)

where U ∈ Rd1×d1×d3 , V ∈ Rd2×d2×d3 are ∗L-orthogonal, andD ∈ Rd1×d2×d3 is f-diagonal.
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The ∗L-tubal rank of T ∈ Rd1×d2×d3 is defined as the number of non-zero tubes ofD in its
∗L–SVD in Equation (5) i.e.,

rtb(T ) := #{i |D(i, i, :) 6= 0, i ∈ [d1 ∧ d2]}

where # counts the number of elements of a given set.

Figure 1. An illustration of ∗L–SVD [18].

For any T ∈ Rd1×d2×d3 , we have the following equivalence between its ∗L-SVD and
the matrix SVD of its ∗L–block-diagonal matrix T:

T = U ∗LD ∗L V> ⇔ T = U ·D ·V>.

Considering the block diagonal structure of T, we define the tensor ∗L-multi-rank on

its diagonal blocks T(i):

Definition 4 (Tensor ∗L–nuclear norm, tensor ∗L-spectral norm [26]). The tensor ∗L–nuclear
norm (∗L-TNN) and ∗L-spectral norm of any T ∈ Rd1×d2×d3 under any L in Equation (4) are
defined as the matrix nuclear norm and matrix spectral norm of T, respectively, i.e.,

‖T ‖? := ‖T‖∗, ‖T ‖sp := ‖T‖.

As proved in [26,27], ∗L–TNN is the convex envelop of the l1-norm of the ∗L–multi-
rank in unit tensor ∗L-spectral norm ball. Thus, ∗L–TNN encourages a low ∗L–multi-rank
structure which means low-rankness in spectral domain. When the linear transform L
represents the DFT (although we restrict the L in Equation (4) to be orthogonal, we still
consider TNN as a special case of ∗L–TNN up to constants and real/complex domain)
along the 3-rd mode, ∗L–TNN and tensor ∗L-spectral norm degenerate to the Tubal Nuclear
Norm (TNN) and the tensor spectral norm, respectively, up to a constant factor d−1

3 [26,33].

3. Robust Tensor Completion

In this section, we will formulate the robust tensor completion problem. The observa-
tion model will be shown first.

3.1. The Observation Model

Consider an underling signal tensor L∗ ∈ Rd1×d2×d3 which possesses intrinsically
low-dimensionality structure characterized by low-tubal-rankness, that is rtb(L∗) �
d1 ∧ d2. Suppose we obtain N scalar observations yi of L∗ ∈ Rd1×d2×d3 from the noisy
observation model:

yi = 〈L∗ + S∗,X i〉+ ξi, ∀i ∈ [N], (6)

where the tensor S∗ ∈ Rd1×d2×d3 represents some gross corruptions (e.g., outliers, errors,
etc.) additive to the signal L∗ which is element-wisely sparse (the presented theoretical
analysis and optimization algorithm can be generalized to more sparsity settings of corrup-
tions (e.g. the tube-wise sparsity [20,34], and slice-wise sparsity [34,35]) by using the tools
developed for robust matrix completion in [36] and robust tensor decomposition in [34];
for simplicity, we only consider the most common element-wisely sparse case), ξi’s are
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random noises sampled i.i.d. from Gaussian distribution N (0, σ2), and X i’s are known
random design tensors in Rd1×d2×d3 satisfying the following assumptions:

Assumption 1. We make two natural assumptions on the design tensors:

I. All the corrupted positions of L∗ are observed, that is, the (unknown) support Θs =
supp(S∗) := {(i, j, k) | S∗ijk 6= 0} of the corruption tensor S∗ is fully observed. For-
mally speaking, there exists an unknown subset Xs ⊂ {X i}N

i=1 drawn from an (unknown)
distribution ΠΘs on the set XΘs :=

{
ej ◦ ek ◦ el , ∀(j, k, l) ∈ Θs

}
, such that each element in

XΘs is sampled at least once.
II. All uncorrupted positions of L∗ are sampled uniformly with replacement for simplicity of

exposition. Formally speaking, each element of the set X⊥s := {X i}N
i=1\Xs is sampled i.i.d.

from an uniform distribution Π
Θ⊥s

on the set X
Θ⊥s

:=
{

ej ◦ ek ◦ el , ∀(j, k, l) ∈ Θ⊥s
}

.

According to the observation model (6), the true tensor L∗ is first corrupted by a
sparse tensor S∗ and then sampled to N scalars {yi} with additive Gaussian noises {ξi}
(see Figure 2). The corrupted positions of L∗ are further assumed in Assumption 1 to be
totally observed with design tensors in Xs ⊂ {X i}N

i=1, and the remaining uncorrupted
positions are sampled uniformly through design tensors in X⊥s = {X i}N

i=1\Xs.

Figure 2. An illustration of the robust tensor completion problem.

Let y = (y1, . . . , yN)
> ∈ RN and ξ = (ξ1, . . . , ξN)

> ∈ RN be the vector of observations
and noises, respectively. Define the design operator X : Rd1×d2×d3 → RN as X(·) :=
(〈·,X 1〉, . . . , 〈·,X N〉)>, and its adjoint operator X∗(z) := ∑N

i=1 ziX i for any z ∈ RN . Then
the observation model (6) can be rewritten in a compact form

y = X(L∗ + S∗) + ξ.

3.2. The Proposed Estimator

The aim of robust tensor completion is to reconstruct the unknown low-rank L∗
and sparse S∗ from incomplete and noisy measurements {(X i, yi)}N

i=1 generated by the
observation model (6). It can be treated as a robust extension of tensor completion in [33],
and a noisy partial variant of tensor robust PCA [37].
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To reconstruct the underlying low-rank tensor L∗ and sparse tensor S∗, it is natural
to consider the following minimization model:

min
L,S

1
2N
‖y−X(L+ S)‖2

2 + λιrtb(L) + λs‖S‖1, (7)

where we use least squares as the fidelity term for Gaussian noises, the tubal rank as the reg-
ularization to impose low-rank structure in L, the tensor l0-(pseudo)norm to regularize S
for sparsity, λι, λs ≥ 0 are tunable regularization parameters, balancing the regularizations
and the fidelity term.

However, general rank and l0-norm minimization is NP-hard [12,38], making it ex-
tremely hard to soundly solve Problem (7). For tractable low-rank and sparse optimization,
we follow the most common idea to relax the non-convex functions rtb(·) and ‖·‖0 to
their convex surrogates, i.e., the ∗L–tubal nuclear norm ‖·‖? and the tensor l1-norm ‖·‖1,
respectively. Specifically, the following estimator is defined:

(L̂, Ŝ) := argmin
‖L‖∞≤a,‖S‖∞≤a

1
2N
‖y−X(L+ S)‖2

2 + λι‖L‖? + λs‖S‖1, (8)

where a > 0 is a known constant constraining the magnitude of entries in L∗ and S∗.
The additional constraint ‖L‖∞ ≤ a and ‖S‖∞ ≤ a is very mild since most signals and
corruptions are of limited energy in real applications. It can also provide a theoretical
benefit to exclude the “spiky” tensors, which is important in controlling the separability of
L∗ andS∗. Such “non-spiky” constraints are also imposed in previous literatures [36,39,40],
playing a key role in bounding the estimation error.

Then, it is natural to ask the following questions:

Q1: How to compute the proposed estimator?
Q2: How well can the proposed estimator estimate L∗ and S∗?

We first discuss Q1 in Section 4 and then answer Q2 in Section 5.

4. Algorithm

In this section, we answer Q1 by designing an algorithm based on ADMM to compute
the proposed estimator.

To solve Problem (8), the first step is to introduce auxiliary variables g,K,T ,M,N
to deal with the complex couplings between X(·), ‖ · ‖2 ‖·‖?, ‖·‖1, and ‖·‖∞ as follows:

min
g,L,S ,K,T ,M,N

1
2N
‖g‖2

2 + λι‖K‖? + λs‖T ‖1 + δ∞
a (M) + δ∞

a (N ),

s.t. g = y−X(L+ S),L = K =M,S = T = N
(9)

where δ∞
a (·) is the indicator function of tensor l∞-norm ball defined as follows

δ∞
a (M) =

{
0 ‖M‖∞ ≤ a

+ ∞ ‖M‖∞ > a
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We then give the augmented Lagrangian of Equation (9) with Lagrangian multipliers
z and {Zi}4

i=1 and penalty parameter ρ > 0:

Lρ(L,S , g,K,T ,M,N , z,Z1,Z2,Z3,Z4)

=
1

2N
‖g‖2

2 + λι‖K‖? + λs‖T ‖1 + δ∞
a (M) + δ∞

a (N )

+ 〈z, g +X(L+ S)− y〉+ ρ

2
‖g +X(L+ S)− y‖2

2

+ 〈Z1,L−K〉+ ρ

2
‖L−K‖2

F + 〈Z2,L−M〉+ ρ

2
‖L−M‖2

F

+ 〈Z3,S − T 〉+ ρ

2
‖S − T ‖2

F + 〈Z4,S −N 〉+ ρ

2
‖S −N ‖2

F

(10)

Following the framework of standard two-block ADMM [41], we separate the primal
variables into two blocks (L,S) and (g,K,T ,M,N ), and update them alternatively
as follows:
Update the first block (L,S): After the t-th iteration, we first update (L,S) by keeping
the other variables fixed as follows:

(Lt+1,S t+1)

= argmin
L,S

Lρ(L,S , gt,Kt,T t,Mt,N t, zt,Z t
1,Z t

2,Z t
3,Z t

4)

= argmin
L,S

〈
zt, gt +X(L+ S)− y

〉
+

ρ

2
‖gt +X(L+ S)− y‖2

2

+
〈
Z t

1,L−Kt〉+ ρ

2
‖L−Kt‖2

F +
〈
Z t

2,L−Mt〉+ ρ

2
‖L−Mt‖2

F

+
〈
Z t

3,S − T t〉+ ρ

2
‖S − T t‖2

F +
〈
Z t

4,S −N t〉+ ρ

2
‖S −N t‖2

F

(11)

By taking derivatives, respectively, to L and S and setting them to zero, we obtain
the following system of equations:

X∗zt + ρX∗
(
X(L+ S) + gt − y

)
+Z t

1 + ρ(L−Kt) +Z t
2 + ρ(L−Mt) = 0

X∗zt + ρX∗
(
X(L+ S) + gt − y

)
+Z t

3 + ρ(S − T t) +Z t
4 + ρ(S −N t) = 0

(12)

Through solving the system of equations in Equation (12), we obtain

Lt+1 =
1

4ρ

(
X∗X(X∗X+ I)−1(2A+Bι +Bs)− 2(A+Bι)

)
S t+1 =

1
4ρ

(
X∗X(X∗X+ I)−1(2A+Bι +Bs)− 2(A+Bs)

) (13)

where I denotes the identity operator, and the intermediate tensors are given by A =
X∗(zt + ρgt − y), Bι = Z t

1 +Z t
2 − ρ(Kt +Mt), and Bs = Z t

3 +Z t
4 − ρ(T t +N t).

Update the second block (g,K,T ,M,N ): According to the special form of the Lagrangian
in Equation (10), the variables g,K,T ,M,N in the second block can be updated separately
as follows.

We first update g with fixed (L,S):

gt+1 = argmin
g

Lρ(Lt+1,S t+1, g,K,T ,M,N , zt,Z t
1,Z t

2,Z t
3,Z t

4)

= argmin
g

1
2N
‖g‖2

2 +
ρ

2
‖g +X(Lt+1 + S t+1)− y + ρ−1zt‖2

2

=
Nρ

1 + Nρ

(
y−X(Lt+1 + S t+1)− ρ−1zt

) (14)
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We then updateK with fixed (L,S):

Kt+1 = argmin
K

Lρ(Lt+1,S t+1, g,K,T ,M,N , zt,Z t
1,Z t

2,Z t
3,Z t

4)

= argmin
K

λι‖K‖? +
〈
Z t

1,Lt+1 −K
〉
+

ρ

2
‖Lt+1 −K‖2

F

= Prox
‖·‖?
λιρ−1(Lt+1 + ρ−1Z t

1),

(15)

where Prox‖·‖?
ρ−1 (·) is the proximality operator of ∗L–TNN given in the following lemma.

Lemma 1 (A modified version of Theorem 3.2 in [26]). LetL0 ∈ Rd1×d2×d3 be any tensor with
∗L–SVD L0 = U ∗LD ∗L V>. Then the proximality operator of ∗L–TNN at L0 with constant
τ > 0, defined as Prox‖·‖?τ (L0) := argminL τ‖L‖? + 1

2‖L−L0‖F, can be computed by

Prox
‖·‖?
τ (L0) = U ∗LDτ ∗L V> (16)

where
Dτ = L−1(L(D)− τ)+). (17)

where t+ denotes the positive part of t, i.e., t+ = max(t, 0).

We update T with fixed (L,S):

T t+1 = argmin
T

Lρ(Lt+1,S t+1, g,K,T ,M,N , zt,Z t
1,Z t

2,Z t
3,Z t

4)

= argmin
T

λs‖T ‖1 +
〈
Z t

3,S t+1 − T
〉
+

ρ

2
‖S t+1 − T ‖2

F

= Prox
‖·‖1
λsρ−1(S t+1 + ρ−1Z t

3),

(18)

where Prox‖·‖1
τ (T ) is the proximality operator [19] of the tensor l1-norm at point T given

as Prox‖·‖1
τ (T ) = sign(T )� (|T | − τ)+, where � denotes the element-wise product.

We then updateM with fixed (L,S):

Mt+1 = argmin
M

Lρ(Lt+1,S t+1, g,K,T ,M,N , zt,Z t
1,Z t

2,Z t
3,Z t

4)

= argmin
M

δ∞
a (M) +

〈
Z t

2,Lt+1 −M
〉
+

ρ

2
‖Lt+1 −M‖2

F

= Proj
‖·‖∞
a (Lt+1 + ρ−1Z t

2),

(19)

where Proj‖·‖∞
a (·) is the projector onto the tensor l∞-norm ball of radius a, which is given

by Proj
‖·‖∞
a (M) = sign(M)�min(|M|, a) [19].

Similarly, we updateN as follows:

N t+1 = argmin
N

Lρ(Lt+1,S t+1, g,K,T ,M,N , zt,Z t
1,Z t

2,Z t
3,Z t

4)

= argmin
N

δ∞
a (N ) +

〈
Z t

4,S t+1 −N
〉
+

ρ

2
‖S t+1 −N ‖2

F

= Proj
‖·‖∞
a (S t+1 + ρ−1Z t

4).

(20)
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Update the dual variables z and {Z i}: According to the update strategy of dual variables
in ADMM [41], the variables z and {Z i} can be updated using dual ascent as follows:

zt+1 = zt + ρ(gt+1 +X(Lt+1 + S t+1)− y)

Z t+1
1 = Z t+1

1 + ρ(Lt+1 −Kt+1)

Z t+1
2 = Z t+1

2 + ρ(Lt+1 −Mt+1)

Z t+1
3 = Z t+1

3 + ρ(S t+1 − T t+1)

Z t+1
4 = Z t+1

4 + ρ(S t+1 −N t+1)

(21)

The algorithm for solving Problem (8) is summarized in Algorithm 1.

Algorithm 1 Solving Problem (8) using ADMM.

Input: The design tensors {X i} and observations {yi}, the regularization parameters
λι, λs, the l1-norm bound a, the penalty parameter ρ of the Lagrangian, the convergence
tolerance δ, the maximum iteration number Tmax.

1: Initialize t = 0, g0 = z0 = 0 ∈ RN ,L0 = S0 = K0 = T 0 =M0 = N 0 = Z0
1 = Z0

2 =

Z0
3 = Z0

4 = 0 ∈ Rd1×d2×d3

2: for t = 0, · · · , Tmax do
3: Update (Lt+1,S t+1) by Equation (13);
4: Update (gt+1,Kt+1,T t+1,Mt+1,N t+1) by Equations (14)–(20), respectively;
5: Update (zt+1,Z t+1

1 ,Z t+1
2 ,Z t+1

3 ,Z t+1
4 ) by Equation (21);

6: Check the convergence criteria:
(i) convergence of primal variables:

‖At+1 −At‖∞ ≤ δ, ∀A ∈ {g,L,S ,K,T ,M,N }

(ii) convergence of constraints:

max{‖Lt+1 −Kt+1‖∞, ‖Lt+1 −Mt+1‖∞} ≤ δ

max{‖S t+1 − T t+1‖∞, ‖S t+1 −N t+1‖∞} ≤ δ

‖gt+1 +X(Lt+1 + S t+1)− y‖∞ ≤ δ

7: end for
Output: (L̂, Ŝ) = (Lt+1,S t+1).

Complexity Analysis: The time complexity of Algorithm 1 is analyzed as follows.
Due to the special structures of design tensors {X i}, the operators X and (X∗XX∗X+ I)−1

can be implemented with time cost O(N) and O(d1d2d3 + N), respectively. The cost of
updating L,S ,T ,M,N and {Z i} is O(d1d2d3). The main time cost in Algorithm 1 lies
in the update of K which needs the ∗L–SVD on d1 × d2 × d3 tensors, involving the ∗L-
transform (costing O(d1d2d2

3) in general), and d3 matrix SVDs on d1 × d2 matrices (costing
O(d1d2d3(d1 ∧ d2))). Thus, the one-iteration cost of Algorithm 1 is

O(d1d2d3((d1 ∧ d2) + d3)) (22)

in general, and can be reduced to O(d1d2d3((d1 ∧ d2) + log d3)) for some linear transforms
L which have fast implementations (like DFT and DCT).

Convergence Analysis: According to [28], the convergence rate of general ADMM-
based algorithms is O(1/t), where t is the iteration number. The convergence analysis of
Algorithm 1 is established in Theorem 2.
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Theorem 2 (Convergence of Algorithm 1). For any positive constant ρ, if the unaugmented
Lagrangian function L0(g,L,S ,K,T ,M,N , z,Z1,Z2,Z3,Z4) has a saddle point, then the
iterations (gt,Lt,S t,Kt,T t,Mt,N t, zt,Z t

1,Z t
2,Z t

3,Z t
4) in Algorithm 1 satisfy the residual

convergence, objective convergence and dual variable convergence (defined in [41]) of Problem (9)
as t→ ∞.

Proof. The key idea is to rewrite Problem (9) into a standard two-block ADMM problem.
For notational simplicity, let

f (u) = 0, g(v) =
1

2N
‖g‖2

2 + λι‖K‖? + λs‖S‖1 + δ∞
a (M) + δ∞

a (N ),

with u, v, w, c and A defined as follows

u =

[
vec(L)
vec(S)

]
∈ R2d1d2d3 , v =


g

vec(K)
vec(T )
vec(M)
vec(N )

 ∈ RN+4d1d2d3 ,

w =


z

vec(Z1)
vec(Z2)
vec(Z3)
vec(Z4)

 ∈ RN+4d1d2d3 , c =


−y
0
0
0
0

 ∈ RN+4d1d2d3 ,

and

A =


−X −X

Id1d2d3 0
Id1d2d3 0

0 Id1d2d3

0 Id1d2d3

 ∈ R(N+4d1d2d3)×(2d1d2d3), with X =


vec(X 1)

>

vec(X 2)
>

...
vec(X N)>

 ∈ RN×(2d1d2d3), (23)

where vec(·) denotes the operation of tensor vectorization (see [30]).
It can be verified that f (·) and g(·) are closed, proper convex functions. Then,

Problem (9) can be re-written as follows:

min
u,v

f (u) + g(v)

s.t. Au− v = c.

According to the convergence analysis in [41], we have:

objective convergence: lim
t→∞

f (ut) + g(vt) = f ? + g?,

dual variable convergence: lim
t→∞

wt = w?,

constraint convergence: lim
t→∞

Aut − vt = c,

where f ?, g? are the optimal values of f (u), g(v), respectively. Variable w? is a dual optimal
point defined as:

w? = w =


z?

vec(Z?
1)

vec(Z?
2)

vec(Z?
3)

vec(Z?
4)
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where (z?,Z?
1 ,Z?

2 ,Z?
3 ,Z?

4) is the component of dual variables in a saddle point
(g?,L?,S?,K?,T ?,M?,N ?, z?,Z?

1 ,Z?
2 ,Z?

3 ,Z?
4) of the unaugmented Lagrangian

L0(g,L,S ,K,T ,M,N , z,Z1,Z2,Z3,Z4).

5. Statistical Performance

In this section, we answer Q2 by studying the statistical performances of the pro-
posed estimator (L̂, Ŝ). Specifically, the goal is to upper bound the squared F-norm error
‖L̂−L∗‖2

F + ‖Ŝ − S
∗‖2

F. We will first give an upper bound on the estimation error in a
non-asymptotic manner, and then prove that the upper bound is minimax optimal up to a
logarithm factor.

5.1. Upper Bound on the Estimation Error

We establish an upper bounds on the estimation error in the following theorem. For
notational simplicity, let Ns = |Xs| and Nι = |X⊥s | denote the number of corrupted and
uncorrupted observations of L∗ in the observation model (6), respectively.

Theorem 3 (Upper bounds on the estimation error). If the number of uncorrupted observations
in the observation model (6) satisfy

Nι ≥ c1d1d3 log(d1d3 + d2d3) log2(d1 + d2) (24)

and regularization parameters in Problem (8) are set by

λι = c2(σ ∨ a)

√
log(d1d3 + d2d3)

d1 ∧ d2
, and λs = c3(σ ∨ a)

log(d1d3 + d2d3)

N
, (25)

then it holds with probability at least 1− c5(d1d3 + d2d3)
−1 that:

‖L̂−L∗‖2
F + ‖Ŝ − S

∗‖2
F

d1d2d3

≤ C
(

rtb(L∗) ·
(σ2 ∨ a2)(d1 ∨ d2)d3 log d̃

Nι
+

Ns log(d1d3 + d2d3)

Nι
+ ‖S∗‖0 ·

a2

d1d2d3

)
.

(26)

Theorem 3 implies that, if the noise level σ and spikiness level a are fixed, and all
the corrupted positions are observed exactly only once (i.e., the number of corrupted
observations Ns = ‖S∗‖0), then the estimation error in Equation (26) would be bounded by

O
(

rtb(L∗) ·
(d1 ∨ d2)d3 log(d1d3 + d2d3)

Nι
+ ‖S∗‖0 ·

( log(d1d3 + d2d3)

Nι
+

1
d1d2d3

))
. (27)

Note that, the bound in Equation (27) is intuition-consistent: if the underlying tensor L∗
gets more complex (i.e., with higher tubal rank), then the estimation error will be larger;
if the corruption tensor S∗ gets denser, then the estimation error will also become larger;
if the number of uncorrupted observations Nι gets larger, then the estimation error will
decrease. The scaling behavior of the estimation error in Equation (27) will be verified
through experiments on synthetic data in Section 7.1.

Remark 1 (Consistence with prior models for robust low-tubal-rank tensor completion).
According to Equation (27), our ∗L–SVD-based estimator in Equation (8) allows the tubal rank
rtb(L∗) to take the order O(d2/ log(d1d3 + d2d3)), and the corruption ratio ‖S∗‖0/(d1d2d3) to
be O(1) for approximate estimation with small error. It is slightly better with a logarithm factor
than the results for t-SVD-based tensor robust completion model in [8] which allows rtb(L∗) =
O(d2/ log2(d1d3 + d2d3)) and ‖S∗‖0/(d1d2d3) = O(1).
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Remark 2 (Consistence with prior models for noisy low-tubal-rank tensor completion). If
‖S∗‖0 = 0, i.e., the corruption S∗ vanishes, then we obtain

‖L̂−L∗‖2
F

d1d2d3
= O

( rtb(L∗)(d1 ∨ d2)d3 log(d1d3 + d2d3)

N
)

which is consistent with the error bound for t-SVD-based noisy tensor completion [42–44], and ∗L–
SVD-based tensor Dantzig Selector in [18].

Remark 3 (Consistence with prior models for robust low-tubal-rank tensor decomposition).
In the setting of Robust Tensor Decomposition (RTD) [34], the fully observed model instead of
our estimation model in Equation (6) is considered. For the RTD problem, our error bound in
Equation (27) is consistent with the t-SVD-based bound for RTD [34] (up to a logarithm factor).

Remark 4 (No exact recovery guarantee). According to Theorem 3, when σ = 0 and ‖S∗‖0 = 0,
i.e., in the noiseless case, the estimation error is upper bounded by O(a(d1 ∨ d2)d3rtb(L∗) log d̃/N)
which is not zero. Thus, no exact recovery is guaranteed by Theorem 3. It can be seen as a trade-off that
we do not assume the low-tubal-rank tensor L∗ to satisfy the tensor incoherent conditions [8,35,37]
which essentially ensures the separability between L∗ and S∗.

5.2. A Minimax Lower Bound for the Estimation Error

In Theorem 3, we established the estimation error for Model (8). Then one may ask
the complementary questions: how tight is the upper bound? Are there fundamental
(model-independent) limits of estimation error in robust tensor completion? In this section,
we will answer the questions.

To analyze the optimality of the proposed upper bound in Theorem 3, the minimax
lower bounds of the estimation error is established for the tensor pair (L∗,S∗) belonging
to the class A(r, s, a) of tensor pairs defined as:

A(r, s, a) :=
{
(L,S)

∣∣ rtb(L) ≤ r, ‖S‖0 ≤ s, ‖L‖∞ < a, ‖S‖∞ ≤ a
}

(28)

We then define the associated element-wise minimax error as follows

M (A(r, s, a)) := inf
(L̂,Ŝ)

sup
(L∗ ,S∗)∈A(r,s,a)

E
[
‖L̂−L∗‖2

F + ‖Ŝ − S
∗‖2

F
d1d2d3

]
, (29)

where the infimum ranges over all pairs of estimators (L̂, Ŝ) , the supremum ranges
over all pairs of underlying tensors (L∗,S∗) in the given tensor class A(r, s, a), and the
expectation is taken over the design tensors {X i} and i.i.d. Gaussian noises {ξi} in the
observation model (6). We come up with the following theorem.

Theorem 4 (Minimax lower bound). Suppose the dimensionality d1, d2 ≥ 2, the rank and
sparsity parameters r ∈ [d1 ∨ d2], s ≤ d1d2d3/2, the number of uncorrupted entries Nι ≥ rd1d3,
and the number of corrupted entries Ns ≤ τrd̃ with a constant τ > 0. Then, under Assumption 1,
there exist absolute constants b ∈ (0, 1) and c > 0, such that

M (A(r, s, a)) ≥ bφ(N, r, s) (30)

where

φ(N, r, s) := (σ ∧ a)2
(

r(d1 + d2)d3 + Ns

Nι
+

s
d1d2d3

)
. (31)

The lower bound given in Equation (30) implies that the proposed upper bound in
Theorem 3 is optimal (up to a log factor) in the minimax sense for tensors belonging to
the set A(r, s, a). That is to say no estimator can obtain more accurate estimation than our
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estimator in Equation (8) (up to a log factor) for (L∗,S∗) ∈ A(r, s, a), thereby showing the
optimality of the proposed estimator.

6. Connections and Differences with Previous Works

In this section, we discuss the connections and differences with existing nuclear
norm based robust matrix/tensor completion models, where the underlying matrix/tensor
suffers from missing values, gross sparse outliers, and small dense noises at the same time.

First, we briefly introduce and analyze the two most related models, i.e., the matrix
nuclear norm based model [36] and the sum of mode-wise matrix nuclear norms based
model [45] as follows.

(1) The matrix Nuclear Norm (NN) based model [36]: If the underlying tensor is of 2-way,
i.e., a matrix, then the observation model in Equation (6) becomes the setting for
robust matrix completion, and the proposed estimator in Equation (8) degenerates
to the matrix nuclear norm based estimator in [36]. In both model formulation and
statistical analysis, this work can be seen as a 3-way generalization of [36].
Moreover, by conducting robust matrix completion on each frontal slice of a 3-way
tensor, we can obtain the matrix nuclear norm based robust tensor completion model
as follows:

min
L,S

1
2N
‖y−X(L+ S)‖2

2 + λι

d3

∑
k=1

(‖L(k)‖∗ + λs‖S(k)‖1) (32)

(2) The Sum of mode-wise matrix Nuclear Norms (SNN) based model [45]: Huang et al. [45]
proposed a robust tensor completion model based on the sum of mode-wise nuclear
norms deduced by the Tucker decomposition as follows

min
L,S

1
2N
‖y−X(L+ S)‖2

2 +
3

∑
k=1

αk‖L(k)‖∗ + λs‖S‖1, (33)

where L(k) ∈ Rdi×∏j 6=k dj is the mode-k matriculation of tensor L ∈ Rd1×d2×d3 , for all
i = 1, 2, 3.
The main differences between SNN and this work are two-fold: (i) SNN is based on
the Tucker decomposition [15], whereas this work is based on the recently proposed
tensor ∗L-SVD [24]; (ii) the theoretical analysis for SNN cannot guarantee the minimax
optimality of the model in [45], whereas this works rigorously proof of the minimax
optimality of the proposed estimator is established in Section 5.

Then, we discuss the following related works which can be seen as special cases of
this work.

(1) The robust tensor completion model based on t-SVD [46]: In a short conference
presentation [46] (whose first author is the same as this paper), the t-SVD-based
robust tensor completion model is studied. As t-SVD can be viewed as a special case
of the ∗L-SVD (when DFT is used as the transform L), the model in [46] can be a
special case of ours.

(2) The robust tensor recovery models with missing values and sparse outliers [8,27]:
In [8,27], the authors considered the robust reconstruction of incomplete tensor pol-
luted by sparse outliers, and proposed t-SVD (or ∗L-SVD) based models with theoreti-
cal guarantees for exact recovery. As they did not consider small dense noises, their
settings are indeed a special case of our observation model (6) when E = 0.

(3) The robust tensor decomposition based on t-SVD [34]: In [34], the authors studied
the t-SVD-based robust tensor decomposition, which aims at recovering a tensor
corrupted by both gross sparse outliers and small dense noises. Comparing with this
work, Ref. [34] can be seen as a special case when there are no missing values.
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7. Experiments

In this section, experiments on synthetic datasets will be first conducted to validate
the sharpness of the proposed upper bounds in Theorem 3. Then, both effectiveness
and efficiency of the proposed algorithm will be demonstrated through experiments on
seven different types of remote sensing datasets. All codes are written in Matlab, and all
experiments are performed on a Windows 10 laptop with AMD Ryzen 3.0 GHz CPU and 8
GB RAM.

7.1. Sharpness of the Proposed Upper Bound

Sharpness of the proposed upper bounds in Theorem 3 will be validated. Specifically,
we will check whether the upper bounds in Equation (27) can reflect the true scaling behav-
ior of the estimation error. As predicted in Equation (27), if the upper bound is “sharp”,
then it is expected that the Mean Square Errors (MSE) (‖L̂−L∗‖2

F + ‖Ŝ − S
∗‖2

F)/(d1d2d3)
will possess a scaling behavior very similar to the upper bound: approximately linear
w.r.t the tubal rank of the underlying tensor L∗, the l0-norm of the corruption tensor S∗,
and the reciprocal of uncorrupted observation number Nι. We will examine whether this
expectation will happen in simulation studies on synthetic datasets.

The synthetic datasets are generated as follows. Similar to [26], we consider three
cases of linear transform L with orthogonal matrix L: (1) Discrete Fourier Transform (DFT);
(2) Discrete Cosine Transform (DCT) [24]; (3) Random Orthogonal Matrix (ROM) [26].
The underlying low-rank tensor L∗ ∈ Rd1×d2×d3 with ∗L-tubal rank r∗ is generated by
L∗ = P ∗LQ, where P ∈ Rd1×r∗×d3 andQ ∈ Rr∗×d2×d3 are i.i.d. sampled from N (0, 1).
L∗ is then normalized such that ‖L∗‖∞ = 1. Second, to generate the sparse corruption
tensor S∗, we first form S0 with i.i.d. uniform distribution Uni(0, 1) and then uniformly
select γd1d2d3 entries. Thus the number of corrupted entries ‖S∗‖0 = γd1d2d3. Third,
we uniformly select Nι elements from the uncorrupted positions of (L∗ + S∗). Finally,
the noise {ξi} are sampled from i.i.d. Gaussian N(0, σ2) with σ = 0.1‖L∗‖F/

√
d1d2d3.

We consider f -diagonal tensors with d1 = d2 = d ∈ {80, 100, 120}, d3 = 30 and tubal
rank rtb(L∗) ∈ {3, 6, 9, 12, 15}. We choose corruption ratio γ ∈ {0.01 : 0.01 : 0.1} and
uncorrupted observation ratio Nι/(d1d2d3 − Ns) ∈ {0.4 : 0.1 : 0.9}. In each setting,
the MSE averaged over 30 trials is reported.

In Figure 3, we report the results for 100× 100× 30 tensors when the DFT is adopted
as the linear transform L in Equation (4). According to sub-plots (a), (b), and (d) in Figure 3,
it can be seen that the MSE scales approximately linearly w.r.t. rtb(L∗), ‖S∗‖0, and N−1

ι .
There results accord well with our expectation for the size 100 × 100 × 30 and linear
transform L = DFT. As very similar phenomena are also observed in all the other settings
where d ∈ {80, 120} and L ∈ {DCT, ROM}, we simply omit them.Thus, it can be verified
that the scaling behavior of the estimation error can be approximately predicted by the
proposed upper bound in Equation (27).

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Plots of the MSE versus the tubal rank rtb(L∗) of the underlying tensor, the number of
corruptions ‖S∗‖0, the number of uncorrupted observations Nι and its inversion N−1

ι : (a) MSE vs.
the tubal rank rtb(L∗) with fixed corruption level ‖S∗‖0 = 0.03d1d2d3 and number of uncorrupted
observations Nι = 0.7d1d2d3 − ‖S∗‖0; (b) MSE vs. the number of corruptions ‖S∗‖0 with fixed tubal
rank 9 and total observation number 0.7d1d2d3; (c) MSE vs. the number of uncorrupted observation
Nι with rtb(L∗) = 3 and corruption level ‖S∗‖0 = 0.01d1d2d3; (d) MSE vs. N−1

ι with rtb(L∗) = 3
and ‖S∗‖0 = 0.01d1d2d3.

7.2. Effectiveness and Efficient of the Proposed Algorithm

In this section, we evaluate both the effectiveness and efficiency of the proposed
Algorithm 1 by conducting robust tensor completion on seven different types of datasets
collected from several remote sensing related applications from Sections 7.2.1– 7.2.7.

Following [25], we adopted three different transformations L in Equation (4) to define
the ∗L–TNN: the first two transformations are DFT and DCF (denoted by TNN (DFT) and
TNN (DCT), respectively), and the third one named TNN (Data) depends on the given
data motived by [27,31]. We first perform SVD on the mode-3 unfolding matrix of L∗ as
L∗(3) = USV>, and then use U> as the desired transform matrix in the ∗L–product (4). The
proposed algorithm is compared with the aforementioned models NN [36] in Equation (32)
and SNN [45] in Equation (33) in Section 6. Both Model (32) and Model (33) are solved by
using ADMM with implementations by ourselves in Matlab language.

We conduct robust tensor completion on the datasets in Figure 4 with a similar settings
as [47]. For a d1 × d2 × d3 tensor data L∗ re-scaled by ‖L∗‖∞ = 1, we choose its support
uniformly at random with ratio ρs and fill in the values with i.i.d. standard Gaussian
variables to generate the corruption S∗. Then, we randomly sample the entries of L∗ +S∗
uniformly with observation ratio ρobs. The noises {ξi} are further generated with i.i.d. zero-
mean Gaussian entries whose standard deviation is given by σ = 0.05‖L∗‖F/

√
d1d2d3 to

generate the observations {yi}. The goal in the experiments is to estimate the underlying
signal L∗ from {yi}. The effectiveness of algorithms are measured by the Peaks Signal
Noise Ratio (PSNR) and structural similarity (SSIM) [48]. Specifically, the PSNR of an
estimator L̂ is defined as

PSNR := 10 log10

(
d1d2d3‖L∗‖2

∞

‖L̂−L∗‖2
F

)
,

for the underlying tensor L∗ ∈ Rd1×d2×d3 . The SSIM is computed via

SSIM :=
(2µL∗µL̂ + (0.01ω̄)2)(2σL∗ ,L̂ + (0.03ω̄)2)

(µ2
L∗ + µ2

L̂ + (0.01ω̄)2)(σ2
L∗ + σ2

L̂ + (0.03ω̄)2)
,

where µL∗ , µL̂, σL∗ , σL̂, σL∗ ,L̂ and ω̄ denotes the local means, standard deviation, cross-
covariance, and dynamic range of the magnitude of tensors L∗ and L̂. Larger PSNR and
SSIM values indicate higher quality of the estimator L̂.
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Figure 4. The dataset consists of the 85-th frame of all the 21 classes in the UCMerced dataset.

7.2.1. Experiments on an Urban Area Imagery Dataset

Area imagery data processing plays a key role in many remote sensing applications,
such as land-use mapping [49]. We adopt the popular area imagery dataset UCMerced [50],
which is a 21 class land use image dataset meant for research purposes. The images were
manually extracted from large images from the USGS National Map Urban Area Imagery
collection for various urban areas around the country. The pixel resolution of this public
domain imagery is 1 foot, and each RGB image measures 256× 256 pixels. There are 100
images for each class, and we chose the 85-th image to form a dataset of 21 images as
shown in Figure 4.

We consider two scenarios by setting (ρobs, ρs) ∈ {(0.3, 0.2), (0.8, 0.3)} for the d× d× 3
images. For NN (Model (32)), we set the regularization parameters λs = λι/

√
dρobs

(suggested by [38]), and tune the parameter λι around 6.5σ
√

ρobsd log(6d) (suggested
by [51]). For SNN, the parameter λs is tuned in {0.01, 0.05, 0.1, 1} for better performance
in most cases, and the weight α is set by α1 = α2 = λs

√
3dρobs, α3 = 0.01λs

√
3dρobs.

For Algorithm 1, we tune λι around 2σ
√

3ρobsd log(6d), and let λs = λι/
√

3dρobs for TNN
(DFT) and λs = λι/

√
dρobs for TNN (DCT) and TNN (Data). In each setting, we test

each image for 10 trials and report the averaged PSNR (in db), SSIM and running time
(in seconds).

We present the PSNR, SSIM values and running time in Figures 5 and 6 for settings
of (ρobs, ρs) = (0.3, 0.2) and (ρobs, ρs) = (0.8, 0.3), respectively, for quantitative evalution,
with visual examples shown in Figures 7 and 8. It can seen that from Figures 5–8 that
the proposed TNN (Data) has the highest recovery quality in most cases, and posses a
comparative running time as NN. We attribute the promising performance of the proposed
algorithm to the extraordinary representation power of the low-tubl-rank models: low-
tubal-rankness can exploit both low-rankness and smoothness simultaneously, whereas
traditional models like NN and SNN can only exploit low-rankness in the original do-
main [18].

(a) PSNR (b) SSIM (c) TIME

Figure 5. The PSNR, SSIM values and running time (in seconds) on the UCMerced dataset for the setting (ρobs, ρs) =

(0.3, 0.2).
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(a) PSNR (b) SSIM (c) TIME

Figure 6. The PSNR, SSIM values and running time (in seconds) on the UCMerced dataset for the setting (ρobs, ρs) =

(0.8, 0.3).

(a) Orignal (b) Observation (c) NN (d) SNN (e) TNN(DFT) (f) TNN(DCT) (g) TNN(Data) 

 Figure 7. The visual examples for five models on UCMerced dataset for the setting (ρobs, ρs) = (0.3, 0.2). (a) The original
image; (b) the observed image; (c) image recovered by the matrix nuclear norm (NN) based Model (32); (d) recovered by the
sum of mode-wise nuclear norms (SNN) based Model (33); (e) image recovered by TNN (DFT); (f) image recovered by TNN
(DCT); (g) image recovered by TNN (Data).
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(a) Orignal (b) Observation (c) NN (d) SNN (e) TNN(DFT) (f) TNN(DCT) (g) TNN(Data) 

 Figure 8. The visual examples for five models on UCMerced dataset for the setting (ρobs, ρs) = (0.8, 0.3). (a) The original
image; (b) the observed image; (c) image recovered by the matrix nuclear norm (NN) based Model (32); (d) recovered by the
sum of mode-wise nuclear norms (SNN) based Model (33); (e) image recovered by TNN (DFT); (f) image recovered by TNN
(DCT); (g) image recovered by TNN (Data).

7.2.2. Experiments on Hyperspectral Data

Benefit from its fine spectral and spatial resolutions, hyperspectral image processing
has been extensively adopted in many remote sensing applications [10,52]. In this section,
we conduct robust tensor completion on subsets of the two representative hyperspectral
datasets described as follows:

• Indian Pines: This dataset was collected by AVIRIS sensor in 1992 over the Indian Pines
test site in North-western Indiana and consists of 145× 145 pixels and 224 spectral
reflectance bands. We use the first 30 bands in the experiments due to the trade-off
between the limitation of computing resources and the efforts for parameter tuning.

• Salinas A: The data were acquired by AVIRIS sensor over the Salinas Valley, California
in 1998, and consists of 224 bands over a spectrum range of 400–2500 nm. This dataset
has a spatial extent of 86 × 83 pixels with a resolution of 3.7 m. We use the first
30 bands in the experiments too.

We consider three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6,
ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3) for robust completion of hyper-spectral data.
For NN, we set the regularization parameters λs = λι/

√
ρobs(d1 ∨ d2) (suggested by [38]),

and tune the parameter λι around 6.5σ
√

ρobs(d1 ∨ d2) log(d1d3 + d2d3) (suggested by [51]).
For SNN, the parameter λs is tuned in {0.01, 0.05, 0.1, 1} for better performance in most
cases, and we chose the weight α by α1 = α2 = α3 = λs

√
ρobs(d1 ∨ d2)d3 (suggested by [47]).

For Algorithm 1, we tune the parameter λι around 2σ
√

ρobs(d1 ∨ d2)d3 log(d1d3 + d2d3),
and let λs = λι/

√
ρobs(d1 ∨ d2)d3 for TNN (DFT) and λs = λι/

√
ρobs(d1 ∨ d2) for TNN

(DCT) and TNN (Data). In each setting, we test each image for 10 trials and report the
averaged PSNR (in db), SSIM and running time (in seconds).

For quantitative evalution, we report the PSNR, SSIM values and running time in
Tables 2 and 3 for the Indian Pines and Salinas A datasets, respectively. The visual examples
are, respectively, shown in Figures 9 and 10. It can seen that the proposed TNN (Data) has
the highest recovery quality in most cases, and has a comparative running time as NN,
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indicating the effectiveness and efficiency of low-tubal-rank models in comparison with
original domain-based models NN and SNN.

(a) Orignal (b) Observation (c) NN (d) SNN (e) TNN(DFT) (f) TNN(DCT) (g) TNN(Data) 

 Figure 9. Visual results of robust tensor completion for five models on the 21st bound of Indian Pines dataset. The top,
middle, and bottum row corresponds to the Setting I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25), and Setting
III (ρobs = 0.8, ρs = 0.3), respectively. The sub-plots from (a) to (g): (a) the original image; (b) the observed image; (c)
image recovered by the matrix nuclear norm (NN) based Model (32); (d) recovered by the sum of mode-wise nuclear norms
(SNN) based Model (33); (e) image recovered by TNN (DFT); (f) image recovered by TNN (DCT); (g) image recovered by
TNN (Data).

(a) Orignal (b) Observation (c) NN (d) SNN (e) TNN(DFT) (f) TNN(DCT) (g) TNN(Data) 

 Figure 10. Visual results of robust tensor completion for five models on the 21st bound of Salinas A dataset. The top,
middle, and bottum row corresponds to the Setting I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25), and Setting III
(ρobs = 0.8, ρs = 0.3), respectively. The sub-plots from (a) to (g): (a) the original image; (b) the observed image; (c) image
recovered by the matrix nuclear norm (NN) based Model (32); (d) recovered by the sum of mode-wise nuclear norms
(SNN) based Model (33); (e) image recovered by TNN (DFT); (f) image recovered by TNN (DCT); (g) image recovered by
TNN (Data).
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Table 2. Quantitative evaluation on the Indian Pines dataset in PSNR, SSIM, and running time of five
models for robust tensor completion in three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2), Setting II
(ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3). The highest PSNR/SSIM, or lowest time
(in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 20.63 25.46 28.49 29.33 30.08
SSIM 0.4842 0.7275 0.7619 0.7872 0.8181
TIME 14.77 40.1 11.17 15.53 13.54

Setting II
PSNR 21.95 27.66 29.49 30.17 30.61
SSIM 0.5454 0.7864 0.7912 0.8073 0.8296
TIME 14.18 39.76 11.04 15.23 13.29

Setting III
PSNR 22.43 28.22 29.64 30.31 30.87
SSIM 0.5534 0.8051 0.7971 0.8139 0.8345
TIME 14.21 38.88 11.05 15.27 13.43

Table 3. Quantitative evaluation on the Salinas A dataset in PSNR, SSIM, and running time of
five tensor completion models for robust tensor completion in three settings, i.e., Setting I (ρobs =

0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3). The highest
PSNR/SSIM, or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 19.01 26.18 27.1 30.99 32.69
SSIM 0.4918 0.837 0.7501 0.8350 0.8774
TIME 5.57 11.53 4.07 5.73 4.9

Setting II
PSNR 20.97 28.79 29.4 32.26 33.3
SSIM 0.5806 0.8675 0.8117 0.8645 0.8714
TIME 5.41 11.36 4.02 5.67 4.79

Setting III
PSNR 21.54 29.5 29.73 32.38 33.54
SSIM 0.5914 0.8772 0.8208 0.8683 0.8848
TIME 5.34 11.01 3.98 5.59 4.91

7.2.3. Experiments on Multispectral Images

Multispectral imaging captures image data within specific wavelength ranges across
the electromagnetic spectrum, and has become one of the most widely utilized datatype
in remote sensing. This section presents simulated experiments on multispectral images.
The original data are two multispectral images Beads and Cloth from the Columbia MSI
Database (available at http://www1.cs.columbia.edu/CAVE/databases/multispectral
accessed on 28 July 2021) containing scenes of a variety of real-world objects. Each MSI is
of size 512 × 512 × 31 with intensity range scaled to [0, 1].

We also consider three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2), Setting II
(ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3) for robust completion of
multi-spectral data. We tune the parameters in the same way as Section 7.2.2. In each
setting, we test each image for 10 trials and report the averaged PSNR (in db), SSIM and
running time (in seconds).

For quantitative evalution, we report the PSNR, SSIM values and running time in
Tables 4 and 5 for the Beads and Cloth datasets, respectively. The visual examples for
the Cloth dataset is shown in Figure 11. We can also find that the proposed TNN (Data)
achieves the highest accuracy in most cases, and has a comparative running time as NN,
which demonstrates both the effectiveness and efficiency of low-tubal-rank models.

http: //www1.cs.columbia.edu/CAVE/databases/multispectral
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Table 4. Quantitative evaluation on the Beads dataset in PSNR, SSIM, and running time of five tensor
completion models for robust tensor completion in three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2),
Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3). The highest PSNR/SSIM,
or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 18.58 18.71 25.11 25.18 27.05
SSIM 0.448 0.6208 0.804 0.8203 0.8673
TIME 309.55 933.12 280 260.46 241.65

Setting II
PSNR 20.4 21.35 27.31 27.46 28.9
SSIM 0.5406 0.7603 0.8754 0.8894 0.9143
TIME 302.95 915.57 276.2 268.58 244.5

Setting III
PSNR 21.01 22.36 27.96 28.13 29.4
SSIM 0.5531 0.7848 0.8803 0.8944 0.9165
TIME 301.92 922.07 276.99 272.59 244.02

Table 5. Quantitative evaluation on the Cloth dataset in PSNR, SSIM, and running time of five tensor
completion models for robust tensor completion in three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2),
Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3). The highest PSNR/SSIM,
or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 21.5 22.79 29.7 30.83 30.77
SSIM 0.5054 0.6333 0.8649 0.8883 0.8941
TIME 308.29 915.43 281.4 264.84 242.63

Setting II
PSNR 22.63 24.94 32.32 33.57 33.86
SSIM 0.5566 0.7355 0.916 0.9323 0.9391
TIME 300.3 911.27 273.36 268.46 243.37

Setting III
PSNR 22.99 25.78 32.76 34.02 34.39
SSIM 0.5652 0.7643 0.9183 0.9342 0.941
TIME 297.94 910.64 280.51 268.25 246.14

(a) Orignal (b) Observation (c) NN (d) SNN (e) TNN(DFT) (f) TNN(DCT) (g) TNN(Data) 

 
Figure 11. Visual results of robust tensor completion for five models on the 21st bound of Cloth
dataset. The top, middle, and bottum row corresponds to the Setting I (ρobs = 0.3, ρs = 0.2), Setting
II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3), respectively. The sub-plots from (a) to
(g): (a) The original image; (b) the observed image; (c) image recovered by the matrix nuclear norm
(NN) based Model (32); (d) recovered by the sum of mode-wise nuclear norms (SNN) based Model
(33); (e) image recovered by TNN (DFT); (f) image recovered by TNN (DCT); (g) image recovered by
TNN (Data).
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7.2.4. Experiments on Point Could Data

With the rapid advances of sensor technology, the emerging point cloud data provide
better performance than 2D images in many remote sensing applications due to its flexible
and scalable geometric representation [53]. In this section, we also conduct experiments on a
dataset (scenario B from http://www.mrt.kit.edu/z/publ/download/velodynetracking/
dataset.html, accessed on 28 July 2021) for Unmanned Ground Vehicle (UGV). The dataset
contains a sequence of point cloud data acquired from a Velodyne HDL-64E LiDAR. We
select 30 frames (Frame Nos. 65-94) from the data sequence. The point cloud data is
formatted into two tensors sized 64× 870× 30 representing the distance data (named
SenerioB Distance) and the intensity data (named SenerioB Intensity), , respectively.

We also consider three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2), Setting II
(ρobs = 0.6,ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3) for robust completion of
point cloud data. We tune the parameters in the same way as Section 7.2.2. In each setting,
we test each image for 10 trials and report the averaged PSNR (in db), SSIM and run-
ning time (in seconds). For quantitative evalution, we report the PSNR, SSIM values and
running time in Tables 6 and 7 for the SenerioB Distance and SenerioB Intensity datasets,
respectively. We can also find that the proposed TNN (Data) achieves the highest accuracy
in most cases, and has a comparative running time as NN, which demonstrates both the
effectiveness and efficiency of low-tubal-rank models.

Table 6. Quantitative evaluation on the SenerioB Distance dataset in PSNR, SSIM, and running
time of five tensor completion models for robust tensor completion in three settings, i.e., Setting
I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3).
The highest PSNR/SSIM, or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 17.55 20.01 23.86 23.86 23.87
SSIM 0.468 0.763 0.8732 0.8737 0.8739
TIME 15.22 186.31 14.49 19.66 15.83

Setting II
PSNR 18.57 23.87 25.28 25.31 25.34
SSIM 0.551 0.9055 0.9096 0.91 0.9105
TIME 15.51 189.87 15.55 18.68 16.31

Setting III
PSNR 18.98 24.78 25.79 25.83 25.87
SSIM 0.5678 0.9197 0.9179 0.9184 0.9189
TIME 15.03 195 14.8 19.11 15.02

Table 7. Quantitative evaluation on the SenerioB Intensity dataset in PSNR, SSIM, and running
time of five tensor completion models for robust tensor completion in three settings, i.e., Setting
I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3).
The highest PSNR/SSIM, or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 16.35 20.35 21.28 21.26 21.31
SSIM 0.2588 0.7076 0.7114 0.7116 0.7137
TIME 15.13 188.96 14.18 19.06 15.19

Setting II
PSNR 17.09 22.17 22.28 22.32 22.45
SSIM 0.3149 0.7889 0.7708 0.7718 0.7781
TIME 14.64 187.61 14.09 19.1 15.74

Setting III
PSNR 17.35 22.48 22.57 22.61 22.79
SSIM 0.3331 0.7985 0.7828 0.7836 0.7914
TIME 14.7 187.66 14.23 19 15.22

http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html
http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html
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7.2.5. Experiments on Aerial Video Data

Aerial videos (or time sequences of images) are broadly used in many computer vision
based remote sensing tasks [54]. We experiment on a 180× 320× 30 tensor which consists
of the first 30 frames of the Sky dataset (available at http://www.loujing.com/rss-small-
target, accessed on 28 July 2021) for small object detection [55].

We also consider three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs =
0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3). We tune the parameters in the same
way as Section 7.2.2. In each setting, we test each image for 10 trials and report the averaged
PSNR (in db), SSIM and running time (in seconds). For quantitative evalution, we report
the PSNR, SSIM values and running time in Table 8. It is also found that the proposed TNN
(Data) achieves the highest accuracy in most cases, and can run as fast as NN.

Table 8. Quantitative evaluation on the Sky dataset in PSNR, SSIM, and running time of five tensor
completion models for robust tensor completion in three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2),
Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3). The highest PSNR/SSIM,
or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 21.03 26.74 28.67 28.59 29.74
SSIM 0.4875 0.7805 0.708 0.7076 0.788
TIME 36.1 144.84 28.1 39.85 34.43

Setting II
PSNR 22.44 28.8 29.41 29.35 30.48
SSIM 0.5715 0.8026 0.7155 0.7147 0.7814
TIME 34.23 138.52 27.11 38.77 33.74

Setting III
PSNR 22.77 28.72 29.55 29.49 30.59
SSIM 0.5786 0.7471 0.7324 0.7307 0.7906
TIME 34.42 139.78 26.97 39.14 33.86

7.2.6. Experiments on Thermal Imaging Data

Thermal infrared data can provide important measurements of surface energy fluxes
and temperatures in various remote sensing applications [7]. In this section, we experiment
on two infrared datasets as follows:

• The Infraed Detection dataset [56]: this dataset is collected for infrared detection and
tracking of dim-small aircraft targets under ground/air background (available at
http://www.csdata.org/p/387/, accessed on 28 July 2021). It consists of 22 subsets
of infrared image sequences of all aircraft targets. We use the first 30 frames of
data3.zip to form a 256× 256× 30 tensor due to the trade-off between the limitation
of computing resources and the efforts for parameter tuning.

• The OSU Thermal Database [3]: The sequences were recorded on the Ohio State
University campus during the months of February and March 2005, and show several
people, some in groups, moving through the scene. We use the first 30 frames of
Sequences 1 and form a tensor of size 320× 240× 30.

Similiar to Section 7.2.2, we test in three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2),
Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3), and use the same
strategy for parameter tuning. In each setting, we test each image for 10 trials and report
the averaged PSNR (in db), SSIM and running time (in seconds). For quantitative evalution,
we report the PSNR, SSIM values and running time in Tables 9 and 10 for the Infraed
Detection and OSU Thermal Database datasets, respectively. The visual examples are,
respectively, shown in Figures 12 and 13. It can seen that the proposed TNN (Data) has
the highest recovery quality in most cases, and has a comparative running time as NN,
showing both effectiveness and efficiency of low-tubal-rank models in comparison with
original domain-based models NN and SNN.

http://www.loujing.com/rss-small-target
http://www.loujing.com/rss-small-target
http://www.csdata.org/p/387/
http://www.csdata.org/p/387/
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Table 9. Quantitative evaluation on the Infraed Detection dataset in PSNR, SSIM, and running
time of five tensor completion models for robust tensor completion in three settings, i.e., Setting
I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3).
The highest PSNR/SSIM, or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 24.82 30.09 31.94 32.07 32.84
SSIM 0.6021 0.8231 0.7408 0.7437 0.7768
TIME 49.01 215.41 48.97 52.37 46.59

Setting II
PSNR 26.58 31.8 32.33 32.43 33.11
SSIM 0.6679 0.8414 0.7428 0.7453 0.7724
TIME 47.55 217.43 50.07 52.9 47.18

Setting III
PSNR 26.95 31.9 33.11 33.2 33.81
SSIM 0.6682 0.8454 0.7237 0.7265 0.7525
TIME 48.65 216.42 49.13 52.81 46.94

Table 10. Quantitative evaluation on the OSU Thermal Database in PSNR, SSIM, and running
time of five tensor completion models for robust tensor completion in three settings, i.e., Setting
I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3).
The highest PSNR/SSIM, or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 15.62 21.5 31.33 31.5 31.51
SSIM 0.3402 0.8105 0.9345 0.9347 0.935
TIME 49 222.49 40.31 49.45 42.22

Setting II
PSNR 17.47 29.48 32.88 33.19 33.21
SSIM 0.4428 0.9057 0.9427 0.9431 0.9433
TIME 46.18 197.9 36.14 47.19 41.79

Setting III
PSNR 18.17 30.83 33.31 33.71 33.75
SSIM 0.468 0.9265 0.9495 0.95 0.9507
TIME 45.85 200.39 36.39 46.96 41.36

(a) Orignal (b) Observation (c) NN (d) SNN (e) TNN(DFT) (f) TNN(DCT) (g) TNN(Data) 

 
Figure 12. Visual results of robust tensor completion for five models on the 21st bound of Infraed
Detection dataset. The top, middle, and bottum row corresponds to the Setting I (ρobs = 0.3, ρs = 0.2),
Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3), respectively. The sub-plots
from (a) to (g): (a) the original image; (b) the observed image; (c) image recovered by the matrix
nuclear norm (NN) based Model (32); (d) recovered by the sum of mode-wise nuclear norms (SNN)
based Model (33); (e) image recovered by TNN (DFT); (f) image recovered by TNN (DCT); (g) image
recovered by TNN (Data).
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(a) Orignal (b) Observation (c) NN (d) SNN (e) TNN(DFT) (f) TNN(DCT) (g) TNN(Data) 

 Figure 13. Visual results of robust tensor completion for five models on the 21st bound of OSU Thermal Database dataset.
The top, middle, and bottum row corresponds to the Setting I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25),
and Setting III (ρobs = 0.8, ρs = 0.3), respectively. The sub-plots from (a) to (g): (a) the original image; (b) the observed
image; (c) image recovered by the matrix nuclear norm (NN) based Model (32); (d) recovered by the sum of mode-wise
nuclear norms (SNN) based Model (33); (e) image recovered by TNN (DFT); (f) image recovered by TNN (DCT); (g) image
recovered by TNN (Data).

7.2.7. Experiments on SAR Data

Polarimetric synthetic aperture radar (PolSAR) has attracted lots of attention from
remote sensing scientists because of its various advantages, e.g., all-weather, all-time,
penetrating capability, and multi-polarimetry [57]. In this section, we adopt the PolSAR
UAVSAR Change Detection Images dataset. It is a dataset of single-look quad-polarimetric
SAR images acquired by the UAVSAR airborne sensor in L-band over an urban area in San
Francisco city on 18 September 2009, and May 11, 2015. The dataset #1 have length and
width of 200 pixels, and we use the first 30 bands.

We also consider three settings, i.e., Setting I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs =
0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3). We tune the parameters in the same
way as Section 7.2.2. In each setting, we test each image for 10 trials and report the averaged
PSNR (in db), SSIM and running time (in seconds) in Table 11. It is also found that the
proposed TNN (Data) achieves the highest accuracy in most cases, and can run as fast
as NN.

Table 11. Quantitative evaluation on the UAVSAR-Dataset1-2015 dataset in PSNR, SSIM, and running
time of five tensor completion models for robust tensor completion in three settings, i.e., Setting
I (ρobs = 0.3, ρs = 0.2), Setting II (ρobs = 0.6, ρs = 0.25), and Setting III (ρobs = 0.8, ρs = 0.3).
The highest PSNR/SSIM, or lowest time (in seconds) is highlighted in bold.

Settings Metrics NN SNN TNN-DFT TNN-DCT TNN-Data

Setting I
PSNR 29.14 25.86 26.22 26.5 31.62
SSIM 0.8748 0.8797 0.8868 0.8909 0.9438
TIME 23.54 75.07 17.46 25.24 22.6

Setting II
PSNR 31.3 26.71 26.96 27.31 34.28
SSIM 0.9044 0.8742 0.9018 0.9059 0.9615
TIME 23.09 74.75 17.6 24.77 22.59

Setting III
PSNR 31.8 26.98 27.14 27.66 35.03
SSIM 0.9118 0.8829 0.903 0.9092 0.9649
TIME 22.88 73.03 17.64 25.22 22.54

8. Conclusions

In this paper, we resolve the challenging robust tensor completion problem by propos-
ing a ∗L-SVD-based estimator to robustly reconstruct a low-rank tensor in the presence of
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missing values, gross outliers, and small noises simultaneously. Specifically, this work can
be concluded in the following three aspects:

(1) Algorithmically, we design an efficient algorithm within the framework of ADMM to
efficiently compute the proposed estimator with guaranteed convergence behavior.

(2) Statistically, we analyze the statistical performance of the proposed estimator by
establishing a non-asymptotic upper bound on the estimation error. The proposed
upper bound is further proved to be minimax optimal (up to a log factor).

(3) Experimentally, the correctness of the upper bound is first validated through simula-
tions on synthetic datasets. Then both effectiveness and efficiency of the proposed
algorithm are demonstrated by extensive comparisons with state-of-the-art nuclear
norm based models (i.e., NN and SNN) on seven different types of remote sens-
ing data.

However, from a critical point of view, the proposed method has the following
two limitations:

(1) The orientational sensitivity of ∗L-SVD: Despite the promising empirical performance
of the ∗L-SVD-based estimator, a typical defect of it is the orientation sensitivity owing
to low-rankness strictly defined along the tubal orientation which makes it fail to
simultaneously exploit transformed low-rankness in multiple orientations [19,58].

(2) The difficulty in finding the optimal transform L(·) for ∗L-SVD: Although a direct use
of fixed transforms (like DFT and DCT) may produce fairish empirical performance, it
is still unclear how to find the best optimal transformation L(·) for any certain tensor
L∗ when only partial and corrupted observations are available.

According to the above limitations, it is interesting to consider higher-order extensions
of the proposed model in an orientation invariant way like [19] and discuss the statistical
performance. It is also interesting to consider the data-dependent transformation learning
like [31,59]. Another future direction is to consider more efficient solvers of Problem (8)
using the factorization strategy or Frank–Wolfe method [47,60–62].
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Appendix A. Proof of Theoretical Results

Appendix A.1. Additional Notations and Preliminaries

For the ease of exposition, we first list the additive notations often used in the proofs
in Table A1.
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Table A1. Additional notations in the proofs.

Notations Descriptions Notations Descriptions

∆ι := L∗ − L̂ estimation error of L∗ ∆s := S∗ − Ŝ estimation error of S∗
r∗ := rtb(L∗) ∗L-tubal-rank of L∗ s∗ := ‖S∗‖0 sparsity of S∗

$ := N/Nι inverse uncorrupted ratio a l∞-norm bound in Equation (8)
d̃ (d1 + d3)d3

Ωι := {i ∈ [N]|〈X i ,S∗〉 = 0} index set of design tensors {X i} corresponding to uncorrupted entries
Ωs := {i ∈ [N]|〈X i ,S∗〉 6= 0} index set of design tensors {X i} corresponding to corrupted entries

E := 1
N ∑i∈Ωι

ξiX i stochastic tensor defined to lower bound parameters λι and λs
W := 1

N ∑i∈Ωι
X i stochastic tensor defined to lower bound parameter λs

RΣ := 1
Nι

∑i∈Ωι
εiX i random tensor defined in bounding ‖∆ι‖F with i.i.d. Rademacher {εi}

‖T ‖Π :=

√
EX i

[〈
X i ,T Θ⊥s

〉2]
expectation of 〈X i , ·〉2 for i ∈ Ωι defined to establish the RSC condition

We then introduce the decomposability of ∗L-TNN and tensor l1-norm which plays a
key role in the analysis.
Decomposability of ∗L-TNN. Suppose L∗ has reduced ∗L-SVD as L∗ = U ∗L D ∗L V>,
where U ∈ Rd1×r∗×d3 and V ∈ Rd2×r∗×d3 are orthogonal andD ∈ Rr∗×r∗×d3 is f-diagonal.
Define projectors P?(·) and P⊥(·) as follows:

P?(T ) = U ∗L U> ∗L T + T ∗L V ∗L V> −U ∗L U> ∗L T ∗L V ∗L V>,

P⊥(T ) = (I −U ∗L U>) ∗L T ∗L (I −V ∗L V>).

Then, it can be verified that:

(I). T = P?(T ) +P⊥(T ), ∀T ∈ Rd1×d2×d3 ;

(II).
〈
P?(A),P⊥(B)

〉
= 0, ∀A,B ∈ Rd1×d2×d3 .

(III). rtb(P?(T )) ≤ 2rtb(L∗), ∀T ∈ Rd1×d2×d3 .

In the same way to the results in supplementary material of [43], it can also be shown
that the following equations hold:

(I). (Decomposability of ∗L–TNN) For any A,B ∈ Rd1×d2×d3 satisfying A ∗L B> =

0,A> ∗L B = 0,
‖A+B‖? = ‖P?(A)‖? + ‖P⊥(B)‖?. (A1)

(II). (Norm compatibility inequality) For any T ∈ Rd1×d2×d3

‖T ‖? =
√

d3rtb(T )‖T ‖F. (A2)

Decomposability of tensor l1-norm [63]. Let Ωe ⊂ [d1] × [d2] × [d3] denote any index
set and Ω⊥e its complement. Then for any tensor T , define two tensors T Ωe and T Ω⊥e
as follows

T Ωe(i, j, k) :=

{
Tijk, (i, j, k) ∈ Ωe

0, (i, j, k) ∈ Ω⊥e
, T Ω⊥e

:= T − T Ωe . (A3)

Then, one has

(I). (Decomposability of l1-norm) For any T ∈ Rd1×d2×d3 , ‖T ‖1 = ‖T Ωe‖1 + ‖T Ω⊥e
‖1.

(II). (Norm compatibility inequality) For any T ∈ Rd1×d2×d3 , ‖T Ωe‖1 =
√
|Ωe|‖T Ωe‖F.

Appendix A.2. The Proof for Theorem 3

The proof follows the lines of [34,36]. For notational simplicity, we define the following
two sets

Ωι := {i ∈ [N] | 〈X i,S∗〉 = 0}, Ωs := {i ∈ [N] | 〈X i,S∗〉 6= 0} (A4)

which denote the index set of design tensors {X i} corresponding to uncorrupted/cor-
rupted entries, respectively.
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Appendix A.2.1. Mainstream of Proving Theorem 3

Proof of Theorem 3. Let F (L,S) = 1
N ∑N

i=1(yi − 〈L+ S ,X i〉)2 + λι‖L‖? + λs‖S‖1 for
simplicity. Then, according to the optimality of (L̂, Ŝ) to Problem (8), it holds that

F (L̂, Ŝ) ≤ F (L∗,S∗) (A5)

and
‖∆ι‖∞ = ‖L̂−L∗‖∞ ≤ ‖L̂‖∞ + ‖L∗‖∞ ≤ 2a

‖∆s‖∞ = ‖Ŝ − S∗‖∞ ≤ ‖Ŝ‖∞ + ‖S∗‖∞ ≤ 2a
(A6)

Equation (A5) indicates that

1
N

N

∑
i=1

(ξi + 〈∆ι + ∆s,X i〉)2 + λι‖L̂‖? + λs‖Ŝ‖1 ≤
1
N

N

∑
i=1

ξ2
i + λι‖L∗‖? + λs‖S∗‖1 (A7)

which leads to

1
N ∑

i∈Ωι

〈∆ι + ∆s,X i〉2 ≤
2
N ∑

i∈Ωs

|〈ξiX i, ∆ι + ∆s〉| − 1
N ∑

i∈Ωs

〈X i, ∆ι + ∆s〉2︸ ︷︷ ︸
:=I

+ 2|〈E , ∆ι〉|+ λι(‖L∗‖? − ‖L̂‖?)︸ ︷︷ ︸
:=II

+ 2
∣∣∣〈E , ∆s

Θ⊥s

〉∣∣∣+ λs(‖S∗‖1 − ‖Ŝ‖1)︸ ︷︷ ︸
:=III

(A8)

where E := 1
Nι

∑i∈Ωι
ξiX i, and the equality 〈E , ∆s〉 =

〈
E , ∆s

Θ⊥s

〉
holds. Now each item in

the right hand side of (A8) will be upper bounded separately as follows. Following the
idea of [36], the upper bound will be analyzed upon the following event

E :=
{

max
1≤i≤N

|ξi| ≤ C∗σ
√

log d̃
}

(A9)

According to the tail behavior of the maximum in a sub-Gaussian sequence, it holds with
an absolute constant C∗ > 0 such that P[E] ≥ 1− 1/(2d̃).
Bound I. On the event E, we get

I ≤ 1
N ∑

i∈Ωs

ξ2
i ≤

Cσ2|Θs| log d̃
N

. (A10)

Bound II. Note that according to the properties of ∗L-TNN, we have

‖L∗‖? − ‖L̂‖? = ‖L∗‖? − ‖L∗ − ∆ι‖?
= ‖L∗‖? − ‖L∗ −P⊥(∆ι)−P?(∆ι)‖?
≤ ‖L∗‖? − (‖L∗ −P⊥(∆ι)‖? − ‖P?(∆ι)‖?)
= ‖L∗‖? − (‖L∗‖? + ‖P⊥(∆ι)‖? − ‖P?(∆ι)‖?)
= ‖P?(∆ι)‖? − ‖P⊥(∆ι)‖?

Thus, we can bound term II by

II ≤ 2‖E‖sp‖∆ι‖? + λι

(
‖P?(∆ι)‖? − ‖P⊥(∆ι)‖?

)
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By letting λι ≥ 4‖E‖sp, it holds that

II ≤ 3
2

λι‖P?(∆ι)‖? ≤
3
2

λι

√
2r∗d3‖∆ι‖F. (A11)

Bound III: Note that since S∗
Θ⊥s

= 0, we have ∆s
Θ⊥s

= −Ŝ
Θ⊥s

, leading to

III ≤ 2‖E‖∞‖ŜΘ⊥s
‖1 + λs(‖S∗‖1 − ‖Ŝ‖1) ≤ (2‖E‖∞ − λs)‖ŜΘ⊥s

‖1 + λs‖S∗‖1

Letting λs ≥ 4‖E‖∞ yields
III ≤ λs‖S∗‖1 (A12)

Thus, putting Equations (A10)–(A12) together, we have the following inequality on the
event E:

1
N ∑

i∈Ωι

〈X i, ∆ι + ∆s〉2 ≤ 3λι
√

r∗d3√
2
‖∆ι‖F + λs‖S∗‖1 +

Cσ2|Θs| log d̃
N (A13)

Then, we follow the line of [36] to specify a kind of Restricted Strong Convexity (RSC)
for the random sampling operator formed by the design tensors {X i} on a carefully chosen
constrained set. The RSC will show that when the error tensors (∆ι, ∆s) belong to the
constrained set, the following relationship:

1
N ∑

i∈Ωι

〈X i, ∆ι + ∆s〉2 ≥ κ0‖∆ι + ∆s‖2
Π − τ, (A14)

holds with an appropriate residual τ with high probability.
Before explicitly defining the constrained set, we first consider the following set where

∆s should lie:

B(δ1, δ2) := {B ∈ Rd1×d2×d3 | ‖B‖2
Π ≤ δ2

1 , ‖B‖1 ≤ δ2} (A15)

with two positive constants δ1 and δ2 whose values will be specified later. We also define
the following set of tensor pairs:

D(r, κ, β) :=
{
(A,B)

∣∣ ‖A+B‖2
Π ≥ β, ‖A+B‖∞ ≤ 1, ‖A‖? ≤

√
rd3‖AΘ⊥s

‖F + κ
}

(A16)

We then define the constrained set as the intersection:

D(r, κ, β) ∩ {Rd1×d2×d3 ×B(δ1, δ2)} (A17)

To bound the estimation error in Equation (26), we will upper bound ‖∆ι‖F and ‖∆s‖F
separately.

Note that

‖∆ι‖2
F = ‖∆ι

Θs
‖2

F + ‖∆ι
Θ⊥s
‖2

F ≤ ‖∆ι
Θs
‖2

F + 4a2|Θ⊥s | = |Θs|‖∆ι
Θ⊥s
‖2

Π + 4a2|Θ⊥s | (A18)

and similarly
‖∆s‖2

F ≤ |Θs|‖∆s
Θ⊥s
‖2

Π + 4a2|Θ⊥s | (A19)

We will bound ‖∆ι
Θ⊥s
‖2

Π and ‖∆s
Θ⊥s
‖2

Π separately. We first bound ‖∆ι
Θ⊥s
‖2

Π in what follows.

Case 1: If ‖∆ι + ∆s‖2
Π ≤ 16a2

√
128 log d̃

Nι
, then we use the following inequality

‖∆ι + ∆s‖2
Π ≥

1
2
‖∆ι‖2

Π − ‖∆s‖2
Π (A20)
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which holds due to (x + y)2 = x2 + y2 + 2xy ≥ x2 + y2 + 2 · x/
√

2 ·
√

2y ≥ x2 + y2 −
(x2/2 + 2y2) = x2/2− y2.

Thus, we can upper bound ‖∆ι‖Π with an upper bound of ‖∆s‖Π in Lemma A1

‖∆ι‖2
Π ≤ 16a2

√
128 log d̃

Nι
+ ‖∆s‖2

Π
(A21)

Case 2: Suppose ‖∆ι + ∆s‖2
Π ≥ 16a2

√
128 log d̃

Nι
. First, according to Lemma A3, it holds

on the event E defined in Equation (A9) that

‖∆ι‖?
(i)
≤ ‖P⊥(∆ι)‖? + ‖P?(∆ι)‖?
(ii)
≤ 4‖P?(∆ι)‖? +

2Ns

Nλι
(aNλs + Cσ2 log d̃)

(iii)
≤ 4

√
2r∗d3‖P?(∆ι)‖F +

2Ns

Nλι
(aNλs + Cσ2 log d̃)

(iv)
≤ 4

√
2r∗d3‖∆ι‖F +

2Ns

Nλι
(aNλs + Cσ2 log d̃)

(v)
≤ 4

√
2r∗d3(‖∆ι

Θ⊥s
‖F + ‖∆ι

Θs
‖F) +

2Ns

Nλι
(aNλs + Cσ2 log d̃)

(vi)
≤
√

32r∗d3‖∆ι
Θ⊥s
‖F + a

√
128r∗d3|Θs|+

2Ns

Nλι
(aNλs + Cσ2 log d̃)

(A22)

where (i) holds due to the triangular inequality; (ii) is a direct consequence of Lemma A3,
and the definition of eventE; (iii) holds because rtb(P?(T )) ≤ 2r∗, and ‖T ‖? ≤

√
rtb(T )d3‖T ‖F

for any T ∈ Rd1×d2×d3 ; (iv) stems from the inequality ‖P?(T )‖F ≤ ‖T ‖F

=
√
‖P?(T )‖2

F + ‖P
⊥(T )‖2

F; (v) is due to the triangular inequality; (vi) holds since ‖∆ι‖∞ ≤ 2a.
Note that according to Lemma A1, we have with probability at least 1− 2.5/d̃:

∆s

4a
∈ B(δ1, δ2) with δ1 =

√
∆1

4a
, δ2 =

Ns

4aNλs
(4a2 + 8aNλs + Cσ2 log d̃) (A23)

where ∆1 is defined in Lemma A4.
Together with Equation (A22), we have

1
4a

(∆ι, ∆s) ∈ D(r, κ, β) ∩ (Rd1×d2×d3 ×B(δ1, δ2)) (A24)

with the following parameters

r = 32r∗ and κ = 2a
√

2r∗d3|Θs|+
Ns

2aNλι
(aNλs + Cσ2 log d̃) (A25)

Then, according to Lemma A6, it holds with probability at least 1− 2/d̃ that

1
16a2Nι

∑
i∈Ωι

〈X i, ∆ι + ∆s〉2 ≥ 1
32a2 ‖∆

ι + ∆s‖2
Π − τ(r, κ, δ1, δ2) (A26)

where τ(r, κ, δ1, δ2) is defined in Equation (A64).
Recall that Equation (A13) writes:

1
N ∑

i∈Ωι

〈X i, ∆ι + ∆s〉2 ≤ 3λι
√

r∗d3√
2
‖∆ι‖F + Ns(aλs +

Cσ2 log d̃
N

) (A27)
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Letting $ := N/Nι, we further obtain

1
2
‖∆ι + ∆s‖2

Π ≤
3$λι√

2

√
r∗d3‖∆ι‖F + Cτ′

≤ 9
8

$2λ2
ι r∗d3 · 4d1d2d3 +

‖∆ι‖2
F

4d1d2d3
+ Cτ′

≤ 9
2

$2λ2
ι r∗d1d2d2

3 +
‖∆ι

Θ⊥s
‖2

F

4d1d2d3
+

a2|Θs|
d1d2d3

+ Cτ′

(A28)

Thus, by using Equation (A20) and Lemma A1, we have

‖∆ι
Θ⊥s
‖2

F

d1d2d3
≤ C

(
$2λ2

ι r∗d1d2d2
3 +

a2|Θs|
d1d2d3

+ τ′
)

(A29)

where

τ′ = $Ns(aλs +
Cσ2 log d̃

N
) + 16a2τ(r, κ, δ1, δ2) (A30)

Note that the bound on ‖∆s‖Π is given in Lemma A4, and the values of λι and λs can
be set according to Lemmas A8 and A9, respectively. Then, by putting Equations (A18),
(A19) and (A52) together, and using Lemmas A8 and A9 to bound associated norms of
the stochastic quantities E ,W , and RΣ in the error term, we can obtain the bound on
‖∆ι‖2

F + ‖∆
s‖2

F and complete the proof.

Appendix A.2.2. Lemmas for the Proof of Theorem 3

Lemma A1. Letting λs ≥ 4(‖E‖∞ + 2a‖W‖∞), it holds that

‖∆s
Θ⊥s
‖1 ≤ 3‖∆s

Ωs
‖1 +

1
Nλs

(
4a2Ns + ∑

i∈Ωs

ξ2
i
)

(A31)

Proof of Lemma A1. By the standard condition for optimality over a convex set, it holds
that for any feasible (L,S) 〈

(L,S), ∂F (L̂, Ŝ)
〉
≥ 0 (A32)

which further leads to

− 2
N

N

∑
i=1

(yi −
〈
X i, L̂+ Ŝ

〉
)
〈
X i,L+ S − L̂− Ŝ

〉
+ λι

〈
∂‖L̂‖?,L− L̂

〉
+ λs

〈
∂‖Ŝ‖1,S − Ŝ

〉
≥ 0.

(A33)

Letting (L,S)← (L̂,S∗), we have

− 2
N

N

∑
i=1

(yi −
〈
X i, L̂+ Ŝ

〉
)〈X i, ∆s〉+ λs

〈
∂‖Ŝ‖1, ∆s

〉
≥ 0. (A34)



Remote Sens. 2021, 13, 3671 33 of 45

Note that

− 2
N

N

∑
i=1

(yi −
〈
X i, L̂+ Ŝ

〉
)〈X i, ∆s〉

= − 2
N

N

∑
i=1

(ξi + 〈X i, ∆ι + ∆s〉)〈X i, ∆s〉

= − 2
N

N

∑
i=1
〈X i, ∆s〉2 − 2

N

N

∑
i=1

ξi〈X i, ∆s〉 − 2
N

N

∑
i=1
〈X i, ∆ι〉〈X i, ∆s〉

= − 2
N

N

∑
i=1
〈X i, ∆s〉2 −

(
2
N ∑

i∈Ωs

ξi〈X i, ∆s〉+ 2
N ∑

i∈Ωι

ξi〈X i, ∆s〉
)

−
(

2
N ∑

i∈Ωs

〈X i, ∆ι〉〈X i, ∆s〉+ 2
N ∑

i∈Ωι

〈X i, ∆ι〉〈X i, ∆s〉
)

= −
(

2
N

N

∑
i=1
〈X i, ∆s〉2 + 2

N ∑
i∈Ωs

ξi〈X i, ∆s〉+ 2
N ∑

i∈Ωs

〈X i, ∆ι〉〈X i, ∆s〉
)

− 2〈E , ∆s〉 − 2
N ∑

i∈Ωι

〈X i, ∆ι〉〈X i, ∆s〉

≤ −
(

2
N

N

∑
i=1
〈X i, ∆s〉2 − 1

N ∑
i∈Ωs

(ξ2
i + 〈X i, ∆s〉2)− 1

N ∑
i∈Ωs

(〈X i, ∆ι〉2 + 〈X i, ∆s〉2)
)

− 2〈E , ∆s〉 − 2
N ∑

i∈Ωι

〈X i, ∆ι〉〈X i, ∆s〉

=
1
N ∑

i∈Ωs

ξ2
i +

1
N ∑

i∈Ωs

(〈X i, ∆ι〉2 − 2〈E , ∆s〉 − 2
N ∑

i∈Ωι

〈X i, ∆ι〉〈X i, ∆s〉

≤ 1
N ∑

i∈Ωs

ξ2
i +

4a2|Θs|
N

− 2〈E , ∆s〉 − 2
N ∑

i∈Ωι

〈X i, ∆ι〉〈X i, ∆s〉

(A35)

Thus, we have

λs

〈
∂‖Ŝ‖1, Ŝ − S∗

〉
≤ 1

N ∑
i∈Ωs

ξ2
i +

4a2|Θs|
N

− 2〈E , ∆s〉 − 2
N ∑

i∈Ωι

〈X i, ∆ι〉〈X i, ∆s〉

≤ 1
N ∑

i∈Ωs

ξ2
i +

4a2|Θs|
N

+ 2|〈E , ∆s〉|+ 2
N

∣∣∣∣∣ ∑i∈Ωι

〈〈X i, ∆ι〉X i, ∆s〉
∣∣∣∣∣

≤ 1
N ∑

i∈Ωs

ξ2
i +

4a2|Θs|
N

+ 2‖E‖∞‖∆s‖1 + 2‖ 1
Nι

∑
i∈Ωι

〈X i, ∆ι〉X i‖∞‖∆s‖1

≤ 1
N ∑

i∈Ωs

ξ2
i +

4a2|Θs|
N

+ 2‖E‖∞‖∆s‖1 + 4a‖W‖∞‖∆s‖1

(A36)

One the other hand, the definition of sub-differential indicates

‖S∗‖1 − ‖Ŝ‖1 ≥
〈
S∗ − Ŝ , ∂‖Ŝ‖1

〉
(A37)

which implies

λs(‖Ŝ‖1 − ‖S∗‖1) ≤
1
N ∑

i∈Ωs

ξ2
i +

4a2|Θs|
N

+ 2‖E‖∞‖∆s‖1 + 2‖W‖∞‖∆s‖1
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Also note that

‖Ŝ‖1 − ‖S∗‖1 = ‖S∗ − ∆s‖1 − ‖S∗‖1

= ‖S∗Θs
− (∆s

Θ⊥s
+ ∆s

Θs
)‖1 − ‖S∗Θs

‖1

≥ ‖S∗Θs
− ∆s

Θ⊥s
‖1 − ‖∆s

Θs
‖1 − ‖S∗Θs

‖1

= ‖S∗Θs
‖1 + ‖∆s

Θ⊥s
‖1 − ‖∆s

Θs
‖1 − ‖S∗Θs

‖1

= ‖∆s
Θ⊥s
‖1 − ‖∆s

Θs
‖1

(A38)

which implies

λs(‖∆s
Θ⊥s
‖1 − ‖∆s

Θs
‖1) ≤

1
N ∑

i∈Ωs

ξ2
i +

4a2|Θs|
N

+ 2‖E‖∞‖∆s‖1 + 2‖W‖∞‖∆s‖1

Since λs ≥ 4(‖E‖∞ + 2a‖W‖∞), we have

λs(‖∆s
Θ⊥s
‖1 − ‖∆s

Θs
‖1) ≤

1
N ∑

i∈Ωs

ξ2
i +

4a2|Θs|
N

+
λs

2
(‖∆s

Θ⊥s
‖1 + ‖∆s

Θs
‖1) (A39)

Thus, it holds that

‖∆s
Θ⊥s
‖1 ≤ 3‖∆s

Θ⊥s
‖1 +

1
Nλs

(4a2|Θs|+ ∑
i∈Ωs

ξ2
i ) (A40)

which complete the proof.

Lemma A2. It holds that

‖ 1
Nι

∑
i∈Ωι

〈X i, ∆ι〉X i‖∞ ≤ 2a‖W‖∞ (A41)

Proof of Lemma A2. Note that

‖ 1
Nι

∑
i∈Ωι

〈X i, ∆ι〉X i‖∞
(i)
≤ sup
‖T ‖1≤1

〈
1
Nι

∑
i∈Ωι

〈X i, ∆ι〉X i,T
〉

≤ 2a sup
‖T ‖1≤1

〈
1
Nι

∑
i∈Ωι

〈X i, ∆ι〉
2a

X i,T
〉

(ii)
≤ 2a sup

‖T ′‖1≤1

〈
1
Nι

∑
i∈Ωι

X i,T ′
〉

≤ 2a‖W‖∞

(A42)

where (i) hold since ‖·‖∞ is the dual norm of ‖·‖1; (ii) holds since |〈X i, ∆ι〉| ≤ ‖∆ι‖∞ ≤ 2a
and the tensor `1-norm ‖·‖1 is invariant to changes in sign.

Lemma A3. By letting λι ≥ 4‖E‖sp and λs ≥ ‖E‖∞, we have

‖P⊥(∆ι)‖? ≤ 3‖P?(∆ι)‖? +
2aλs

λι
Ns +

2
Nλι

∑
i∈Ωs

ξ2
i (A43)

Proof of Lemma A3. In Equation (A33), letting (L,S)← (L∗,S∗), we obtain

− 2
N

N

∑
i=1

(yi −
〈
X i, L̂+ Ŝ

〉
)〈X i, ∆ι + ∆s〉+ λι

〈
∂‖L̂‖?, ∆ι

〉
+ λs

〈
∂‖Ŝ‖1, ∆s

〉
≥ 0 (A44)
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First, note that

− 2
N

N

∑
i=1

(yi −
〈
X i, L̂+ Ŝ

〉
)〈X i, ∆ι + ∆s〉

= − 2
N

N

∑
i=1

(ξi + 〈X i, ∆ι + ∆s〉)〈X i, ∆ι + ∆s〉

= − 2
N

N

∑
i=1
〈X i, ∆ι + ∆s〉2 − 2

N

N

∑
i=1

ξi〈X i, ∆ι + ∆s〉

= − 2
N

N

∑
i=1
〈X i, ∆ι + ∆s〉2 − 2

N ∑
i∈Ωs

ξi〈X i, ∆ι + ∆s〉 − 2〈E , ∆ι〉 − 2
〈
E , ∆s

Θ⊥s

〉
(A45)

Also, we have according to the convexity of ‖·‖? and ‖·‖1 that

‖L∗‖? − ‖L̂‖? ≥
〈
L∗ − L̂, ∂‖L̂‖?

〉
, and ‖S∗‖1 − ‖Ŝ‖1 ≥

〈
S∗ − Ŝ , ∂‖Ŝ‖1

〉
(A46)

Thus, we have

λι(‖L̂‖? − ‖L∗‖?) + λs(‖Ŝ‖1 − ‖S∗‖1) ≤ 2‖E‖sp‖∆ι‖? + 2‖E‖∞‖∆s
Θ⊥s
‖1 +

1
N ∑

i∈Ωs

ξ2
i .

Moreover, it is often used that

‖L̂‖? − ‖L∗‖? ≥ ‖P⊥(∆ι)‖? − ‖P?(∆ι)‖?, (A47)

Since we set λι ≥ 4‖E‖sp and λs ≥ 4‖E‖∞, we have

λι(‖P⊥(∆ι)‖? − ‖P?(∆ι)‖?) + λs(‖Ŝ‖1 − ‖S∗‖1)

≤ λι

2
(‖P?(∆ι)‖? + ‖P⊥(∆ι)‖?) +

λs

2
‖Ŝ

Θ⊥s
‖1 +

1
N ∑

i∈Ωs

ξ2
i

(A48)

where we use Ŝ
Θ⊥s

= −∆s
Θ⊥s

. It implies

λι

2
‖P⊥(∆ι)‖? + λs‖ŜΘs‖1 +

λs

2
‖Ŝ

Θ⊥s
‖1 ≤

3λι

2
‖P?(∆ι)‖? + λs‖S∗‖1 +

1
N ∑

i∈Ωs

ξ2
i (A49)

Note that, ‖S∗‖1 ≤ aNs. Thus, we have

‖P?(∆ι)‖? ≤ 3λι‖P?(∆ι)‖? +
2aλs

λι
Ns +

2
Nλι

∑
i∈Ωs

ξ2
i (A50)

Lemma A4. If Nι ≥ d̃ and λs ≥ 4(‖E‖∞ + 2a‖W‖∞), then on the event E defined in
Equation (A9), we have

‖∆s‖1 ≤
Ns

Nλs
(4a2 + 8aNλs + Cσ2 log d̃) (A51)

and it holds with probability at least 1− 2.5/d̃ that

‖∆s‖Π ≤ ∆1 :=

C($
2Ns

Nι
(4a2 + 2aNλι + CNsσ2 log d̃) +

16aNs

Nλs
(4a2 + 8aNλs + Cσ2 log d̃)E[‖E‖∞])

(A52)

Proof of Lemma A4. We first prove Equation (A51), and then prove Equation (A52).
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(I) The proof of Equation (A51): Recall that Lemma A1 implies

‖∆s
Θ⊥s
‖1 ≤ 3‖∆s

Ωs
‖1 +

1
Nλs

(
4a2Ns + ∑

i∈Ωs

ξ2
i
)

Then, we have on event E:

‖∆s‖1 = ‖∆s
Θ⊥s
‖1 + ‖∆s

Θs
‖1

(i)
≤ ‖∆s

Θ⊥s
‖1 + ‖∆s

Ωs
‖1

(ii)
≤ 4‖∆s

Ωs
‖1 +

1
Nλs

(
4a2Ns + ∑

i∈Ωs

ξ2
i
)

(iii)
≤ Ns

Nλs
(4a2 + 8aNλs + Cσ2 log d̃)

(A53)

where (i) holds due to Assumption 1.I; (ii) is a direct use of Lemma A1; (iii) stems from
the facts that ‖∆s‖∞ ≤ 2a and the definition of event E in Equation (A9).

Thus, Equation (A51) is proved.
(II) The proof of Equation (A52): According to the optimality of (L̂, Ŝ) to Problem (8),
we have

F (L̂, Ŝ) ≤ F (L̂,S∗) (A54)

which implies

1
N

Nι

∑
i=1

(ξi + 〈X i, ∆ι + ∆s〉)2 + λs‖Ŝ‖1 ≤
1
N

Nι

∑
i=1

(ξi + 〈X i, ∆ι〉)2 + λs‖S∗‖1 (A55)

which further leads to

1
N ∑

i∈Ωι

〈X i, ∆s〉2 + 1
N ∑

i∈Ωs

〈X i, ∆s〉2 + 2
N ∑

i∈Ωs

ξi〈X i, ∆s〉+ 2
N ∑

i∈Ωs

〈X i, ∆ι〉〈X i, ∆s〉

+
2
N ∑

i∈Ωι

〈X i, ∆ι〉
〈
X i, ∆s

Θ⊥s

〉
+ 2 ∑

i∈Ωι

〈
E , ∆s

Θ⊥s

〉
+ λs‖Ŝ‖1 ≤ λs‖S∗‖1

(A56)

Note that by using 2ab > −(1/2a2 + 2b2), we have

1
N ∑

i∈Ωs

〈X i, ∆s〉2 + 2
N ∑

i∈Ωs

ξi〈X i, ∆s〉+ 2
N ∑

i∈Ωs

〈X i, ∆ι〉〈X i, ∆s〉

≥ −( 2
N ∑

i∈Ωs

ξ2
i +

2
N ∑

i∈Ωs

〈X i, ∆ι〉2)
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Thus on the event E defined in Equation (A9), we have

1
N ∑

i∈Ωι

〈X i, ∆s〉2 ≤
∣∣∣∣ 2

N ∑
i∈Ωι

〈X i, ∆ι〉
〈
X i, ∆s

Θ⊥s

〉∣∣∣∣+ ∣∣∣∣2 ∑
i∈Ωι

〈
E , ∆s

Θ⊥s

〉∣∣∣∣
+ λs(‖S∗‖1 − ‖Ŝ‖1) +

2
N ∑

i∈Ωs

ξ2
i +

2
N ∑

i∈Ωs

〈X i, ∆ι〉2

(i)
≤ (4a‖W‖∞ + 2‖E‖∞)‖∆s

Θ⊥s
‖1 + λs(‖S∗‖1 − ‖Ŝ‖1)

+
2
N ∑

i∈Ωs

ξ2
i +

2
N ∑

i∈Ωs

〈X i, ∆ι〉2

(ii)
≤ λs

2
‖Ŝ

Θ⊥s
‖1 + λs(‖S∗‖1 − ‖Ŝ‖1) +

2
N ∑

i∈Ωs

(ξ2
i + 〈X i, ∆ι〉2)

(iii)
≤ λs‖S∗‖1 +

2
N ∑

i∈Ωs

(ξ2
i + 4a2)

(iv)
≤ 2Ns

N
(4a2 + 2aNλι + CNsσ2 log d̃)

(A57)

where (i) holds due to Lemma A2; (ii) holds because λs ≥ 4(2a‖W‖∞ + ‖E‖∞), and ∆s
Θ⊥s

=

−Ŝ
Θ⊥s

; (iii) holds because ‖Ŝ‖1 = ‖ŜΘs‖1 + ‖ŜΘ⊥s
‖1 ≥ ‖ŜΘ⊥s

‖1, and |〈X i, ∆ι〉| ≤
‖∆ι‖∞ ≤ 2a; (iv) holds as a consequence of ‖S∗‖∞ ≤ a, |Θs| ≤ Ns (due to Assumption 1.I),
and the definition of event E.

Now, we discuss the bound of ‖∆s‖Π in two cases.

Case 1. If ‖∆s‖2
Π ≤ β = 4a2

√
128 log d̃

Nι
, then Equation (A52) holds trivially.

Case 2. If ‖∆s‖2
Π ≥ 4a2

√
128 log d̃

Nι
, then we have

∆s

2a
∈ D

(
Ns

2aNλs
(4a2 + 8aNλs + Cσ2 log d̃), δ

)
due to the fact ‖∆s/(2a)‖∞ ≤ 1 and Equation (A51). Then according to Lemma A5, it
holds with probability at least 1 - 1/d̃2 that

1
Nι

∑
i∈Ωι

〈X i, ∆s〉2 ≥ 1
2
‖∆s‖2

Π −
16aNs

Nλs
(4a2 + 8aNλs + Cσ2 log d̃)E[‖E‖∞]. (A58)

Combing Equations (A57) and (A58) yields the bound on ‖∆s‖Π.

Lemma A5. Define the following set

D(δ, β) :=
{
B ∈ Rd1×d2×d3

∣∣ ‖B‖∞ ≤ 1, ‖B‖2
Π ≥ β, ‖B‖1 ≤ δ

}
(A59)

Then, it holds with probability at least 1− 2/d̃3 that

1
Nι

∑
i∈Ωι

〈X i,B〉2 ≥
1
2
‖B‖2

Π − 8δE[‖RΣ‖∞] (A60)

for any B ∈ D(δ, β).
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Proof of Lemma A5. We prove this lemma using a standard peeling argument. First,
define the following

G :=

{
∃B ∈ D(δ, β) such that

∣∣ 1
Nι

∑
i∈Ωι

〈X i,B〉 − ‖B‖2
Π
∣∣ ≥ 1

2
‖B‖2

Π + 8δE[‖RΣ‖∞]

}

We partition this set to simpler events with l ∈ N+:

Gl :=
{
∃B ∈ D(δ, β) ∩C′(t) with t ∈ [αl−1β, αl β]

such that
∣∣ 1

Nι
∑

i∈Ωι

〈X i,B〉 − ‖B‖2
Π
∣∣ ≥ 1

2
‖B‖2

Π + 8δE[‖RΣ‖∞]

} (A61)

Note that according to Lemma A7, we have with t ∈ [αl−1β, αl β):

P[Gl ] ≤ P

 sup
B∈C′(t)

∣∣ 1
Nι

∑
i∈Ωι

〈X i,B〉 − ‖B‖2
Π
∣∣ ≥ 1

2α
αl β + 8δE[‖RΣ‖∞]

 ≤ exp(−n(αl β)2

32α2 )

Thus, we have

P[G] ≤ P
[ ∞⋃

l=1

Gl

]
≤

∞

∑
l=1

P[Gl ] ≤
∞

∑
l=1

exp(−Nι(αl β)2

32α2 )

= exp(−Nιβ
2

32
) +

∞

∑
l=2

exp(−Nιβ
2

32
α2(l−1))

(i)
≤ exp(−Nιβ

2

32
) +

∞

∑
l=2

exp(−Nιβ
2

32
· 2(l − 1) log α)

≤ exp(−Nιβ
2

32
) +

exp(−Nι β
2

16 log α)

1− exp(−Nι β2

16 log α)

(A62)

where (i) is due to x ≥ log x for positive x. By setting α = e and recalling the value of

β =
√

128 log d̃
Nι

, the lemma is proved.

Lemma A6. For any (A,B) ∈ C(r, κ, β) ∩Rd1×d2×d3 ×B(δ1, δ2), it holds with probability at
least 1− 2/d̃ that

1
Nι

∑
i∈Ωι

〈X i,A+B〉2 ≥ 1
2
‖A+B‖2

Π − τ(r, κ, δ1, δ2) (A63)

where

τ(r, κ, δ1, δ2) = 4(16α + 1)rd3|Θ⊥s |E[‖RΣ‖sp]
2 + 8κE[‖RΣ‖sp] + 8δ2E[‖RΣ‖∞] + 4δ2

1 (A64)

Proof of Lemma A6. The proof is very similar to that of Lemma A5, and we simply
omit it.

Lemma A7. Define the set

C′(t) := {T ∈ Rd1×d2×d3
∣∣ ‖T ‖2

Π ≤ t, ‖T ‖∞ ≤ 1} (A65)

and

Zt := sup
T ∈C′(t)

∣∣∣∣∣ 1
Nι

∑
i∈Ωι

〈X i,T 〉2 − ‖T ‖2
Π

∣∣∣∣∣. (A66)
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Then, it holds that

P[Zt ≥ E[Zt] +
t

4α
] ≤ exp(− Nιt2

128α2 ), and E[Zt] ≤ 8E
[

sup
T ∈C′(t)

|〈RΣ,T 〉|
]

(A67)

Proof of Lemma A7. First, we study the tail behavior of Zt by directly using the Massart’s
inequality in Theorem 14.2 of [64]. According to the Massart’s inequality, it holds for any
s > 0

P[Zt ≥ E[Zt] + s] ≤ exp(−Nιs2

8
) (A68)

By letting s = t/(4α), the first inequality in Equation (A67) is proved.
Then, we will upper bound the expectation of Zt. By standard symmetrization argu-

ment [65], we have

E[Zt] = E

 sup
T ∈C′(t)

∣∣∣∣∣ 1
Nι

∑
i∈Ωι

〈X i,T 〉2 −E〈X ,T 〉2
∣∣∣∣∣


= 2E

 sup
T ∈C′(t)

∣∣∣∣∣ 1
Nι

∑
i∈Ωι

εi〈X i,T 〉2
∣∣∣∣∣
 (A69)

where εi’s are i.i.d. Randemacher variables. Further, according to the contraction princi-
ple [66], it holds that

E[Zt] ≤ 8E

 sup
T ∈C′(t)

∣∣∣∣∣ 1
Nι

∑
i∈Ωι

εi〈X i,T 〉
∣∣∣∣∣
 = 8E

[
sup
T ∈C′(t)

|〈RΣ,T 〉|
]

(A70)

In the following, we consider the two cases:
Case 1. Consider T ∈ D(δ, β) ∩C′(t), we have

E[Zt] ≤ 8E
[

sup
T
|〈RΣ,T 〉|

]
≤ 8E

[
‖RΣ‖∞‖T ‖1

]
≤ 8δE[‖RΣ‖∞]. (A71)

By letting s = t/(2α) in Equation (A68), we obtain

P
[

Zt ≥ 8δE[‖RΣ‖∞] +
t

2α

]
≤ exp(− Nιt2

32α2 ) (A72)

when T ∈ D(δ, β) ∩C′(t).
Case 2. Consider T = A+B, where (A,B) ∈ C(r, κ, β), B ∈ B(δ1, δ2), and ‖T ‖2

Π ≤ t.
The goal in this case is to upper bound

E[Zt] ≤ 8E
[

sup
A,B
|〈RΣ,A+B〉|

]
(i)
≤ 8E

[
sup
A
|〈RΣ,A〉|

]
+ 8E

[
sup
B
|〈RΣ,B〉|

]
(ii)
≤ 8E

[
sup
A
‖RΣ‖sp‖A‖?

]
+ 8E

[
sup
B
‖RΣ‖∞‖B‖1

]
(iii)
≤ 8E

[
sup
A
‖RΣ‖sp‖A‖?

]
+ 8δ2E[‖RΣ‖∞]

(A73)

where (i) holds as a property of the sup operation; (ii) holds due to the definition of dual
norm; (iii) stems from the condition B ∈ B(δ1, δ2).
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It remains to upper bound ‖A‖? in Equation (A72). First, according to the definition
of C(r, κ, β), we have

‖A‖? ≤
√

rd3‖AΘ⊥s
‖F + κ (A74)

We also have

‖A‖Π
(i)
≤ ‖A+B‖Π + ‖B‖Π

(ii)
≤
√

t + δ1. (A75)

where (i) holds due to the triangular inequality, and (ii) is a result of conditions ‖T ‖2
Π ≤ t

and B ∈ B(δ1, δ2). Since Assumption 1.II indicates ‖A‖2
Π = |Θ⊥s |−1‖A

Θ⊥s
‖2

F, combing
Equations (A74) and (A75) further yields an upper bound on ‖A‖? as follows:

‖A‖? ≤
√

rd3|Θ⊥s |(
√

t + δ1) + κ

which further leads to

8E
[

sup
A
‖RΣ‖sp‖A‖?

]
≤ 8E[‖RΣ‖sp](

√
rd3|Θ⊥s |(

√
t + δ1) + κ) (A76)

The application of 2
√

ab ≤ a/c + bc is also used to further relax the above inequality:

8E[‖RΣ‖sp](

√
rd3|Θ⊥s |

√
t ≤ t

4α
+ 64αrd3|Θ⊥s |E[‖RΣ‖sp]

2

8E[‖RΣ‖sp](

√
rd3|Θ⊥s |δ1 ≤ 4δ2

1 + 4rd3|Θ⊥s |E[‖RΣ‖sp]
2

(A77)

Thus, putting things in Equations (A72), (A76) and (A77) together, we obtain

E[Zt] ≤
t

4α
+ 4(16α + 1)rd3|Θ⊥s |E[‖RΣ‖sp]

2 + 8κE[‖RΣ‖sp] + 8δ2E[‖RΣ‖∞] + 4δ2
1︸ ︷︷ ︸

=:τ

which further gives

P
[

Zt ≥
t

2α
+ τ

]
≤ exp(−Nιt2

128
) (A78)

for T = A+B, where (A,B) ∈ C(r, κ, β), B ∈ B(δ1, δ2), and ‖T ‖2
Π ≤ t.

Lemma A8. Under Assumption 1, there exists an absolute constant C > 0 such that the following
bounds on the tensor spectral norm of stochastic tensors E andRΣ hold:

(I) For tensor E , we have

P

‖E‖sp ≤ Cσ max


√

t + log d̃
$N(d1 ∧ d2)

+
log(d1 ∧ d2)(t + log d̃)

N


 ≤ 1− e−t (A79)

(II) For tensorRΣ, we have

E[‖RΣ‖∞] ≤

√ log d̃
Nι(d1 ∧ d2)

+
log2 d̃

Nι

 (A80)

Proof of Lemma A8. Equation (A79) can be seen as a special case of Lemma 8 in [18] when
k = 1. Equation (A80) can be proved very similarly to Equation (A79) followed by tricks
used in proof of Lemma 6 in [51]. We omit the details due to the high similarity.

Lemma A9. Under Assumption 1, there exists an absolute constant C > 0 such that the following
bounds on the l∞-norm of stochastic tensors E ,W , andRΣ hold:
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(I) For tensor E , we have

P

‖E‖∞ ≤ Cσ

√ t + log d̃
$Nd1d2d3

+
t + log d

N

 ≤ 1− e−t (A81)

E[‖E‖∞] ≤ Cσ

√ log d̃
$Nd1d2d3

+
log d

N

 (A82)

(II) For tensorW , we have

P

‖W‖∞ ≤ C

 1
$d1d2d3

+

√
t + log d̃

$Nd1d2d3
+

t + log d̃
N

 ≤ 1− e−t (A83)

E[‖W‖∞] ≤ C

 1
$d1d2d3

+

√
log d̃

$Nd1d2d3
+

log d̃
N

 (A84)

(III) For tensorRΣ, we have

P

‖RΣ‖∞ ≤ C

√ t + log d̃
Nιd1d2d3

+
t + log d

Nι

 ≤ 1− e−t (A85)

E[‖RΣ‖∞] ≤ Cσ

√ log d̃
Nιd1d2d3

+
log d̃

Nι

 (A86)

Proof of Lemma A9. Since this lemma can be straightforwardly proved in the same way
as Lemma 10 in [36], we omit the proof.

Appendix A.3. Proof of Theorem 4

The proof of Theorem 4 follows those of Theorems 2 and 3 in [36] for robust matrix
completion. Given L∗ and S∗, let P(L∗ ,S∗)[·] be the probability with respect to the ran-
dom design tensors {X i} and random noises {ξi} according to the observation model in
Equation (6). Without loss of generality, we assume d1 ≥ d2.

Proof of Theorem 4. For element-wisely sparse S∗, we first construct a set L ⊂ L(r, a)
which satisfies the following conditions:

(i) For any tensor T in L, we have rtb(T ) ≤ r;
(ii) For any two tensors T 1,T 2 in L, we have rtb(T 1 − T 2) ≤ r;
(iii) For any tensor T = (T ijk) in L, any of its entries T ijk are in {0, α}, where α ≤ a,

Motivated by the proof of Theorem 2 in [36], L is constructed as follows

L :=
{
L ∈ Rd1×d2×d3 : ∀k ∈ [d3], L(k) = (Mk| · · · |Mk|0) ∈ Rd1×d2 , where Mk ∈ {0, α}d1×r

}
, (A87)

where 0 ∈ Rd1×(d2−rb d2
2r c) is the zero matrix, and α = γ(a ∧ σ)

√
rd1d3/Nι with γ ≤ 1 being

a small enough constant such that α ≤ a.
Next, according to the Varshamov-Gilbert lemma (see Lemma 2.9 in [67]), there exists

a set L0 ⊂ L containing the zero tensor 0 ∈ Rd1×d2×d3 , such that

(i) its cardinality |L0| ≥ 2rd1d3/8 + 1, and
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(ii) for any two distinct tensors T 1 and T 2 in L0,

‖T 1 − T 2‖2
F ≥

d1d3r
8
· γ2(a ∧ σ)2 rd1d3

Nι
· b d2

2r
c ≥ γ2d1d2d3

16
· (σ ∧ a)2rd1d3

Nι
. (A88)

Let P(L,0) denote the probabilistic distribution of random variables {yi} observed
when the underlying tensor is (L, 0) in the observation model (6). Note that, the distri-

bution of the random noise ξi
i.i.d.∼ N (0, σ2). Thus, for any L ∈ L0, the KL divergence

K (P0,0,P(L,0)) between P(0,0) and P(L,0) satisfies

K (P(0,0),P(L,0)) =
|Ωι|
2σ2 ‖L‖

2
Π ≤

|Ωι|
2σ2 γ2(a ∧ σ)2 rd1d3

Nι
≤ γ2rd1d3

2
. (A89)

Hence, if we choose γ ∈ (0,
√

b log 2/2], then it holds that

1
|T0| − 1 ∑

L∈L0

K (P0,PL) ≤ b log(|L0| − 1), (A90)

for any b ∈ (0, 1/8).
According to Theorem 2.5 in [67], using Equations (A88) and (A90), there exists a

constant c > 0, such that

inf
(L̂,Ŝ)

sup
L∗∈L{r,a}

P(L∗ ,0)

[‖L̂−L∗‖2
F

d1d2d3
> c

(σ ∧ a)2rd1d3

Nι

]
≥ β(b, r, d1, d2, d3), (A91)

where

β(b, r, d1, d2, d3) =
1

1 + 2−rd1d3/16

(
1− 2b− 4

√
b

rd1d3 log 2

)
> 0. (A92)

Note that b can be chosen to be arbitrarily small, then low-rank part of Theorem 4 is proved.
Then, we consider the sparse part of Theorem 4. Given a set Ωe ⊂ [d1] × [d2 −

bd2/2c]× [d3] with cardinality s = |Ωe| ≤ (d1d2d3)/2, we also define S as follows

S :=

{
S =

[
0|M

]
,whereMijk ∈

{
{0, α′},if(i, j, k) ∈ Ωe

{0}, if(i, j, k) /∈ Ωe

}
.

where 0 ∈ Rd1×b
d2
2 c×d3 is the zero tensor, and α′ = γ′(σ ∧ a). Then, according to the

Varshamov-Gilbert lemma (see Lemma 2.9 in [67]), there exists a set S0 ⊂ S containing the
zero tensor 0 ∈ Rd1×d2×d3 , such that: (i) its cardinality |S0| ≥ 2s/8 + 1, and (ii) for any two
distinct tensors S1 and S2 in S0,

‖S1 − S2‖2
F ≥

sγ′2(σ ∧ a)2

8
. (A93)

Let P(0,S) denote the probabilistic distribution of random variables Y observed when
the underlying tensor is (0,S) in the observation model (6). Thus, for any S ∈ S0, the KL
divergence K (P(0,0),P(0,S)) between P(0,0) and P(0,S) satisfies

K (P(0,0),P(0,S)) = Ns
S2

ijk

2σ2 ≤
sγ′2

2
. (A94)

Hence, if we choose γ′ ∈ (0,
√

b′ log 2/2], then it holds that

1
|S0| − 1 ∑

S∈S0

K (P(0,0),P(0,S)) ≤ b′ log(|S0| − 1), (A95)
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for any b′ ∈ (0, 1/8). According to Theorem 2.5 in [67], using Equations (A93) and (A95),
there exists a constant c′ > 0, such that

inf
(L̂,Ŝ)

sup
S∗∈S

P(0,S∗)

[‖Ŝ − S∗‖2
F

d1d2d3
> c′

(σ ∧ a)2s
d1d2d3

]
≥ β′(b′, s), (A96)

where

β′(b′, s) =
1

1 + 2−s/8

(
1− 2b′ − 4

√
b′

s log 2

)
> 0. (A97)

Note that b′ can be chosen to be arbitrarily small, then sparse part of Theorem 4 is proved.
Thus, according to Equations (A91) and (A96), by setting

c′1 =
c
2

, c′′1 =
c′

2
, and β1 = min

{
β(b, r, d1, d2, d3), β′(b′, s)

}
, (A98)

the following relationship holds

inf
(L̂,Ŝ)

sup
(L∗ ,S∗)
∈A(r,s,a)

P(L∗ ,S∗)

[‖∆ι‖2
F + ‖∆

s‖2
F

d1d2d3
≥ φe

]
≥ β1, (A99)

where φ := (σ ∧ a)2(c′1rd1d3/Nι + c′′1 s/(d1d2d3)
)
. Then according to Markov inequality,

we obtain
M (A(r, s, a)) ≥ β1φ. (A100)
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