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Abstract: The functional and structural characteristics of civil engineering works, in particular
bridges, influence the performance of transport infrastructure. Remote sensing technology and other
advanced technologies could help bridge managers review structural conditions and deteriorations
through bridge inspection. This paper proposes an artificial intelligence-based methodology to solve
the condition assessment of regional bridges and optimize their maintenance schemes. It includes
data integration, condition assessment, and maintenance optimization. Data from bridge inspection
reports is the main source of this data-driven approach, which could provide a substantial amount
og condition-related information to reveal the time-variant bridge condition deterioration and effect
of maintenance behaviors. The regional bridge condition deterioration model is established by
neural networks, and the impact of the maintenance scheme on the future condition of bridges is
quantified. Given the need to manage limited resources and ensure safety and functionality, adequate
maintenance schemes for regional bridges are optimized with genetic algorithms. The proposed data-
driven methodology is applied to real regional highway bridges. The regional inspection information
is obtained with the help of emerging technologies. The established structural deterioration models
achieve up to 85% prediction accuracy. The obtained optimal maintenance schemes could be chosen
according to actual structural conditions, maintenance requirements, and total budget. Data-driven
decision support can substantially aid in smart and efficient maintenance planning of road bridges.

Keywords: artificial intelligence; structural assessment; machine learning; strategy optimization;
bridge inspection; regional bridges

1. Introduction

There is an increasing concern that highway bridges have been suffering from struc-
tural deterioration and deficiency due to environmental erosion, overloading, initial defects,
natural and human-made hazards, and other factors [1–3]. A bridge deteriorates under the
environmental interference and external loads, and different maintenance schemes will
keep the bridge in different conditions [4–6]. The complex environment and load factors
make it quite hard for stakeholders to assess the structural conditions and set appropriate
maintenance schemes, even for a single bridge.

Structural conditions could be determined with the help of structural health monitor-
ing and inspections [7–9]. Traditional inspection approaches are labor-consuming. Recent
emerging technologies have significantly increased the accuracy and efficiency of inspection
works [10,11]. Rashidi et at. [12] reviewed bridge monitoring and inspection technology
with terrestrial laser scanning techniques, identified its current research gaps and future
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directions. Jung et al. [13] addressed a novel method for fully autonomous bridge inspec-
tion using an unmanned aerial vehicle (UAV). Kim [14] modeled the bridges with point
clouds techniques to identify the location of the damage in three-dimensional space and
classify the bridge components. Kumar et al. [15] identified spatial and temporal variations
of concrete bridges with ground-penetrating radar. Ortiz-Sanz et al. [16] used thermal
cameras on UAV to inspect the thermal anomalies with infrared thermography techniques.
Zollini et al. [17] detected the width and length of cracks and extension of weathered areas
using UAV Photogrammetry. The satellite-based remote sensing techniques are also used
for assessing the structural condition of bridges [18–22]. Gagliardi et al. [20] achieved
the high precision of displacement measurement of bridges using satellite remote sensing
Persistent Scatterer Interferometry (PSI). Tosti et al. [21] integrated the Ground Penetrating
Radar (GPR) and Interferometric Synthetic Aperture Radar (InSAR) for monitoring trans-
port assets at network level. Xiong et al. [22] derived the long-term displacements of the
Hong Kong-Zhuhai-Macao Bridge (HZMB) by the PSI and InSAR technology.

Integrating datasets collected with different advanced bridge inspection technologies
could take the advantage of the various types of data and fill the gaps. The data fusion
technique supports the comprehensive assessment of bridges with the abundant data.
Ciampoli et al. [23] reviewed recent studies on transportation infrastructure safety assess-
ment using data fusion techniques for monitoring and detection. Solla et al. [24] proposed
a data combination method of GPR and infrared thermography (IRT) data to detect the cor-
rosion of rebar and assess the resistance of reinforced concrete. Alani et al. [25] integrated
the GPR and InSAR technologies for monitoring a masonry arch bridge. The integration of
multi-source inspection data has the potential to further interpret the measured data and
extract the structural features.

Short- and medium-span beam bridges are one of the most common types of bridges
throughout the world [26–28]. There are three main types of concrete beam bridges, that
is, box-shaped beam bridges, hollow slab bridges, and T-shaped beam bridges. Each type
of bridge has common characteristics, such as regular configurations, definite force trans-
mission mechanisms, and comparable maintenance strategies [29,30]. In addition, damage
location and crack directions are also typical for the same type of bridges. These similarities
also contain regional deterioration characteristics and maintenance action effects.

With the help of emerging technologies and manual inspections, inspections could col-
lect detailed and accurate information of measured bridges yearly. Years of regional bridge
inspection data imply the deterioration features of the structure. The National Bridge
Inventory (NBI) is a typical database for American bridges [31]. It stores Departments of
Transportation data from every state since 1968, as collected by the Federal Highway Ad-
ministration [32]. Bridge general information, structural ratings, and related maintenance
actions are also recorded in this database. This traditional passive management approach
only performs retrofit measurement when severe damage is detected. Nowadays, active
management approaches using historical measured data are gaining more and more atten-
tion [33]. With the aid of data mining techniques, it is possible to analyze the correlation of
measured data and extract the main deterioration features, thereby providing a reliable
basis for the regional management plan.

Artificial intelligence techniques [34,35] have been widely applied to various structural
safety fields, such as condition prediction and damage detection. The neural network (NN)
is suitable for dealing with the big data issues, and it could directly extract the multi-
dimension features and non-linear relationships among input data. Huang [36] accurately
predicted the deterioration of bridge decks with NN models. The statistical analysis
was also used to identify significant factors that influence the deteriorations. Liu and
Zhang [33] pick more than twenty features from the NBI database and train NN models
for three primary components including the deck, superstructure, and substructure. Li and
Burgueno [37] analyzed quite a few NN models to predict the conditions of abutments,
and the final accuracy achieved was 86%. Therefore, the NN model can simulate the
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deterioration of structural conditions by extracting important features from the bridge
inspection information.

Inspection information is a main indicator for structural maintenance decision-making.
The way in which the inspected structural characteristics evolve is crucial for maintenance
costs and safety conditions [38,39]. Regional bridges in the transportation network focus on
not only individual-level but also network-level management [26,40]. The regional main-
tenance strategy should be optimized with the consideration of the overall maintenance
cost and structural safety. Gidaris et al. [41] reviewed the maintenance models of regional
bridges affected by various disasters, and demonstrated the utilization of these models in
the condition assessment of infrastructure. Mackie et al. [42] addressed a method that takes
into account the structural condition and maintenance measures of bridge components,
as well as the repair cost. Liu and Frangopol [43] proposed a network-level optimization
method with the help of the safety of each individual bridge. Soliman et al. [44] suggested
a method that could integrate the inspection, monitoring, and maintenance information to
assess the regional safety.

This study proposes a novel data-driven methodology to assess the condition of
regional bridges and schedule the maintenance schemes. The bridge inspection informa-
tion obtained by remote technologies and visual inspections is utilized to ascertain the
general information and current condition of bridges. This study provides the following
contributions when comparing with previous works: (1) Data extraction and integration
techniques are established for the regional bridge inspection information, and key parame-
ters of regional deterioration features are identified. (2) Based on the regional measured
data, the data-driven deterioration models of regional bridges at component level and
system level are established. (3) The proposed data processing and condition assessment
methods are verified with the help of a regional database of some highway bridges in
Hebei, China, and the deterioration models and maintenance schemes of bridges in the
region are also determined.

The remainder of this study is organized as follows. Section 2 summarizes the emerg-
ing technologies that are used in the bridge inspection and the generated inspection reports.
Section 3 introduces the proposed data-driven methodology for condition assessment and
maintenance optimization. Sections 4–6 describe the data integration, condition assessment,
and maintenance optimization part in the methodology, respectively. Section 7 shows the
application of the proposed method to the real regional highway bridges. Finally, Section 8
offers conclusions regarding the proposed methodology.

2. Bridge Inspections and Condition Ratings

The main content of highway bridge inspection includes appearance inspection, inter-
nal inspection, mechanical performance evaluation and geometric parameter inspection.
Advanced inspection technology, such as UAV [17], radar scanning [15], infrared thermal
imaging [16], spectral measurement, doppler remote tester, and laser scanning [45], has
significantly increased the accuracy and efficiency of inspection works, shown in Figure 1.
Based on the inspection results and corresponding codes, the structural condition could be
determined as different condition levels.

Based on the Chinese code, condition ratings of small- and medium-span bridges are
derived from the annual bridge inspections, and they are the basis for bridge condition
assessment and management decision making. In China, the ratings include a structural
evaluation of system level, unit level, and component level on a 1–5 scale, shown in Figure 2.
The structural components are firstly rated based on the inspection results and associated
standards. The rating of the unit is weighted by the ratings of its components, and the
rating of the bridge system is weighted by the ratings of the units. As the types of bridge
components in the area are diversified and the systems and units are similar, this paper
aims to reveal the deterioration features and plan the maintenance works based on the
ratings of bridge systems and units.
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Figure 1. Condition ratings with the advanced bridge inspection technologies.

Figure 2. Relationship among component ratings, unit ratings, and system ratings.

The Chinese standard, Highway Bridge Structural Condition Evaluation Standard
(JTG/T H21-2011), classifies the current structural condition of bridge components, units,
and systems into five levels (Level 1 to Level 5). Level 1 represents the inspected struc-
tures with the best conditions, and Level 5 represents the inspected structures with the
worst conditions.

3. Condition Assessment and Maintenance Optimization Methodology

Due to loads, construction defects, material properties, environmental factors, etc.,
existing concrete bridges will inevitably deteriorate. Within a certain transportation net-
work, bridges experience a similar environment (traffic loads, temperature, humidity,
etc.), and their design and construction practices are also relevant. Thus, there must
be some extents of performance correlation among individual bridges within the same
transportation network [46]. This paper proposes an overall condition assessment and
optimization methodology based on these regional performance correlations. This pro-
posed methodology consists of three steps (data integration, condition assessment, and
maintenance optimization).

Data integration is a step that collects field data and translates it into a machine-
readable dataset. Bridge databases are integrated from several sources. Bridge configura-
tion characteristics are extracted from bridge inspection reports. The time-variant bridge
condition curves are determined based on several years of regional bridge inspection
reports. Bridge maintenance behaviors are also included to reflect the bridge condition
improvement. Traffic data are collected from the video-based survey as well as the local
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authority’s travel demand model to reflect the bridge service load variation. To import
more potential correlations, data from other sources, such as the environment and site
surroundings, should be included as well. Data preprocessing techniques, such as cleaning
and regulation, are then implemented to purify the established database and highlight the
correlated attributes.

As for condition assessment, the deterioration models for regional bridges are ex-
tracted from the purified database. The established deterioration models provide a solution
to predict a bridge’s future performance. Although the data quality is improved after
preprocessing, subjectivity and data imbalance still exist. This study introduces a modified
cost-sensitive indicator to overcome these potential problems. As the selected features and
structural conditions have complex correlations, this paper employs the NN to generate re-
gional deterioration models. The database is split randomly into a training set, a validation
set, and a test set. The NN is trained with the training set to minimize the prediction error.
The validation test is then performed to find the optimal weights while the test set is used
to estimate efficiency of the network. In addition, the established deterioration models
enable bridge and component condition prediction under different maintenance plans.

Finally, a multi-objective optimization is conducted in the maintenance optimization
step based on the results predicted from the previous steps. The genetic algorithm (GA) is
employed to achieve a life-cycle-cost–benefit balance between the total maintenance cost
and the whole bridge network performance. The calculated Pareto Front consists of all op-
timal regional maintenance schemes that satisfy the economic and performance constraints,
allowing bridge managers to select the most appropriate one for implementation.

4. Data Integration Techniques
4.1. Data in Inspection Reports

Inspection reports of bridges in China mainly record the current condition ratings
of structures and components at each inspection. Some structural general information is
also depicted in the inspection reports. A translated inspection report sample is shown
in Figure 3. The bridge general information contains route code, route name, kilometer
point, bridge code, bridge name, width, structure length, structure type, climate, owner,
year built, last maintenance, average daily truck traffic (ADTT), average daily traffic (ADT),
and inspection date. Some of them are condition-related parameters, and they are of
great importance in understanding the deterioration process of the regional bridges. For
example, ADT represents the daily traffic volume of the inspection bridge, which could
reflect the effect of the vehicle loadings. In addition, as too many heavy trucks often have a
greater impact on the condition of the bridge, ADTT is another important parameter that
reflects the loading effects. The detailed selected parameters used to train the regional
deterioration models are illustrated in the next section.

Inspection reports contain considerable structural condition-related information. The
variation of structural condition ratings is related with the structure, traffic loads, envi-
ronments, etc. Some potential correlation among the structural condition and features
might be hidden in the regional condition dataset. The condition ratings denoted in the
inspection reports include three levels: component-level, unit-level, and system-level. This
study mainly focuses on the system-level and unit-level assessment and maintenance. The
time-variant deterioration features of structural conditions might be hidden in several
years of regional bridge inspection reports. In addition, bridge maintenance behaviors are
also included in the inspection reports to record the improvement of structural conditions.
These features are also important to reflect the maintenance effects of the target bridge.
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Figure 3. General information and inspection information extracted from inspection reports.

4.2. Data Integration Technique

Before training deterioration models, data in inspection reports should be extracted
and translated into the machine-readable format. Data recorded in the inspection report
can be classified as the structured data and unstructured data. Some oldest reports are
stored as the paper format, which account for a small proportion of the total reports.
They could be scanned into the electronic format and extracting data with the help of text
extraction technology. Most of data are structured data; they are stored and summarized in
the spreadsheets.

This study proposes a procedure to assemble these data into a uniform and machine-
readable format. The regional database can be established with the procedure illustrated
in Figure 4. The preserved human error and data missing impact the analysis accuracy
and efficiency. The continuity and accuracy of data could be influenced by improper paper
storage and broken electronic documents. Even for the preserved documents, it is difficult
to unify these formats due to poor management and changing standards. Moreover, several
data points are obtained through manual behaviors, which can lead to subjectivity, human
error, etc. It is necessary to conduct data cleaning techniques to improve data quality. A
common solution is using the redundant data of the same bridge from different sources to
check the data correctness. Then, based on the data extraction and cleaning techniques, the
regional bridge database can be established.

The measured multi-source dataset includes a variety of data types and formats. There
are twenty kinds of parameters that could be extracted from inspection reports, and these
could be represented as a series of attributes. Different attributes may have different data
formats, such as numerical, ordinal, nominal, etc. Table 1 categorizes all selected attributes
into these formats. The numerical type can be compared quantitatively. “Structure length”,
for example, is a numerical attribute, which records the length of a bridge. In contrast,
the ordinal data and nominal data are qualitative information. The comparison among
qualitative values is unclear. For example, Bridge rating is ordinal, where Level 1 is better
than Level 2. Meanwhile, “Structural type” is nominal whose value can be designated as
“Slab,” “T-shape,” “Box,”, etc.
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Figure 4. Data extraction and integration flow chart.

Table 1. Typical attributes of a bridge network.

Groups Attributes Formats

1 Kilometerpoint, Age, Width, Structure length, Year built,
Last maintenance, ADT, ADTT, and Inspection date Numerical

2 Route code, Route name, Bridge code, Bridge name,
Structural type, Climate, and Owner Nominal

3 Bridge rating, Superstructure rating, Substructure rating,
Deck rating, and Maintenance action Ordinal

5. Condition Assessment Techniques
5.1. Feature Selection

The successful assessment of structural conditions depends on the appropriate selec-
tion of the main features and the careful description of its effects. As for regional bridge
condition assessment, the features should not only have a potential contribution to the struc-
tural deterioration, but also reflect regional features. Thus, the features should be selected
based on the comprehensive consideration of the bridge structure, deterioration condition,
maintenance history, etc. Maintenance actions must be reflected in the deterioration model
due to its direct effects on structural deterioration.

The data values imported from the database should be converted to computable
formats. Different formats have their own conversion approaches. As for nominal values,
the one-hot coding technique is employed, which means a nominal feature is encoded with
a binary vector with only the specific category assigned by 1 and others assigned by 0.
In order to reduce data redundancy and improve data integrity, the numeric and ordinal
formats are normalized into the range of [0,1] with the min–max normalization method in
the Equation (1):

a′ij =
maxj − aij

maxj −minj
; i = 1, 2, . . . , m; j = 1, 2, . . . , n (1)

where aij denotes the original value of the jth feature of the ith sample; a′ij denotes the
corresponding converted value; and maxj and minj denote the highest and lowest data
value of the specified feature, respectively. Table 2 summarizes the feature set and their
corresponding converted results.

Table 2. Selected features and their data value conversion.

No. Feature Original Value Converted Value

1 Region 1, 2, 3 (1,0,0), (0,1,0), (0,0,1)
2 ADT min = 4912, max = 23,731 min = 0, max = 1
3 ADTT min = 625, max = 13,798 min = 0, max = 1
4 Age * min = 1, max = 21 min = 0, max = 1
5 Length min = 5, max = 2000 min = 0, max = 1

6 Structural Type Slab, T-shape,
Box, Other

(1,0,0,0), (0,1,0,0),
(0,0,1,0), (0,0,0,1)

7 Max Span min = 5, max = 146 min = 0, max = 1
8 Bridge Rating 1, 2, 3, 4, 5 0.2, 0.4, 0.6, 0.8, 1
9 Superstructure Rating 1, 2, 3, 4, 5 0.2, 0.4, 0.6, 0.8, 1

10 Substructure Rating 1, 2, 3, 4, 5 0.2, 0.4, 0.6, 0.8, 1
11 Deck Rating 1, 2, 3, 4, 5 0.2, 0.4, 0.6, 0.8, 1
12 Superstructure

Maintenance 0, 1 0, 1

13 Substructure
Maintenance 0, 1 0, 1

14 Deck Maintenance 0, 1 0, 1

* Age = inspection year—built year.
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5.2. Deterioration Model Establishment

For aging structures, the deterioration model usually plays a significant role in the
estimation of the structural condition. Deterioration models should correctly describe
the deteriorating effect and its variation over time. To describe the complex relationship
among the regional features and structural conditions, an NN is employed to establish the
deterioration model of regional bridges. NN could implicitly extract complex nonlinear
relationships between dependent and independent variables, and detect all possible inter-
actions between predictor variables. The overview of established NN for regional bridge
condition assessment is shown in Figure 5.

Figure 5. The topology of the neural network based on the specified features.

Neural networks are composed of several neurons and links. These neurons are
connected to transfer the information. Neurons receive inputs from up-layer neurons, and
each neuron performs a different active function with certain weights and thresholds on
the received data. Neural networks can include one input layer, one output layer, and
one or more hidden layers. The input layer transforms the basic database into the neural
network. The hidden layers extract the features and correlations from the input data and
provide the results to the output layers.

The proper weights and thresholds of each neuron are the key to make the model
reliable. In machine learning, the back-propagation algorithm is widely employed in NN
training. It can efficiently compute the loss between the trained result and ground truth
and propagate the loss to adjust the neuron weights. The gradient method makes it efficient
to update model parameters and improve its performance each time. The data from the
regional bridge database are split randomly in this study into a training set, a test set, and
a validation set. The NN is trained with the training set to minimize the prediction and
adjust the weights between connected neurons. The validation set is employed to find the
optimal weights, and then the test set is used to estimate the efficiency of the network.

However, the structural condition distribution of the sample bridges suffers from a
great imbalance, which means the standard mean square error (MSE) defined by Equation (2)
may lead to significant deviation. For example, the proportion of bridge rating with
level 1~3 accounts for over 90%, while the bridges in the poor condition constitute less
than one-tenth. This imbalance will cause the NN to overfit the high-rating samples and
underfit the low-rating samples. Therefore, this study proposes a modified MSE with a
cost-sensitive formation to alleviate this imbalance impact. The modified MSE is shown in
Equations (3) and (4).

MSEstandard =
1

4m ∑m
i=1 ∆

→
y

2
i (2)

∆
→
y = f

(→
x i

)
−→y i = (∆yi,1, ∆yi,2, ∆yi,3, ∆yi,4) (3)
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MSEmodi f ied =
1

4m

m

∑
i=1

4

∑
j=1

costj∆
→
y

2
i,j (4)

where f ( ) denotes the neural network; m denotes the number of samples; and
→
x i and

→
y i

denote the input and output, respectively. As there are four outputs, ∆yi,j(j = 1, 2, 3, 4)
denotes these prediction errors with the jth output and the ith sample; and the costj denotes
the cost-sensitive values of the jth output.

For model updates, it is not practical to monitor every bridge in the region, and the
real-time model update is also impossible. Retraining and updating the model with an
updated regional bridge database is an effective way to update the model. Generally,
retraining the model does not need to collect the new data for all regional bridges, and the
new inspection data of parts of regional bridges could accomplish the model update.

6. Maintenance Scheme Optimization Techniques
6.1. Objective Functions

In real cases, it is impossible to quantify all the preferences of decision makers as
objective functions, which may result in excessive computational effort. There are two
objective functions considered in this study. Function (1) is a cost indicator representing the
total cost for bridge management. Function (2) is a safety indicator representing the total
condition ratings of regional bridges. As a matter of fact, cost estimation is a complicated
problem that can be figured in a variety of ways. In this study, the exact value is not
important, so the costs are specified by the authors. As the deterioration features and
maintenance works are considered in the unit level and system level, the cost estimation
is roughly characterized by the number of maintenance behaviors in the bridge network
during a given period. The units for the maintenance costs are set to 1, as the relative
values are more important than the absolute ones. In the cost function, the maintenance
cost of each bridge is weighted by the length of the bridge. The scale of the bridge is also
one of the factors that affect the maintenance cost. This study briefly uses the length of the
bridge to represent the scale of the bridge. The cost indicator (Indc) and safety indicator
(Inds) could be expressed in the Equations (5) and (6), respectively.

Indc =
n

∑
i=1

(actioni × weighti) (5)

Inds =
n

∑
i=1

conditioni (6)

where, actioni denotes the planned action of the ith bridge in the inspection region, 0 means
no action is taken, 1 means the bridge should be implement maintenance actions; n denotes
the total number of bridges; and conditioni denotes the condition rating of the ith bridge in
the inspection region, after the maintenance behavior is implemented (the condition value
of Level 1, 2, 3, 4, and 5 represented as 0, 1, 2, 3, and 4, respectively).

6.2. Genetic Algorithms for Optimization Problems

GA is a powerful tool for solving the optimization problems, and it has been widely
used in civil engineering fields to find a balance under considerable constraints. In any
group of bridges, it is unrealistic to give every single bridge the most effective cost–benefit
maintenance scheme. The regional balance should be made from the single-bridge view to
the regional bridges view [47,48]. This algorithm reflects the process of natural selection,
where the fittest individuals are selected for reproduction in order to produce the next
generation of offspring. In this study, the chromosome represents a feasible solution to
the specified problem. The fitness of each chromosome, representing the quality of the
solution, is evaluated by a series of objective functions. The group of chromosomes forms
a population that evolves as the algorithm iterates. Obviously, the cost indicator and
safety indicator defined in this study, corresponding to the regional management scheme,
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should be the minimum. The objective optimization problem is presented in general as the
following Equation (7).

minimize Indc(x), x ∈ X
minimize Inds(x), x ∈ X

subject to ai ≤ xi ≤ bi, i = [1, . . . , k],
(7)

where, x = [x1, . . . , xk] denotes the decision vector in the domain X ⊂ Rk; Indc(x) and
Inds(x) are defined as the objective functions to be optimized and minimized, respec-
tively; and ai and bi are the lower and upper bounds of the decision vector component
xi, respectively.

In this study, a nondominated sorting GA (NSGA-II) is used for the maintenance
schedule optimizations of regional bridges. The fitness ranking under two objectives is
computed with the nominated sorting approach. Specifically, scheme P is dominated by
scheme Q, if Q has a higher ranking than P under either objective. In other words, P is
the dominant solution and Q the non-dominant one. All the non-dominate solutions in
a population are assigned to the non-dominant set F1, while the others are assigned to
dominant sets Fi(i = 1, 2, . . . , N − 1), where i equals to one plus the number of correspond-
ing dominators of a solution. The concept of crowing distance is introduced to prevent
premature convergence.

7. Applications on Existing Transportation Networks
7.1. Database Overview

This paper uses bridge data in Hebei to establish the regional bridge database, assess
the bridge conditions, and optimize the maintenance scheme. Hebei is a coastal province
in northern China. The complex and diverse landscape leads to different climates in that
region. Regarding the regional annual rainfall and temperature, three sub-regions are
determined, shown in Figure 6. There are three main types of bridges, including: box-
shaped beam bridges, hollow slab bridges, and T-shaped beam bridges. The percentage of
each type of bridge in the area is also shown in the figure.

Figure 6. Percentage of the amount of bridges of each type in Hebei Province.

The regional bridge database is established using the proposed data extraction and
integration techniques. The data collected from the regional inspection report covers the
age of bridges ranging from 1 to 21 years. The bridge age distribution is shown in Figure 7.
The bridge ages that account for more than 5% are 5, 7, 9 to 12, 15 to 18, and 20. It is
noted that a relatively large number of bridges are distributed within each bridge age
range, which also provides the possibility to model structural deteriorations. This makes it
possible to extract both the deterioration features and the maintenance behavior effects of
bridges through this database.
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Figure 7. Age distribution of these measured data.

Figure 8 compares condition ratings of bridge main components (superstructure,
substructure, and deck) in different sub-regions. The data is extracted from the bridges
with an age of 5, which covers nearly 1000 measured bridges. According to Chinese rating
codes, there are five condition levels for inspected bridge where Level 1 denotes bridges
in the best condition. As we can see, nearly all of the inspected bridges in Hebei Province
are categorized as either Level 1 or Level 2, which means most of the bridges remain in
nearly intact or slightly damaged condition, which is likely due to continuous regular
maintenance. The number of bridges in the low-condition zone is small. They might
contain some potential risks that affect the service capacity of the transportation network
and warrant more attention. By comparing all three components, it can be seen that the
bridge deck is the most damaged structure. As these bridge components are directly
exposed to both traffic wheels and the environment, the deck is more vulnerable than other
bridge components.

Figure 8. Superstructure, substructure, and deck ratings for bridges with an age of 5 years.

Features used for deterioration models are listed in Section 4.1. A correlation matrix is
a tool to investigate the potential relationships between two variables. Figure 9 summarizes
correlation coefficient values of parts of the selected features. An absolute correlation
coefficient value close to 1 indicates that the correlation between two variables is strong. It
can be seen that the maximum absolute correlation coefficient value is 0.68 which is the
correlation between “Structural type” and “Max span”. Other pairs of variables whose
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absolute correlation coefficient value slightly exceeds 0.5 are “ADT” and “AADT”, and
“Length” and “Max span”. However, the correlation between these variable pairs is still
not strong. Moreover, most of the variable pairs listed here have low absolute correlation
values. It is worth noting that the features selected to be trained in the database are
statistical independently.

Figure 9. Pearson correlation matrix of selected attributes.

7.2. Condition Assessment Performance

The entire regional bridge database contains various structural condition-related
features (i.e., the deterioration of materials or the service periods of bridge), and these
measured data have a significant impact on extracting the structural deterioration features
and prioritizing the maintenance interventions. Thus, the entire database should be
randomly split into the training, validation, and test dataset to make them contain sufficient
structural features and improve the generalization of the training model.

In the model training step for this study, the database is randomly split into a training
set (80%), a validation set (10%), and a test set (10%). As the training dataset is not too large,
the number of layers is set as four. The NN is trained with the training set to minimize the
prediction error. The validation test is performed to find the optimal weights, and then
the test set is used to estimate the efficiency of the network. The ideal trained models are
expected to indicate the general law of bridge deterioration and effectively generalized to
other bridge networks.

The parametric studies of the optimal architecture of the proposed method are ana-
lyzed in order to obtain the optimal degradation model to assess the condition. There are
three NN candidate models selected with three different cost-sensitive values. In Model 1,
the cost-sensitive values for each category are one. It represents the common cost function
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and set as the control group. In Model 2, the cost-sensitive values for Level 1 to Level 5
are set as 0.75, 0.85, 0.91, 0.96, and 1.00, respectively. In Model 3, the cost-sensitive values
for Level 1 to Level 5 are set as 0.50, 0.67, 0.80, 0.91, and 1.00, respectively. The cost of
low-rated samples is gradually increased to make up their impacts.

ACC =
∑5

i=1 rii

∑5
i=1 ∑5

j=1 rij
(8)

where rij denotes the component of the confusion matrix at the ith row and the jth column.
An indicator ACC (shown in Equation (8)) is defined to evaluate the overall model

performance using the test set. The corresponding results of three NN models are illustrated
in Table 3. After running a comparison, the Model 2 is identified as the most optimal
one, which is then selected to represent the bridge deterioration. Based on this model, the
prediction performance of bridge system, superstructure, substructure, and deck are 85.76%,
77.04%, 84.64%, and 78.64%, respectively. Using this model, it is possible to accurately
evaluate and predict the condition of regional bridges while considering environmental
deterioration, external loads, and maintenance actions.

Table 3. Prediction accuracy of bridge units and system for each model.

Models Bridge System Superstructure Substructure Deck

Model 1 75.68% 76.80% 83.64% 77.12%
Model 2 85.76% 77.04% 84.64% 78.64%
Model 3 82.56% 76.32% 82.24% 77.44%

7.3. Regional Maintenance Scheme Optimizations

There are 2000 highway bridges designed to be optimized via their maintenance
actions for the next year. The optimal maintenance scheme should strike a balance between
the maintenance costs and the overall conditions. With the NSGA-II optimization method,
the chromosome is in the form of a 2000× 3 matrix. xit(i = 1, . . . , 2000; t = 1, 2, 3) indicates
the maintenance action for the component t of bridge i. The vector in each row is composed
of three elements, representing whether there is maintenance behavior for the three compo-
nents, respectively. For example, the vector [1, 1, 0] denotes that the corresponding bridge
will require maintenance in superstructure and substructure parts. For the parameter
settings, the population size and the generation quantity are designated as 1000. The
probabilities of crossover and mutation are 90% and 10%, respectively.

Groups of bridges need to be well managed with a limited resource. Therefore, the
cost indicator and safety indicator defined in this study corresponding to the regional
management scheme should be the simultaneously minimized. Figure 10 shows optimal
maintenance schemes (red points) for this transportation network. Each point represents an
optimal solution that satisfies the given constraints and objectives. There are 122 optimal
maintenance schemes selected from the genetic evolution. A total of 86 schemes belong to
economy maintenance schemes, and 68 maintenance schemes belong to safety schemes.

Figure 11 compares the condition rating distributions of the previous year, the next
year with economy scheme, and the next year with safety scheme. The initial condition
rating distribution is marked with red bars. Among these three conditions, the initial
condition of Level 1 bridges accounted for the least proportion, and the proportion of
Level 2 and Level 3 bridges is the largest. After the maintenance actions implemented, the
overall bridge ratings are improved in both the economy scheme (41.95, 737) and safety
scheme (158.205, 319). The economy plan, which is marked as orange bars in Figure 11,
moderately increases the overall condition level with less maintenance actions. It requires
less budget. The safety scheme (red bars in Figure 11) maintains most of bridges in the best
condition, but the total budget may be excessive. Nearly 80% of bridges are maintained at
Level 1. The optimal maintenance schemes in Figure 11 could be chosen to improve the
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overall conditions, according to actual structural conditions, management requirements,
and total budget.

Figure 10. The optimal maintenance schemes for 2000 bridges.

Figure 11. Comparison of the optimal maintenance schemes.

8. Conclusions

This paper proposes a complete regional condition assessment methodology to benefit
maintenance practices. This methodology includes data integration, deterioration predic-
tion, and maintenance optimization, and is validated with a real transportation network.

Bridge conditions can be determined with the help of condition-related inspection
technologies. Remote sensing and other advanced emerging technologies increase the
efficiency and capability of inspection works. The bridge inspection report integrates
datasets collected with different advanced bridge inspection techniques and is an efficient
way to provide condition-related information of regional bridges. The data extraction
method proposed in this study integrates and cleans the regional multi-year bridge inspec-
tion data, and the established regional bridge database provides the solid basis for the
condition assessment. Worldwide, short- and medium-span beam bridges are the most
dominant bridge types in the regional transportation network. As they have common
characteristics and comparable management strategies, this study established a data-driven
model based on the regional bridge database to extract regional deterioration characteristics
and assess structural conditions. Years of regional bridge inspection data also imply the
effect of bridge maintenance. The regional maintenance schemes are effectively optimized
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with the genetic algorithms. This study outputs several optimal maintenance schemes
for 2000 regional bridges. Each individual optimal scheme represents and satisfies the
constraint of maintenance costs and safety conditions. They could be roughly classified as
the safety preference scheme and economy preference scheme. A bridge manager could
choose the most appropriate scheme according to actual structural conditions, maintenance
requirements, and total budget.
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