
SUPPLEMENTARY FILE S2 
A. Derivation of Equation 7  

 

Following Hay 1993 (Eq. 1) we can write: 

 cos(𝑖) = cos(𝑠) cos (𝑖 ) + sin (𝑠)sin (𝑖 ) cos(𝑎 − 𝑏) 
(A.1) 

where iCTX is CTX data incidence angle for a horizontal surface (represents solar zenith angle) 
[°], i is the  iCTX corrected against relief characteristics (represents an angle of incidence between 
the sun and normal to the surface) [°], s is slope angle [°], a is the azimuth angle of the sun [°], 
b is the azimuth angle of the slope [°]. 

 

Introducing: 𝑏 = 180° − 𝑒 

(A.2) 

where e is aspect [°], to equation A.1, we obtain: 

 cos(𝑖) = cos(𝑠) cos(𝑖 ) + sin (𝑠)sin (𝑖 ) cos a − (180° − 𝑒)  

(A.3) 

To calculate the azimuth angle, we first use Eq.4 of Hay (1993): 

 cos (𝑎) = sin (𝜑)cos (𝑖 ) − sinδcos(𝜑) sin (𝑖 )  

 (A.4) 

where φ is latitude [°], δ is solar declination [°]. Subsequently, we introduce Eqs. 11 and 12 of 
Cucumo et al. (1997) obtaining: 

 𝑎 = arccos sin (𝜑)cos (𝑖 ) − sin (δ)cos(𝜑) sin (𝑖 )  if 𝑡 < 12 𝑜𝑟 − arccos sin (𝜑)cos (𝑖 ) − sin (δ)cos(𝜑) sin (𝑖 )  𝑖𝑓 𝑡> 12 

(A.5) 
 

where t is solar local time given in hour. 



Introducing Eq. A.5 into Eq. A.3, we obtain: 

 

cos(𝑖) = cos(𝑠) cos(𝑖 ) + sin(𝑠) sin(𝑖 ) ∗ cos arccos sin(𝜑) cos(𝑖 ) − sin(𝛿)cos(𝜑) sin(𝑖 ) − (180° − e)  𝑖𝑓 𝑡 < 12 𝑜𝑟 

cos(𝑖) = cos(𝑠) cos (𝑖 ) + sin (𝑠)sin (𝑖 )  ∗ cos −arccos sin (𝜑)cos (𝑖 ) − sin (𝛿)cos(𝜑) sin (𝑖 ) − (180° − e)  𝑖𝑓 𝑡 > 12 

 

(A.6) 

Introducing the following equation A.7 to equation A.6: sin (δ) = sin (ε) sin(Ls + x ∗ sin(Ls − Ls )) 

(A.7) 

where Ls is solar longitude [°], LsP is longitude of the perihelion = 251°, ε is Mars axial tilt = 
25.32°, implying sin(T) = -0.428; x is Mars orbital eccentricity = 0.0935, we obtain: 

 

cos(𝑖) = cos(𝑠) cos (𝑖 ) + sin (𝑠)sin (𝑖 ) cos arccos sin (𝜑)cos (𝑖 ) + 0.428 sin(Ls + 0.0935 sin(Ls − 251°))cos(𝜑) sin (𝑖 ) − (180° − e)  𝑖𝑓 𝑡 < 12 𝑜𝑟 

cos(𝑖) = cos(𝑠) cos (𝑖 ) + sin (𝑠)sin (𝑖 ) cos −arccos sin (𝜑)cos(𝑖 ) + 0.428 sin(Ls + 0.0935 sin(Ls − 251°))cos(𝜑) sin (𝑖 ) − (180° − e)  𝑖𝑓 𝑡 > 12 

(A.8) 

and consequently: 

 

𝑖 = arccos cos(𝑠) cos(𝑖 ) + sin (𝑠)sin (𝑖 )  ∗ cos arccos sin (𝜑) ∗ cos(𝑖 ) + 0.428sin (𝐿𝑠 + 0.0935sin (𝐿𝑠 − 251°))cos(𝜑) sin (𝑖 ) − (180° − 𝑒)  if 𝑡< 12 𝑜𝑟 𝑖 = arccos cos(𝑠) cos (𝑖 ) + sin (𝑠)𝑠𝑖𝑛(𝑖 )  ∗ cos −arccos sin (𝜑) ∗ cos(𝑖 ) + 0.428 sin(𝐿𝑠 + 0.0935 sin(𝐿𝑠 − 251°))cos(𝜑) sin (𝑖 ) − (180° − 𝑒)  if 𝑡 > 12 

(A.9) 

 

In the main text, Eq. A.9 is referred to as Eq 7, with the right side terms of the Equation 
renamed as arccos(L) and arccos(M ) for the sake of simplicity: 𝑖 =  arccos (𝐿) if 𝑡 <  12   

or 𝑖 =  arccos (M) if 𝑡 > 12  
 (6) 

 
  



B. Derivation of Eq. 8 
 
To derive Eq.8, we recall the simple equation for instant incident radiation (II) : 

 
𝐼 = 𝐹 ∙ cos 𝑖  

 
(B.1) 

where F stands for the mean total solar irradiance. We then combine Eq. A.8 with Eq. B.1, 
obtaining: 

 

𝐼 = 𝐹 cos(𝑠) cos (𝑖 ) + sin (𝑠)sin (𝑖 ) cos arccos sin (𝜑)cos (𝑖 ) − 0.428 sin(Ls + 0.0935 sin(Ls − 251°))cos(𝜑) sin (𝑖 ) − (180° − e)  𝑖𝑓 𝑡 < 12 𝑜𝑟 

𝐼 = 𝐹 cos(𝑠) cos (𝑖 ) + sin (𝑠)sin (𝑖 ) cos −arccos sin (𝜑)cos (𝑖 ) − 0.428 sin(Ls + 0.0935 sin(Ls − 251°))cos(𝜑) sin (𝑖 ) − (180° − e)  𝑖𝑓 𝑡 > 12 

(B.2) 
To obtain ∑ 𝐼  we need to integrate Eq. B.2 over the time interval between 4 and td: 
 
 

𝐼 = 𝐹 cos(𝑠) cos (𝑖 ) + sin (𝑠)sin(𝑖 ) cos arccos sin (𝜑)cos (𝑖 ) − 0.428 sin(Ls + 0.0935 sin(Ls − 251°))cos(𝜑) sin (𝑖 ) − (180° − e)+  𝐹 cos(𝑠) cos (𝑖 ) + sin (𝑠)sin (𝑖 ) cos −arccos sin (𝜑)cos (𝑖 ) − 0.428 sin(Ls + 0.0935 sin(Ls − 251°))cos(𝜑) sin (𝑖 ) − (180° − e)                 
(B.3) 

 
 
The t term is hidden in this equation under the cosiCTX and siniCTX terms. As mentioned while 
deriving Eq. 7, iCTX represents the solar zenith angle. Its cosine is calculated as follows (Hay 
1993, Eq. 3): 
 cos(𝑖 ) = sin (𝜑)sin (𝛿) + sin (𝜑)sin (𝛿) cos(ℎ) 

(B.4) 
where h is the hour angle of the Sun defined as a function of time using the following 
conversion: 
 ℎ = 180° − 15𝑡 

(B.5) 
 
Combining equations A.7, B.4, and B.5, we obtain: 
 cos(𝑖 ) = sin (𝜑)sin (0.428 sin(Ls + 0.0935 sin(Ls − 251°)) + sin (𝜑)sin(0.428 sin(Ls + 0.0935 sin(Ls − 251°)) cos(180° − 15𝑡) 

 
(B.6) 

 
and based on trigonometric identities:  
 sin (𝑖 ) = 1 − (−0.428 sin(𝐿𝑠 + 0.0935 sin(𝐿𝑠 − 251°)) sin(𝜑) + cos (𝜑) cos(arcsin(−0.428 sin(𝐿𝑠 + 0.0935 sin(𝐿𝑠 − 251°))) cos(180° − 15𝑡)))  

 
(B.7) 



 
Finally, combining equations B.3, B.6, and B.7 we obtain the final equation: 

 

 
 

(B.8) 
where 𝐼  is the total received incident radiation integrated over time interval between the 
daytime acquisition time and 4:00. 
 
Eq. B.8 corresponds to Eq. 8 in the text, where the two long terms on the right side of the 
equation are renamed 𝐼  and 𝐼  for the sake of simplicity: 
 𝐼 = 𝐼 + 𝐼  

(7) 

To solve this equation, the middle Riemann sum of 13 (in our case) one-hour wide sub-
intervals is applied. Sunrise time is variable (for example depending on slope 
inclination and orientation) and the sub-intervals preceding the sunrise yield negative 
values. These negative values are converted to zero. The heat accumulated in the 
system is in constant exchange with the surroundings. The heat accumulated in the 
morning sub-intervals is subject to a longer exchange with the surroundings, and 
therefore a relatively larger part of this heat is lost from the system. To approximate 
this effect, we apply a linear time-based correction by dividing every element of the 
Riemann sum through (td – ti), where, ti is the middle time of a given subinterval, and 
td is time when the dayitime image was taken. The sub-intervals divided by (td – ti) are 
finally summed up to yield the final 𝐼  the value used for the ΔT.  
 


