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Abstract: Drought is one of the most complex and least-understood environmental disasters that can
trigger environmental, societal, and economic problems. To accurately assess the drought conditions
in the Yellow River Basin, this study reconstructed the Land Surface Temperature (LST) using the
Annual Temperature Cycle (ATC) model and the Normalized Difference Vegetation Index (NDVI).
The Temperature Condition Index (TCI), Vegetation Condition Index (VCI), Vegetation Health Index
(VHI), and Temperature-Vegetation Drought Index (TVDI), which are four typical remote sensing
drought indices, were calculated. Then, the air temperature, precipitation, and soil moisture data
were used to evaluate the applicability of each drought index to different land types. Finally, this
study characterized the spatial and temporal patterns of drought in the Yellow River Basin from
2003 to 2019. The results show that: (1) Using the LST reconstructed by the ATC model to calculate
the drought index can effectively improve the accuracy of drought monitoring. In most areas, the
reconstructed TCI, VHI, and TVDI are more reliable for monitoring drought conditions than the
unreconstructed VCI. (2) The four drought indices (TCI, VCI, VH, TVDI) represent the same temporal
and spatial patterns throughout the study area. However, in some small areas, the temporal and
spatial patterns represented by different drought indices are different. (3) In the Yellow River Basin,
the drought level is highest in the northwest and lowest in the southwest and southeast. The dry
conditions in the Yellow River Basin were stable from 2003 to 2019. The results in this paper provide
a basis for better understanding and evaluating the drought conditions in the Yellow River Basin
and can guide water resources management, agricultural production, and ecological protection of
this area.

Keywords: drought; spatial and temporal pattern; Yellow River Basin; remote sensing drought index;
air temperature; precipitation; soil moisture

1. Introduction

Drought is an extremely complex natural disaster, and the occurrence of drought
leads to decreased agricultural productivity [1], land desertification, and forest degrada-
tion, among other social environmental problems [2–4]. Compared with other natural
disasters, drought affects a wider area and has a longer duration, thus causing much more
extensive losses than other natural disasters (e.g., floods and earthquakes) [5,6]. In recent
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decades, global environmental and climate change has caused changes in the water cycle;
meanwhile, population growth and increased agricultural and industrial water use have
further exacerbated water shortages [7,8]. This leads to the increasing frequency of drought
events [9–15]. Therefore, it is necessary to monitor and study droughts to mitigate their
impacts and ensure sustainable socioeconomic development.

The commonly used drought monitoring method is based on the observation data
from meteorological stations, and it calculates a drought index (such as the Standardized
Precipitation Index (SPI) [16,17], Palmer Drought Index (PDSI) [18,19], and Standard
Precipitation Evapotranspiration Index (SPEI) [20]) and evaluates the regional scale drought
status. This approach is divided into two more methods, one of which is calculating the
drought index directly using site data to evaluate the regional drought situation at the site
scale [21]. This method can only reflect the drought situation of the site location, and it
is difficult to accurately assess the regional drought situation in areas with strong spatial
heterogeneity. The other method is to interpolate the meteorological data observed to
obtain the surface meteorological data and then calculate the drought index to evaluate
the regional drought situation [22,23] on the regional scale. Although such methods can
assess droughts at the regional scale, the extremely complex factors affecting the surface
meteorological parameters obtained through interpolation have large uncertainty, making
it difficult to truly reflect the regional drought situation [24,25]. The rapid development of
remote sensing technology and its ability to quickly and accurately produce multi-source,
multi-scale, and multi-time information facilitates regional-scale drought monitoring.

Currently, remote sensing has been widely used in multi-scale drought monitoring
research [23,26–31]. Some studies assess the applicability of precipitation and evapotranspi-
ration remote sensing data in drought monitoring and achieved reliable results [16,20,31].
Although SPI and PDSI indexes based on precipitation data can directly reflect the regional
dry conditions, the current existing precipitation data has low spatial-temporal resolution,
which presents the results of drought monitoring with many uncertainties. Compared with
precipitation data, NDVI and LST data have higher spatial-temporal resolution, exploring
the correlation between these data, and drought is of great significance to drought monitor-
ing research [16,32,33]. Therefore, the NDVI and LST data were selected in this study to
monitor the drought in the Yellow River Basin. Since the NDVI and LST remote sensing
products are greatly affected by geographical location, ecosystems, and human activity,
the simple use of NDVI and LST data for drought monitoring is very uncertain, and it is
difficult to accurately characterize regional drought conditions [34]. To address this prob-
lem, Kogan proposed to normalize the NDVI and LST to build the Vegetation Condition
Index (VCI) and the Temperature Condition Index (TCI) [26,27]. Under the influence of soil
background and atmospheric noise, there are outliers present in almost all remote sensing
data. To reduce the effect of NDVI and LST outliers on VCI and TCI index calculations,
Konga performed filtering smoothing of NDVI and LST data and showed that filtering
smoothing methods effectively remove the effects of external environmental factors on
NDVI and LST and improve the accuracy of drought monitoring [26,27]. Since single factor
drought indexes, such as VCI and TCI, can only reflect the effects of vegetation or land
surface temperature, drought monitoring using VCI and TCI remains inaccurate, leading
to the construction of the Vegetation Health Index (VHI) [35] and Temperature-Vegetation
Drought Index (TVDI) [36]. The VHI is obtained by the weighted average of the VCI and
TCI [35]; the TVDI is constructed through the spatial relationship between NDVI and LST.
Studies have shown that the scatter maps of the NDVI and LST are presented as triangu-
lar [37] or trapezoidal [38]. In this study, the traditional Thermo-optical Trapezoidal model
(TOTRAM) [39] is used to calculate TVDI, which characterizes the spatial characteristics of
NDVI and LST. Compared with the two single factor drought indices of VCI and TCI, VHI
and TVDI take full account of the regional drought conditions under the combination of
NDVI and LST, further improving the accuracy of drought monitoring [35,36]. In recent
years, the VCI, TCI, VHI, and TVDI have been widely used in the monitoring and analysis
of drought. The reliability of these drought indices has been validated [26,27,32,36,40–47].
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Compared with the drought index based on meteorological stations, such as SPI, PDSI,
and SPEI, the above four drought indexes are easily accessible and continuous in time and
space. At the same time, these four drought indexes are also easier to calculate compared
to some other drought indexes. Therefore, the above four drought indexes were selected
to evaluate the drought conditions in the Yellow River Basin, which provides a basis for
exploring more efficient and accurate drought monitoring methods in the future. The
above four drought indexes need to be further evaluated in monitoring the drought, which
will provide us with an in-depth understanding of the drought’s impact on the ecosystem
of the Yellow River Basin.

Currently, remote sensing data sources for drought assessment mainly includes
Landsat TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper), OLI (Operational
Land Imager) [48,49], Sentinel SAR (Synthetic Aperture Radar), MSI (Multispectral Im-
ager) [50,51], and MODIS (Moderate Resolution Imaging Spectroradiometer) [52,53]. Land-
sat and Sentinel data have high spatial resolutions (30 m and 10 m), but, due to their long
revisit cycle, it is difficult to cover the entire study area; therefore, Landsat and Sentinel data
are only suitable for small regional drought monitoring. The MODIS data revisit period
is short (2 times every day), has numerous remote sensing images and moderate spatial
resolution (500 m), and it is fully suitable for large-scale drought monitoring research. This
study calculated and analyzed four typical remote sensing drought indexes based on the
MODIS NDVI and LST data to assess the applicability of the four drought indexes in the
Yellow River Basin. Due to the influence of clouds and cloud shadows, there are many
missing data and outliers in the LST data based on MODIS [52]. Therefore, this study used
a widely recognized data reconstruction model named Annual Temperature Cycle (ATC) to
reconstruct the LST data. This model is a very accurate and efficient LST data reconstruction
model, which simulates the LST data change curve as a sinusoidal function based on the
inter-annual variation characteristics of the LST [54,55]. The ATC model has been widely
used in spatial-temporal changes of LST studies, and its reliability has been verified, which
is beneficial to solving the lack of LST data and outliers in drought monitoring studies.
However, there is no precedent for using the ATC model in drought monitoring. This
study is the first attempt to monitor drought using the ATC model, which has significant
reference for future drought research. The continuous LST datasets produced by the ATC
model ensure the reliability of the research results. The main purpose of this study is to:
(1) calculate the four typical remote sensing drought indexes (TCI, VCI, VHI, TVDI) to
monitor the drought conditions in the Yellow River Basin; (2) verify the correlation between
each drought index and precipitation, air temperature and soil moisture; and (3) analyze
the spatial and temporal pattern and changing drought trends in the Yellow River Basin
from 2003 to 2019.

2. Materials and Methods
2.1. Study Area

The Yellow River Basin, which includes the Yellow River drainage system, the Yellow
River flood disaster area, and the Yellow River agricultural irrigation area, is located
between 96◦~119◦ E, 32◦~42◦ N, 1900 km from East to West and 1100 km from South to
North, with an area of 1.4129 × 106 km2 (Figure 1) [56–58]. The elevation of the Yellow
River Basin is high in the West and low in the East and crosses the Qinghai-Tibet Plateau,
Inner Mongolia Plateau, Loess Plateau, and the Huang-Huai-Hai Plain. The Yellow River
Basin is the most important ecological barrier in China [59]. The main land-cover types
are grasslands, croplands, barren lands, deciduous broadleaf forests, savannas, urban and
built-up lands, mixed forests, and woody savannas (>1 × 104 km2) (Figure 1, Table 1).
The Yellow River Basin spans the arid, semi-arid, and semi-humid climates, from arid
in the Northwest and to humid in the Southeast. The annual average air temperature is
between 4–14 ◦C, the annual rainfall is concentrated in 200–800 mm, and air temperature
and precipitation are unevenly distributed and have drastic seasonal changes: hot and
rainy in summer, cold and dry in winter [60].
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Figure 1. The Yellow River Basin and its land cover types.

Table 1. Land cover type and proportion.

Number Land Type Area (×104 km2) Area Proportion

1 Grasslands 58.931 50.57%

2 Croplands 33.801 29.01%

3 Barren 11.535 9.90%

4 Deciduous Broadleaf Forests 3.665 3.15%

5 Savannas 3.151 2.70%

6 Urban and Built-up Lands 1.683 1.44%

7 Mixed Forests 1.585 1.36%

8 Woody Savannas 1.476 1.27%

9 Cropland/Natural Vegetation Mosaics 0.409 0.35%

10 Permanent Wetlands 0.134 0.11%

11 Open Shrub lands 0.09 0.08%

12 Closed Shrub lands 0.048 0.04%

13 Evergreen Needleleaf Forests 0.018 0.02%

2.2. Data and Processing

The data used in this study were all derived from the Google Earth Engine (GEE) Cloud
Platform (https://developers.google.com/earth-engine/datasets, accessed on 14 October
2020) [61–63]. The platform contains a large number of remote sensing datasets and has
powerful data processing capabilities. The datasets adopted in this paper include the
MODIS, TerraClimate, and JRC (JRC Yearly Water Classification History, v1.3) datasets.
The type, spatial-temporal resolution, and time span of each datasets are shown in Table 2.

https://developers.google.com/earth-engine/datasets
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Table 2. Main data used in this study.

Data Products Data Type Spatial
Resolution

Temporal
Resolution Time Span

MOD13A2.006 NDVI 1000 m 16 days 2000–2020

MYD11A1.006 LST 1000 m daily 2002–2020

MCD12Q1.006 LC_Type1 500 m yearly 2001–2019

TerraClimate pr, soil, tmmx 2.5 arc minutes monthly 1958–2019

JRC Water 30 m yearly 1984–2019

To ensure the accuracy of the ATC model, the daily surface temperature products were
selected, considering the impact of cloud and cloud shadow, the MYD11A1.006 (https://
developers.google.com/earth-engine/datasets/catalog/MODIS_006_MYD11A1, accessed
on 14 October 2020). LST products based on Aqua satellites were ultimately selected
because the transit time of Aqua satellites was 1:30 p.m., usually the least cloud vol-
ume. Considering the significant decrease in nighttime surface temperature and large
regional differences, which increases the uncertainty in the drought monitoring, only
the daytime LST data in the MYD11A1.006 product was used. To maintain the same
spatial resolution as the LST data, a 1 km spatial resolution MODIS NDVI product was
selected in this study, and, although the temporal resolution of the MODIS NDVI data
was 16 days, this data is a product composited from daily NDVI data, from which we can
extract the daily NDVI data through the ‘DayOfYear’ band. Based on the ‘DayOfYear’
band, we found that Aqua satellite-based MYD13A2.006 products lacked data for the first
8 days per year (DayOfYear ≥ 9); therefore, Terra satellite-based MOD13A2.006 (https:
//developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A2, ac-
cessed on 14 October 2020) NDVI products were selected. The IGBP classification scheme in
MCD12Q1 (https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_
MCD12Q1, accessed on 14 October 2020) was also selected to analyze the land cover types
in the Yellow River Basin. Considering the reliability of the data, this study determined
that the land types with less than 1 × 104 km2 were negligible and only performed a time
series analysis of drought indices in the land types with an area greater than 1 × 104 km2.

The TerraClimate (https://developers.google.com/earth-engine/datasets/catalog/
IDAHO_EPSCOR_TERRACLIMATE, accessed on 11 Feburary 2021) datasets provide
monthly meteorological data for the period 1958–2019; its mixed datasets combine the
WorldClim, CRU Ts4.0, and Japanese 55-year Reanalysis datasets. The datasets include
evapotranspiration, precipitation, temperature, wind speed, air pressure, and soil moisture,
with a spatial resolution of 2.5 arc minutes. To verify the accuracy of drought monitoring
results, precipitation, temperature, and soil moisture data in the TerraClimate dataset were
selected as validation data. Considering that the Aqua satellite transit time is 1:30 p.m., it is
the highest temperature period of the day. Therefore, the maximum air temperature (tmmx)
of TerraClimate dataset was selected in this paper. To remove the effects of water bodies on
the drought index, the JRC datasets were used to extract water, which contains the location
and time distribution of the surface water from 1984–2019 and provides statistics on the
scope and variation of the water surface.

In this paper, the temporal resolution of NDVI data was 16 days. The Maximum Value
Composite (MVC) method was used to generate NDVI annual data; soil moisture was at
the monthly time interval, and the annual mean value was used to represent the annual soil
moisture. The spatial resolutions of land cover, soil moisture, water, air temperature, and
precipitation data were at 500 m, 2.5 arc minutes, 30 m, 2.5 arc minutes, and 2.5 arc minutes
spatial resolutions, respectively. The default nearest proximity interpolation method of
the Google Earth Engine platform was used to convert the spatial resolution of land cover,
precipitation, maximum air temperature, soil moisture, and water datasets to 1 km. To
obtain the accurate results of the time-series analysis, the mask method in the Google

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MYD11A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MYD11A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
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Earth Engine platform was used to remove the null value pixels and analyze only the
high-quality pixels.

2.3. Methods
2.3.1. LST Reconstruction Method

In recent years, there have been studies using MODIS data to analyze the temporal and
spatial patterns of regional surface temperature, and good results have been achieved [64].
However, local meteorological conditions, such as clouds, have a great impact on satellite-
derived LST, resulting in many missing values, which makes it difficult to obtain continuous
LST changes in space and time. Therefore, it is challenging to effectively characterize the
surface and the dynamics of the thermal environment using original MODIS LST data.
Since the LST variation is similar to the solar radiation flux change curve in the sinusoidal
function change form [54,55], this study optimized the LST data using the ATC model. The
calculation formula is as follows:

f (d) = MAST + YAST.sin(
2π(d + θ)

365
). (1)

In Equation (1), MAST is the annual average LST, YAST is the amplitude of LST in a
year, d represents the day of the year, and θ represents the phase shift. To maintain the ATC
model rationality, the YAST should be larger than 0, and the phase shift is relative to the
equinox with a range between −182.5 and +182.5 days, according to the definition [54,55].
For a given series of LST measurements, the MAST, YAST, and θ for every pixel were
estimated with an unconstrained nonlinear optimization algorithm, minimizing the square
sum of the residuals [65]. Therefore, we can obtain the daily surface temperature data
based on parameter d.

2.3.2. Drought Index

The four drought indexes used in this study can be divided into two classes. The
first class consists of single factor indexes, including TCI and VCI, which are calculated
by LST and NDVI (Table 3); the second class consists of multiple factor indexes, including
VHI, which is weighted by TCI and VCI (Table 4), and TVDI (Equations (2)–(4)), which is
obtained by fitting the dry and wet edges according to the spatial relationship of LST and
NDVI. The drought index is calculated as follows:

Table 3. Calculation formula of single factor drought index.

Drought Index Data Source Formulas

TCI MODIS TCI = LSTmax−LSTi
LSTmax−LSTmin

VCI MODIS VCI = NDVIi−NDVImin
NDVImax−NDVImin

Table 4. Calculation formula for multi-factor drought index.

Drought Index Formulas Weight Weight Type

VHI VHI = αTCI + βVCI α = 0.5, β = 0.5 Experience weight

In Table 3, the subscript i represents the ith year of the study period; max and min
represent the maximum and minimum of the corresponding index in the study area from
2003–2019.

Table 4 shows the equation to calculate the VHI; α and β represents the weight
coefficient of TCI and VCI, respectively.

TVDI = (LST − LSTmin)/(LSTmax − LSTmin), (2)
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LSTmin = a + b × NDVI, (3)

LSTmax = c + d × NDVI. (4)

In Equation (2), LST is the LST observation for each pixel, and LSTmin and LSTmax
are obtained by Equations (3) and (4), respectively, where a, b, c, and d are wet and dry
edge parameters estimated in the whole study region. The specific method of dry and
wet edge fitting is to divide the interval [0,1] into 100 intervals, extract the maximum and
minimum LST values where the NDVI values lies in the corresponding interval, and obtain
100 maximum values and minimum values, respectively. Then, the dry edge equation and
the wet edge equation can be obtained by linear fitting (Formulas (3) and (4)). Figure 2
shows an example diagram of the fitting of the dry and wet edge equations.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 22 

 

 

Table 4 shows the equation to calculate the VHI; α and β represents the weight co-
efficient of TCI and VCI, respectively. 𝑇𝑉𝐷𝐼 = (𝐿𝑆𝑇 − 𝐿𝑆𝑇min)/(𝐿𝑆𝑇 − 𝐿𝑆𝑇 ), (2)𝐿𝑆𝑇min = 𝑎 + 𝑏 ×  𝑁𝐷𝑉𝐼, (3)𝐿𝑆𝑇max = 𝑐 + 𝑑 ×  𝑁𝐷𝑉𝐼. (4)

In Equation (2), LST is the LST observation for each pixel, and LSTmin and LSTmax are 
obtained by Equations (3) and (4), respectively, where a, b, c, and d are wet and dry edge 
parameters estimated in the whole study region. The specific method of dry and wet edge 
fitting is to divide the interval [0,1] into 100 intervals, extract the maximum and minimum 
LST values where the NDVI values lies in the corresponding interval, and obtain 100 max-
imum values and minimum values, respectively. Then, the dry edge equation and the wet 
edge equation can be obtained by linear fitting (Formulas (3) and (4)). Figure 2 shows an 
example diagram of the fitting of the dry and wet edge equations. 

 
Figure 2. Sketch illustrating parameters of the traditional Thermal-optical Trapezoid model [39]. 

The values of the four typical drought indexes range of 0 and 1; the larger the TVDI 
values, the more arid the region, while smaller values of the other three indexes represent 
more arid regions. Table 5 lists the correspondence of the magnitude of the 4 drought 
indexes [66]. 

Table 5. Drought level classification scheme [66]. 

Drought Level TCI VCI VHI TVDI 
Extreme drought 0–0.1 0–0.1 0–0.1  
Severe drought 0.1–0.2 0.1–0.2 0.1–0.2 0.8–1 

Moderate drought 0.2–0.3 0.2–0.3 0.2–0.3 0.6–0.8 
Mild drought 0.3–0.4 0.3–0.4 0.3–0.4 0.4–0.6 

Abnormal drought 0.4–0.5 0.4–0.5   
No drought(arid) 0.5–1 0.5–1 0.4–1 0–0.4 

  

Figure 2. Sketch illustrating parameters of the traditional Thermal-optical Trapezoid model [39].

The values of the four typical drought indexes range of 0 and 1; the larger the TVDI
values, the more arid the region, while smaller values of the other three indexes represent
more arid regions. Table 5 lists the correspondence of the magnitude of the 4 drought
indexes [66].

Table 5. Drought level classification scheme [66].

Drought Level TCI VCI VHI TVDI

Extreme drought 0–0.1 0–0.1 0–0.1

Severe drought 0.1–0.2 0.1–0.2 0.1–0.2 0.8–1

Moderate drought 0.2–0.3 0.2–0.3 0.2–0.3 0.6–0.8

Mild drought 0.3–0.4 0.3–0.4 0.3–0.4 0.4–0.6

Abnormal drought 0.4–0.5 0.4–0.5

No drought(arid) 0.5–1 0.5–1 0.4–1 0–0.4
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2.3.3. Trend Analysis

This paper applied trend analysis to analyze the drought trends of the Yellow River
Basin from 2003–2019. The formula is as follows:

Slope =
n × ∑n

i=1 i × DIi − ∑n
i=1 i ∑n

i=1 DIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 . (5)

In Equation (5), n represents the total years of 2003–2019 (n = 17), and DIi represents
the corresponding drought index value of ith year. Slope > 0 indicates an increasing trend
of the drought index value in the study area between 2003–2019, and Slope < 0 indicates a
negative trend of the drought index value in the study area between 2003–2019. The T test
was used to determine the significance of the changing slope. While p > 0.05, the variation
trend of drought index was not significant; while Slope > 0, p < 0.05, it indicated a significant
upward trend; and, while Slope < 0, p < 0.05, it indicated a significant downward trend.

3. Results
3.1. Reconstruction of MODIS Time Series Data for Drought Monitoring
3.1.1. Performances of the ATC Model for LST

Due to the impacts of external environments, such as cloud and cloud shadow, there
are some outliers in remote sensing data, it will greatly reduce the accuracy of ground
observations of remote sensing satellites. Therefore, taking reasonable ways to remove
outliers from remote sensing data is of great significance for scientific research. To analyze
the reliability of the original MODIS and the effectiveness of the ATC model in reconstruct-
ing the LST data, the number of outliers in the raw MODIS data, as well as the highest
and lowest LST values, were counted (Tables 6 and 7). It can be seen from Table 6 that the
MODIS original annual average LST data obtained by simple cloud removal still has many
excessively high or low values. Among them, in 2008, 2012, and 2019, the annual average
LST of 2722, 2269, and 1541 pixels was below 0 ◦C, respectively; in 2006, 2008, and 2012,
the annual average LST of 114, 1703, and 358 pixels was lower than −10 ◦C. At the same
time, the annual average LST value of hundreds of pixels is higher than 40 ◦C every year,
and the annual average LST value of a few pixels exceeds 50 ◦C.

The main reason for these outliers is the uneven temporal distribution of MODIS
images. If all the high-quality observations of a certain pixel occur in summer, the obser-
vation value of each LST is very high, and the annual average LST calculated with these
high-value data will also be high; and, if the high-quality observations all occur in winter,
the calculated annual average LST value is very low.

Due to the existence of these outliers, there are many uncertainties in calculating the
drought index using the original MODIS LST data. Therefore, this study uses the ATC
model to process the MODIS LST data. The annual average maximum and minimum
values of the MODIS LST data and the LST data generated by the ATC model were also
compared. The results are shown in Table 7.

Table 7 shows the highest and lowest annual average LST values of the Yellow River
Basin from 2003 to 2019. The results show that, in the MODIS original annual average
LST data obtained by simple cloud removal processing, the highest value of each year in
the entire study area exceeds 50 ◦C, while the lowest value is lower than 0 ◦C, and both
the highest value and the lowest value are relatively large fluctuations. After processing
through the ATC model, the highest annual average LST is lower than 40 ◦C, and the
lowest annual average LST value is higher than 0 ◦C, except for 2019 (−1.402 ◦C). Excessive
high and low values in the original data are successfully removed, and the volatility of the
data is also reduced. This fully reflects the excellent effect of the ATC model in processing
abnormal images.
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Table 6. Number of outliers in the MODIS LST data from 2003 to 2019.

Year Less Than −10 ◦C Less Than 0 ◦C Greater Than 40 ◦C Greater Than 50 ◦C

2003 1 71 340 1

2004 8 154 582 26

2005 1 212 687 15

2006 114 894 704 4

2007 0 122 573 7

2008 1703 2722 525 21

2009 1 367 597 20

2010 0 126 430 7

2011 12 274 636 3

2012 358 2269 382 3

2013 0 71 584 14

2014 1 230 487 6

2015 11 94 568 16

2016 0 125 435 3

2017 0 162 614 13

2018 4 643 575 11

2019 0 1541 590 4

Table 7. Maximum and minimum annual average LST from 2003 to 2019.

Year MODmax (◦C) MODmin (◦C) ATCmax (◦C) ATCmin (◦C)

2003 50.05 −10.35 36.145 3.467

2004 55.89 −12.51 37.157 2.332

2005 53.35 −17.31 37.083 0.933

2006 53.41 −13.81 38.011 2.14

2007 52.67 −7.47 36.475 2.151

2008 54.23 −18.51 37.227 0.583

2009 55.95 −11.83 37.609 3.011

2010 52.51 −9.59 35.948 3.153

2011 51.11 −11.41 36.492 3.086

2012 51.35 −20.29 36.867 0.469

2013 54.15 −4.87 37.841 3.885

2014 54.87 −18.21 37.524 2.817

2015 53.17 −15.65 37.432 1.571

2016 52.11 −9.21 36.787 3.537

2017 52.41 −6.94 38.002 1.259

2018 53.45 −11.99 36.888 3.471

2019 51.23 −8.59 37.426 −1.402

The Root Mean Square Error (RMSE) is a statistical indicator characterizing the de-
viation size of the true and predictive values, a smaller RMSE value indicates a smaller
deviation. It can be calculated by Equation (6). To analyze the consistency between ATC
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LST and MODIS LST, the RMSE distribution of the difference between ATC and MODIS
LST were calculated. The results can be found in Figure 3.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2. (6)
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It can be seen from Figure 3 that the annual average LST processed by the ATC model
is in good agreement with the original MODIS data. Areas with RMSE < 2 accounted for
53.38% of the entire study area, and areas with RMSE < 3 accounted for 84.33% of the
entire study area. It shows that the ATC model does not change the value of the original
MODIS data too much after successfully removing the over-high and under-values in the
MODIS data, and it has good fidelity. This fully demonstrates the reliability of calculating
the drought index using the ATC model reconstructed LST data and ensures the accuracy
of the drought monitoring results.

3.1.2. Performances of the ATC Model for Drought Indices

In order to evaluate the effectiveness of the ATC LST in drought monitoring, the
difference between the drought index calculated by the ATC LST and MODIS LST (ATC
drought index minus MODIS drought index) were analyzed, and the results are shown in
Figure 4.

It can be seen from Figure 4 that, among the three drought indices of TCI, VHI, and
TVDI, the VHI index has the smallest difference before and after reconstruction, and the
difference in all regions is between −0.1~0.1. The drought conditions are exactly the
same. Unlike the VHI index, the reconstructed TCI and TVDI indexes showed more severe
drought conditions in some areas of the Yellow River Basin than the non-reconstructed
indices. It can be seen from Figure 4a that, in most areas of the southwestern part of the
Yellow River Basin, the TCI difference is between −0.2~−0.1, which indicates that the
reconstructed TCI index of the ATC model is lower than the TCI index based on MODIS,
the drought is more serious; it can be seen from Figure 4e that, in the southwest and
northwest of the Yellow River Basin, the reconstructed TVDI index is higher than that
based on MODIS, and the drought is also more serious. These results show that the drought
index calculated using the ATC LST data shows severer drought conditions compared
to the drought index calculated by the original MODIS LST data, which facilitates the
identification of mild drought. In some mild arid regions, it is often difficult to obtain
drought conditions with MODIS LST data, while using the ATC LST data can effectively



Remote Sens. 2021, 13, 3748 11 of 23

obtain drought conditions in these regions, which is also an advantage of the ATC model
in drought monitoring.
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3.2. Accuracy Assessment

To verify the reliability of the drought index, the correlation of the four drought
indexes of different land types with precipitation, air temperature, and soil moisture were
analyzed. The precipitation, air temperature, and soil moisture data were obtained from
the TerraClimate datasets. The results are shown in Figure 5.

According to Figure 5, in the grasslands area, VCI, VHI has a significant correlation
with precipitation and soil moisture (R2 > 0.5), and TCI, TVDI has a significant correlation
with the air temperature (R2 > 0.6), indicating that drought in grasslands is affected by
precipitation, temperature, and soil moisture. In croplands and urban lands, there is
weak correlation with precipitation, temperature, and soil moisture due to human activity
(R2 < 0.3). In barren lands, deciduous broadleaf forests, savannas, and mixed forests,
drought is mainly affected by temperature, and drought indexes of TCI, VHI, and TVDI
are strongly related with temperature (R2 > 0.4), while VCI is weakly correlated with
temperature (R2 < 0.1). In woody savannas, TCI, VHI, and TVDI are more associated with
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temperature and soil moisture than in other regions, and the drought conditions are more
affected by temperature and soil moisture.
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3.3. Spatial Patterns of Drought

The annual mean of the four drought indexes from 2003–2019 shows the drought
conditions is highest in the northwest and lowest in the southwest and southeast of the
Yellow River Basin (Figure 6). The results show that the patterns of four drought indexes can
be divided into two categories: (1) patterns represented by TCI and TVDI and (2) patterns
represented by VCI and VHI. Figure 6a,d show that, in the northwest of the Yellow River
Basin, the drought levels are the highest. In the southwest of the Yellow River Basin,
the drought levels are the lowest. In the central and southeast of the Yellow River Basin,
it mostly shows mild drought conditions (Table 5). Figure 6b,c show a severe drought
conditions in the northwest and moist conditions in the southwest and southeast of the
Yellow River Basin. According to the results of the land cover shown in Figure 1, the
northwest area of the Yellow River Basin is mainly desert (Tengger Desert) and barren
land, the southwest and central regions are mainly grassland, and the southeast regions
are mainly farmland, indicating that the results of this study are consistent with the actual
situation. Unlike TCI and TVDI, VCI and VHI also show moist conditions in the central
and southeastern regions of the Yellow River Basin, and the drought conditions differ from
those characterized by TCI and TVDI (The TCI and the TVDI indexes indicate moderate
drought in the central and southeastern regions of the Yellow River Basin, and the VCI and
VHI indicate that it is moist there.).
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Overall, the spatial-temporal patterns of the four drought indexes are consistent
throughout the study area and vary somewhat locally. The TCI and VCI regard LST and
NDVI as the leading factors of drought. Although the two combined drought indexes
comprehensively consider the effects of LST and NDVI on drought, the principles and
methods on which they are based are very different. Thus, for regional drought monitoring,
selecting the appropriate drought index according to the actual situation to ensure the
accuracy of the results is necessary. For example, in areas with high vegetation coverage,
NDVI is extremely sensitive to drought changes; therefore, monitoring drought through
VCI is more reasonable than with other indexes, whereas, in the desert, using TCI to
monitor drought is a better choice.
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3.4. Inter-Annual Variability and Trends of Drought

Equation (5) was used to calculate the slope of the four typical remote sensing drought
indexes from 2003–2019. Areas with a positive slope (Slope > 0) indicate that the cor-
responding drought index from 2003–2019 has an increasing trend, and regions with a
negative slope (Slope < 0) indicate that the corresponding drought index from 2003–2019
was declining. Based on the T test method, the study area was divided into three categories,
including no significant change (p > 0.05), significant increase (Slope > 0, p < 0.05), and
significant decrease (Slope < 0, p < 0.05); the results are shown in Figure 7. According to
Figure 7a, the TCI value in the central region of the Yellow River Basin has a significant
increase trend; the drought levels decrease as the TCI value increases. The TCI value in the
southeast and northwest regions has a significant decrease trend; the drought condition
is getting worse. The TCI value has no significant change in other regions of the Yellow
River Basin, which indicates that the drought condition is very stable. Unlike the TCI,
the VCI variation trend shown in Figure 7b is a significant increase in most areas of the
Yellow River Basin, which indicates an increasing drought trend. The change trend of
VHI in Figure 7c has the same pattern as the VCI index, with an upward trend in the
central region and downward trend in the southeast region of the Yellow River Basin. In
Figure 7d, the TVDI value is significantly increased in the central of the Yellow River Basin,
indicating increasing drought. The TVDI value is significantly decreased in some areas at
the northwest and central of Yellow River Basin. In other regions of the Yellow River Basin,
the TVDI value has no significant change trend, which indicates that there is no obvious
change of drought.
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As shown in Figure 7, the drought index values in the study area have similar overall
trends, as well as local differences. This shows that the application of each drought index
to the natural geographical environment is different. Therefore, when carrying out drought
monitoring and forecast research on the regional scale, it is necessary to comprehensively
consider various factors (such as temperature, precipitation, and soil moisture, among
others) and select the appropriate drought index to ensure the reliability of the research
results.

To analyze the drought change trends of the different land types, the time series of the
drought index of each land type in the Yellow River Basin was conducted. According to
Figure 8, VCI and VHI have similar change trends, which is consistent with the previous
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slope analysis results of the drought index. In grasslands, barren lands, and urban and
built-up lands, the values of TVDI are the largest, which indicates a high degree of drought
in these regions. In croplands, deciduous broadleaf forests, savannas, mixed forests, and
woody savannas, the VCI index is the largest, which indicates a low level of drought in
these regions. TCI values are lower in croplands and urban and built-up lands than in
other areas, indicating a high land surface temperature and, thus, drought in these areas.
The value of the VHI index is between the other three indices throughout the study area;
VHI is obtained by the two exponential complexes of TCI and VCI. Compared to TCI and
VCI, the two mono-factor drought indexes, VHI is more comprehensive.
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Table 8. Statistic of Slope in different land cover types. 

Land Cover Type TCI VCI VHI TVDI 
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Figure 8. Time series analysis of drought indices in different land types. (a) Grasslands; (b) croplands; (c) barren;
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For deeper understanding the change trends of drought index in the Yellow River
Basin, we performed a significance analysis, for which the results are shown in Figure 8.
Tables 8 and 9 show the mean value of slope and P-values of the four drought indices in
the different land types. It can be seen from Table 8 that all slope values are less than 0.01,
indicating stable dry conditions for all land types in the Yellow River Basin between 2003
and 2019. Table 9 shows that both VCI and VHI indexes showed significant inter-annual
trends (Yellow, p < 0.05) in most regions, while neither TCI nor TVDI indexes showed
any significant trends (p > 0.05) in most land types. In general, the change trend of the
four drought indexes in the whole study area was relatively stable from 2003–2019, which
shows that the drought situation from 2003–2019 at the Yellow River Basin was relatively
stable. However, given the apparent changes in the drought in local small areas, it will be
necessary to conduct an in-depth analysis of the drought situation of these small areas in
the future.

Table 8. Statistic of Slope in different land cover types.

Land Cover Type TCI VCI VHI TVDI

Grasslands 0.0003 0.0042 0.0023 −0.0019

Croplands −0.0019 0.0016 −0.0001 −0.0007

Barren −0.0017 0.0010 −0.0003 0.0013

Deciduous Broadleaf Forests 0.0004 0.0025 0.0014 −0.0027

Savannas 0.0003 0.0028 0.0016 −0.0032

Urban and Built-up Lands −0.0027 −0.0016 −0.0022 0.0005

Mixed Forests 0.0005 0.0025 0.0015 −0.0020

Woody Savannas 0.0005 0.0025 0.0015 −0.0028
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Table 9. Statistic of p-Value in different land cover types.

p-Value TCI VCI VHI TVDI

Grasslands 0.585 0.001 0.008 0.059

Croplands 0.080 0.010 1.000 0.558

Barren 0.107 0.013 0.724 0.136

Deciduous Broadleaf Forests 0.435 0.000 0.006 0.135

Savannas 0.459 0.000 0.002 0.036

Urban and Built-up Lands 0.012 0.007 0.003 0.842

Mixed Forests 0.239 0.000 0.001 0.140

Woody Savannas 0.433 0.000 0.004 0.111

3.5. Comparison with SPI and PDSI

To better understand the reliability of the four drought indices (TCI, VCI, VHI, TVDI),
the SPI and PDSI indices on a 1-month time scale were calculated as the reference data.
Figure 9 shows the spatial-temporal distribution pattern of the SPI and PDSI indices in the
Yellow River Basin. Figure 9a shows that there was severe drought in the southwest of the
Yellow River Basin and humidity in the northwest. Figure 9b shows that the southwest
of the Yellow River Basin is humid, and the central region has a moderate drought level.
Overall, there are large problems with the drought conditions characterized by both SPI
and PDSI indices, for example, with high values in the Tengger Desert region, where
extreme severe drought conditions were not monitored; the main reason for this problem
is the minimal rainfall in the Tengger Desert region, and the indices SPI and PDSI based
on precipitation data fail to effectively characterize their drought conditions. In areas
with perennial insufficient rainfall, monitoring the drought conditions of the region is
more accurate and effective by using vegetation index and temperature data. The four
drought indices based on NDVI and LST data selected in this study effectively monitored
the drought conditions in the Tengger Desert area. Although both SPI and PDSI drought
indices are widely recognized internationally, since both indexes depend on precipitation
data and most of the precipitation data have low spatial-temporal resolution, therefore,
drought monitoring in local regions using these two indexes has great uncertainty. When
drought monitoring was performed using SPI and PDSI, more constraints (e.g., setting
thresholds for precipitation data, etc.) must be added to achieve more reliable results,
which obviously increases the workload. The NDVI and LST data used in this study are
characterized by high spatial-temporal resolution to effectively monitor regional drought
conditions, which are important implications for future studies.
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4. Discussion
4.1. Advantages of Data Reconstruction

The accuracy of remote sensing drought monitoring is mainly dependent on the
accuracy of remote sensing data. Due to the influence of the atmospheric environment
(such as clouds and cloud shadows), the original remote sensing data often have many
missing values and outliers, which reduces the accuracy of drought monitoring results.
To address this problem, this study reconstructed the annual LST of 2003–2019 in the
Yellow River Basin by using the ATC model [65]. The reconstruction method successfully
removes the outliers in the original LST data and obtains high-quality spatial-temporal
continuous LST datasets, which ensures the accuracy of drought monitoring. The ATC
model treats the change in LST as periodic changes of the sinusoidal function. In contrast to
data reconstruction methods, such as the Savitzky-Golay filter [67], Time Series Harmonic
Analysis (HANTS) [68], Whittaker Smother [69], and Random Forest [70], the ATC model
represents the LST changes in the region in a simple and effective manner. Currently,
existing data reconstruction methods, such as Savitzky-Golay filter, HANTS, Whittaker
Smoother, and Random Forest, have been widely used in the construction of high quality,
spatial-temporal, continuous remote sensing data (such as EVI, NDVI, and NDWI) [71,72].
However, few studies on drought monitoring used data reconstruction methods, and
reconstructing LST using the ATC model provides a reference for future drought monitoring
research. The results show that the drought indexes of TCI, VHI, and TVDI found through
the ATC model are related to precipitation, temperature, and soil moisture, which fully
reflects the necessity of data reconstruction methods in drought monitoring research.

4.2. Spatial-Temporal Pattern of Drought

The spatial pattern of the four drought indexes is basically the same, and the results
show that the drought of the northwest desert area of the Yellow River Basin is very
severe, while the grasslands in the southwest and central areas and the croplands in the
southeast have moderate drought or no drought; these results are similar to those of the
drought study of the Yellow River Basin by Wang and Zhu et al. [58,73]. The results of
trend analysis show that the drought in the Yellow River Basin from 2003–2019 was stable
with no obvious changes. Most studies have analyzed the interaction of climate change
and regional drought conditions through site meteorological data [74,75], and they rarely
analyze the impact of climate change on drought in specific land types (such as grasslands,
farmlands, urban construction lands, woodlands, and deserts). To fill this knowledge gap,
this study analyzed the time series change curve of the drought indices of eight major
land types (grasslands, croplands, barren lands, deciduous broadleaf forest, savannas,
urban, mixed forest, and woody savannas) in the Yellow River Basin and analyzed their
correlation with precipitation, air temperature, and soil moisture; the results show that, on
different land types, the changing trends in each drought index and their correlation with
climate factors vary [76]. This shows that different drought indices apply differently to the
various land types [77,78]. Subsequent studies should properly select the most appropriate
drought index to monitor the regional drought conditions to ensure that the research results
are true and reliable.

4.3. Uncertainty

Although the results of this paper clearly present the spatial and temporal patterns and
the changing trends of the drought in the Yellow River Basin from 2003 to 2019, as well as the
feedback effect of the drought situation on climate change, there are still some uncertainties.
First, the land cover data used in this study is the single-year data of the MCD12Q1.006
datasets, which does not consider the land cover type change in parts of the Yellow River
Basin during the period 2003–2019. Thus, there are some errors in time series analysis
and correlation analysis. Second, since the Yellow River Basin also includes small areas of
other land types, such as grasslands, croplands, and barren lands, the correlation analysis
for smaller land types is not representative, and subsequent research should analyze the
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drought situation of these land cover types in a larger area. Third, the ATC model adopted
in this paper is a basic LST data reconstruction model, which simply attributes the LST
change form to a sinusoidal function, without comprehensively considering other factors
affecting the LST. Therefore, there are still many unknown problems in the reconstructed
LST. These uncertainties will be the focus of future studies.

5. Conclusions

This study used MODIS LST and NDVI to calculate TCI, VCI, VHI, and TVDI and
analyze the drought status and change trend of the Yellow River Basin from 2003 to 2019.
The spatial distribution and changing trends of the four typical remote sensing drought
indexes shows that: TCI has the smallest value in the northwest of the Yellow River Basin
and the largest value in the southwest, indicating drought conditions in the northwest
and wet conditions in the southwest; in the central and southeast regions of the Yellow
River Basin, the TCI value indicates a mild drought status. According to the slope of the
index change, the TCI value is rising in the southwest and central Yellow River Basin, but
decreasing in northwest and southeast, which indicates that the drought decreases in the
southwest and central regions and increases in the northwest and southeast. The VCI
and VHI are consistent in spatial distribution, and their values are low in the northwest
of the Yellow River Basin, where there are severe drought conditions; and they are very
high in the southwest, southeast, and central regions, where there are basically no drought
conditions. Unlike the TCI slope, the VCI and VHI slopes are negative (Slope < 0) in the
southwest region of the Yellow River Basin; this indicates an increasing drought in the
southwest region of the Yellow River Basin. The values of TVDI are the largest in the
northwest of the Yellow River Basin, smallest in the southwest, and relatively large in the
central and southeast, which indicates severe drought in the northwest, humidity in the
southwest, and mild drought in the central and southeast, all of which are consistent with
the drought pattern characterized by the TCI index. The TVDI slope is negative in the
northwest of the Yellow River Basin, positive in the southwest, and near 0 in the central and
southeast, which indicates decreasing drought in the northwest, increasing drought in the
southwest, and no significant change in the central and southeast study area. Time series
analysis of the four drought indexes showed that the drought conditions were stable in
most areas of the Yellow River Basin from 2003 to 2019. Overall, the drought conditions in
the central and southeast of the Yellow River Basin are basically unchanged, with a slightly
changing trend in the northwest and southwest areas. The results of correlation analysis
show that, in most areas of the Yellow River Basin, the three drought indexes calculated
by the ATC model are significantly correlated with temperature and soil moisture, while
the VCI index is only significantly correlated with precipitation in the grasslands, which
indicates the necessity of optimization and reconstruction of data in drought monitoring.

The four drought indices used in this study can more accurately monitor the spatial
patterns of regional drought when compared to the meteorological drought index SPI and
PDSI indices. In areas where rainfall is perennially scarce, such as the Tengger Desert, they
are often exhibited as drought conditions for several or even decades, where drought condi-
tions cannot be monitored using drought indexes, such as SPI, PDSI based on precipitation
data. Due to the coarse spatial-temporal resolution of the precipitation data, the details
of local small-area drought cannot be identified when monitoring regional-scale drought
conditions. Compared with the precipitation data, the NDVI and LST data used in this
study have high spatial-temporal resolution, and the vegetation and surface temperature
have very stable inter-annual changes. Therefore, the drought conditions and historical
changes of the NDVI and LST data can very accurately monitor the drought for many
years, which is more important for more human understanding and effective response to
drought disasters in the future.
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