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A. Derivation of Equation 7

Following Hay 1993 (Eq. 1) we can write:

cos(i) = cos(s) cos(icry) + sin(s)sin(i¢cry) cos(a — b)
(A1)

where icrx is CTX data incidence angle for a horizontal surface (represents solar zenith angle)
[°], iis the icrx corrected against relief characteristics (represents an angle of incidence between
the sun and normal to the surface) [°], s is slope angle [°], a is the azimuth angle of the sun [°],
b is the azimuth angle of the slope [°].

Introducing:
b =180°—e
(A.2)
where ¢ is aspect [°], to equation A.1, we obtain:
cos(i) = cos(s) cos(icrx) + sin(s)sin(icry) cos(a — (180° —e))
(A.3)
To calculate the azimuth angle, we first use Eq.4 of Hay (1993):
sin(¢@)cos(icrx) — sind
0D = os(@) sinCicr)
(A4)

where @ is latitude [°], 0 is solar declination [°]. Subsequently, we introduce Eqgs. 11 and 12 of
Cucumo et al. (1997) obtaining;

sin(¢@)cos(icrx) — sin(6)

cos(¢) sin(icrx)
> 12

sin(@)cos(icrx) — sin(S)) if t

ift <12 or—arccos( —
) cos(¢) sin(icrx)

a= arccos(

(A.5)

where t is solar local time given in hour.



Introducing Eq. A.5 into Eq. A.3, we obtain:

sin(¢) cos(i¢crx) — sin(8)
cos(¢) sin(icrx)

)—(180°—e)> ift<12or

cos(i) =cos(s) cos(icry) + sin(s) sin(icry) * cos (arccos <

sin(¢)cos(icrx) — sin(6)
cos(¢@) sin(icrx)

)—(180°—e)) ift>12

cos(i) =cos(s) cos(icry) + sin(s)sin(icryx) * cos (—arccos (

(A.6)
Introducing the following equation A.7 to equation A.6:
sin(8) = sin(g) sin(Ls + x = sin(Ls — Ls?))
(A7)

where Ls is solar longitude [°], Ls”is longitude of the perihelion = 251°, ¢ is Mars axial tilt =
25.32°, implying sin(T) = -0.428; x is Mars orbital eccentricity = 0.0935, we obtain:

sin(¢)cos(i¢ry) + 0.428 sin(Ls + 0.0935 sin(Ls — 251°))
cos(¢) sin(icrx)
sin(@)cos(i¢cry) + 0.428 sin(Ls + 0.0935 sin(Ls — 251°))

cos(¢) sin(icrx)

)— (180°—e)) ift<12or

cos(i) = cos(s) cos(i¢crx) + sin(s)sin(icry) cos (arccos (

cos(i) = cos(s) cos(i¢cryx) + sin(s)sin(icry) cos <—arccos< > —(180° — e)> ift>12

(A.8)

and consequently:

sin(¢) * cos(i¢crx) + 0.428sin(Ls + 0.0935sin(Ls — 251°))

cos(¢) sin(icry)

i = arccos [cos(s) cos(icry) + sin(s)sin(icry) * cos (arccos( ) — (180° — e))] ift
<12or

i = arccos [cos(s) cos(i¢cry) + sin(s)sin(icry)

< <sin(zp) * cos(icry) + 0.428 sin(Ls + 0.0935 sin(Ls — 251°))
* cos | —arccos

cos(¢) sin(icrx)

> — (180° — e))] ift > 12

(A.9)

In the main text, Eq. A.9 is referred to as Eq 7, with the right side terms of the Equation
renamed as arccos(L) and arccos(M ) for the sake of simplicity:

i = arccos (L) ift < 12

ori = arccos (M) ift > 12

(6)



B. Derivation of Eq. 8

To derive Eq.8, we recall the simple equation for instant incident radiation (Ir) :

I, =F-cosi
(B.1)

where F stands for the mean total solar irradiance. We then combine Eq. A.8 with Eq. B.1,
obtaining:

sin(@)cos(icry) — 0.428 sin(Ls + 0.0935 sin(Ls — 251°))
cos(¢) sin(icrx)
sin(¢)cos(icry) — 0.428 sin(Ls + 0.0935 sin(Ls — 251°))

cos(¢) sin(icrx)

I, =F [cos(s) cos(i¢cry) + sin(s)sin(i¢cry) cos <arccos ( > — (180° — e))] ift<12or

I, =F [cos(s) cos(i¢ryx) + sin(s)sin(icry) cos <—arccos( > —(180° — e))] ift>12

(B.2)
. 4—t, . . .
To obtain Y, I, ¢ we need to integrate Eq. B.2 over the time interval between 4 and ta:
12 . : . . o
6ty _ X . . sin(@)cos(i¢cry) — 0.428 sin(Ls + 0.0935 sin(Ls — 251°)) _ .
Z = -L F [cos(s) cos(icry) + sin(s)sin(i¢cry) cos (arccos ( 05(9) sin(icr) (180° —e)
ta i i . sin(¢)cos(icry) — 0.428 sin(Ls + 0.0935 sin(Ls — 251°)) .
+ J;z F [cos(s) cos(icrx) + sin(s)sin(i¢ry) cos <7arccos< 05(®) sintior) ) — (180 e))

(B.3)

The t term is hidden in this equation under the cosicrx and sinicrx terms. As mentioned while
deriving Eq. 7, icrx represents the solar zenith angle. Its cosine is calculated as follows (Hay
1993, Eq. 3):

cos(icry) = sin(¢@)sin(6) + sin(@)sin(d) cos(h)
(B.4)
where & is the hour angle of the Sun defined as a function of time using the following
conversion:

h = 180° — 15t
(B.5)

Combining equations A.7, B.4, and B.5, we obtain:

cos(i¢cry) = sin(g)sin(0.428 sin(Ls + 0.0935 sin(Ls — 251°)) + sin(¢)sin(0.428 sin(Ls + 0.0935 sin(Ls — 251°)) cos(180° — 15t)
(B.6)

and based on trigonometric identities:

sin(icry) = /1 — (=0.428sin(Ls + 0.0935 sin(Ls — 251°)) sin(¢) + cos (¢) cos(arcsin(—0.428sin(Ls + 0.0935 sin(Ls — 251°))) cos(180° — 15t)))?

(B.7)



Finally, combining equations B.3, B.6, and B.7 we obtain the final equation:

ta 12
f I = f F [cos(s) * (—0.4285in(L5 +0.0935 sin(Ls — 251°)) sin(¢) + cos(¢) cos(arc sin(—0.428 sin(Ls + 0.0935 sin(Ls — 251°))) cos(180° — 15t)) +
+ 4

+ sin(s) /1 — (—0.428sin(Ls + 0.0935 sin(Ls — 251°)) sin(¢) + cos(¢) cos(arc sin((—0.428 sin(Ls + 0.0935 sin(Ls — 251°))) cos(180° — 15t)))? ) *
sin(¢p) * [(—0.428 sin(Ls + 0.0935 sin(Ls — 251°)) sin(¢) + cos(¢) cos(arc sin(—0.428 sin(Ls + 0.0935 sin(Ls — 251°))) cos(180° — 15¢))] + 0.428 sin(Ls + 0.0935 sin(Ls — 251°)) (180° — &)
* cos | arccos - —e
cos(@) /1 — (—0.428sin(Ls + 0.0935 sin(Ls — 251°)) sin(¢) + cos(¢) cos(arc sin((—0.428 sin(Ls + 0.0935 sin(Ls — 251°))) cos(180° — 15t)))2

+

ta
+f F [c()s(s) + (0428 sin(Ls + 0.0935 sin(Ls — 251) sin() + cos(p) cos(arcsin(-0.428 sin(Ls + 0.0935 sin(Ls — 251°))) cos(180° — 150)) +
12

+sin(s) V1= (~0.428 sin(Ls + 0.0935 sin(Ls — 251°) sin() + cos(p) cos(arcsin((—0.428 sin(Ls + 0.0935 sin(Ls — 251%))) cos(180° — 150))? ) »
sin(p) * [(~0.428 sin(Ls +0.0935 sin(Ls — 251°)) sin(p) + cos(p) cos(arc sin(~0.428 sin(Ls + 0.0935 sin(Ls — 251°))) cos(180° ~ 150)] + 0.428 sinLs + 00935 sin(Ls = 2510\ _ 0 )
+ cos | —arccos - —e
cos(¢) /1 — (—0.428sin(Ls + 0.0935 sin(Ls — 251°)) sin(¢) + cos(¢) cos(arc sin((—0.428 sin(Ls + 0.0935 sin(Ls — 251°))) cos(180° — 15¢)))2

(B.8)
where | : 41, is the total received incident radiation integrated over time interval between the
daytime acquisition time and 4:00.

Eq. B.8 corresponds to Eq. 8 in the text, where the two long terms on the right side of the
equation are renamed || 412 I, and [ f; I; for the sake of simplicity:

tq 12 tgq
f II = f II +f II
4 4 12
)

To solve this equation, the middle Riemann sum of 13 (in our case) one-hour wide sub-
intervals is applied. Sunrise time is variable (for example depending on slope
inclination and orientation) and the sub-intervals preceding the sunrise yield negative
values. These negative values are converted to zero. The heat accumulated in the
system is in constant exchange with the surroundings. The heat accumulated in the
morning sub-intervals is subject to a longer exchange with the surroundings, and
therefore a relatively larger part of this heat is lost from the system. To approximate
this effect, we apply a linear time-based correction by dividing every element of the
Riemann sum through (t — ti), where, ti is the middle time of a given subinterval, and
ta is time when the dayitime image was taken. The sub-intervals divided by (t: - ti) are
tinally summed up to yield the final I; s value used for the AT.



