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Abstract: Timely and reliable maize yield prediction is essential for the agricultural supply chain
and food security. Previous studies using either climate or satellite data or both to build empirical
or statistical models have prevailed for decades. However, to what extent climate and satellite
data can improve yield prediction is still unknown. In addition, fertilizer information may also
improve crop yield prediction, especially in regions with different fertilizer systems, such as cover
crop, mineral fertilizer, or compost. Machine learning (ML) has been widely and successfully
applied in crop yield prediction. Here, we attempted to predict maize yield from 1994 to 2007
at the plot scale by integrating multi-source data, including monthly climate data, satellite data
(i.e., vegetation indices (VIs)), fertilizer data, and soil data to explore the accuracy of different inputs
to yield prediction. The results show that incorporating all of the datasets using random forests
(RF) and AB (adaptive boosting) can achieve better performances in yield prediction (R2: 0.85~0.98).
In addition, the combination of VIs, climate data, and soil data (VCS) can predict maize yield more
effectively than other combinations (e.g., combinations of all data and combinations of VIs and soil
data). Furthermore, we also found that including different fertilizer systems had different prediction
accuracies. This paper aggregates data from multiple sources and distinguishes the effects of different
fertilization scenarios on crop yield predictions. In addition, the effects of different data on crop
yield were analyzed in this study. Our study provides a paradigm that can be used to improve yield
predictions for other crops and is an important effort that combines multi-source remotely sensed
and environmental data for maize yield prediction at the plot scale and develops timely and robust
methods for maize yield prediction grown under different fertilizing systems.

Keywords: maize; yield prediction; fertilizer systems; machine learning

1. Introduction

Sustainable crop yield is the ultimate goal of farmland cultivation and it is also a
direct indicator of farmland productivity and income. Maize (Zea mays L.) is the staple
food for more than 4.5 billion people, and the demand is expected to double by 2050 [1].
Therefore, timely and accurate prediction of maize yield is vital for not only international
policy but also for grain storage and trade. Traditional crop yield prediction primarily
relies on models and statistical regression methods [2]. Remote sensing (RS) technology is
objective, low cost, and rapid, and can overcome the limitations of traditional field methods
for crop yield prediction. Previous studies have mostly used the normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), and enhanced vegetation index
2 (EVI 2) to predict crop yield and biomass [3,4]. In recent decades, it has become a popular
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technology for crop growth monitoring and yield prediction [5], but predicting yields using
only RS limits their accuracy [6]. Statistical regression methods provide a simpler method
for yield prediction, but such statistical models are typically localized and are unable to
be extended to other areas [7]. With some explicit cause–effect relationships, statistical
regression models have been increasingly replaced by crop models in recent years due
to their explanatory power and spatial generalization [8]. In addition, climate variables
(e.g., temperature and precipitation) and soil data are the primary inputs for crop yield
prediction because they can capture important environmental information. Most statistical
models predict yields by developing regression equations between climate variables (tem-
perature, precipitation, solar radiation, etc.) and measured yields at different temporal and
spatial scales [9]. Additionally, previous studies have confirmed that fertilizer significantly
affects crop production [10], especially with irrigation, fertilizer application, pesticide use,
farm mechanization status, among other factors. For example, adopting the best farm man-
agement practices could increase crop yield [11]. However, the yield of different fertilizer
systems is different [12], and few studies have considered the contribution of different
fertilizer factors (mineral fertilizer, compost, and cover crop) for crop yield prediction.
Additionally, the combination of input variables from different fertilizer systems that could
achieve the best results is unclear.

Crop yield is a function of the interaction between the spatial and temporal changes
of variables, and crop yield prediction is affected by many variables. For example, satel-
lite observations, climate variables, and soil properties, can be used for capturing yield
variability [3]. In recent decades, many researchers have been increasingly focused on
improving crop yield prediction by means of different methods, and machine learning
(ML) is an immediate successor of older statistical methods that adopts important weights
rather than the likelihood or probability of any forecasting information [13].

Machine learning is a sub-class of artificial intelligence. It is self-learning based on
algorithms, which means that the system learns from its experience. For instance, the
type of data input to the system learns the pattern and responds to it, resulting in the
model learning at the output. It uses a statistical learning algorithm that automatically
learns and improves without human help. Predictions based on historical data can be
conducted using machine learning. Various applications include stock pricing predictions,
scientific research, marketing campaigns, and many more. Generally, artificial neural
networks and random forest algorithms are used for predictions [14]. Nawar et al. (2016)
showed that a model based on partial least squares regression (PLSR) can perform well
in predicting soil organic matter, whereas Knox et al. (2015) found that a model based
on the random forest (RF) approach is better, particularly for data that do not follow a
normal distribution [15,16]. Viscarra Rosseland Behrens (2010) reported that support vector
machines (SVM) can achieve more accurate predictions than PLSR and RF models [17].

Therefore, ML is more effective for noisy data and is able to interpret nonlinear rela-
tionships. Additionally, it has been widely and successfully applied in crop yield prediction.
Accordingly, ML could provide powerful support for improving yield prediction models.
Hunt et al. (2019) trained an RF model with high-resolution Sentinel-2 images and mapped
at the field-scale wheat yield at a 10 m resolution in the UK [18]. Cai et al. (2019) accurately
predicted county-scale wheat yield in Australia using three ML methods and confirmed
that their performances were much better than the traditional regression model [19]. Sev-
eral previous studies have proved its ability to improve crop yield prediction [5]. However,
such methods have rarely been tested for crop yield prediction under different regional
fertilizer systems.

In view of the current research, many of the problems indicated in previous studies
should be considered, so we integrated 15 indicators derived from remote sensing data,
climate data, fertilizer data, and soil properties data to build ML models to predict maize
yield. We adopted six machine learning models to predict maize yield at the plot scale,
including linear regression (LR), K-nearest neighbor (KNN), support vector machines
(SVM), Gaussian process regression (GPR), adaptive boost (AB), and random forests (RF).
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Our main objectives were (1) to construct a maize yield prediction framework and analysis
with the combination of input variables could achieve the best results, (2) to explore the
differences among these agricultural systems for accurate yield prediction and identify the
relative importance of all variables, and (3) to identify the critical factors for maize yield
prediction by considering the different fertilization systems.

2. Material and Methods
2.1. Study Area

The Russell Ranch Sustainable Agriculture Facility (RRSAF) is a 120-ha facility near
the University of California, Davis (UC Davis) campus dedicated to investigating irrigated
and dryland agriculture in a Mediterranean climate and is a core unit of the Agricultural
Sustainability Institute at UC Davis. The RRSAF houses a 100-year study referred to
as the “Century Experiment”, formerly called the Long-Term Research in Agricultural
Systems (LTRAS). Initiated in 1993, the Century Experiment comprised of 72 0.4-ha plots
including 10 different replicated cropping systems [20]. Cropping systems were designed
to compare the resource-use efficiency, productivity, environmental effects, and economic
return from cropping systems that differ in crop rotation and degree of reliance on rainfall
and fertilizer nitrogen. All field operations use full-scale agricultural equipment identical
or similar to those used by local commercial farming operations and are either owned by
RRSAF, leased from UC Davis facilities, or borrowed from local farmers. The RRSAF has a
Mediterranean climate with monthly average minimum temperatures varying from 2.9 ◦C
during the coldest month (December) to monthly average maximum temperatures of 33.7
◦C during the warmest month (July). The mean annual rainfall is 440 mm. In this paper,
we chose three fertilizer systems: conventional, organic tomato–maize rotations (CMT with
mineral fertilizer and OMT with compost and winter cover crop (WCC), respectively), and
legume–maize-tomato (LMT) rotation with WCC [12,21] shown in Figure 1.

2.2. Satellite Images

In this paper, the Landsat TM 5 from 1994 to 2007 of the study area were acquired (
http://earthexplorer.usgs.gov/ (accessed on 18 September 2021)) (see Table 1). There was
no cloud cover in the study area during that time. Radiometric calibration and atmospheric
correction of the Landsat data were performed as a preprocessing step using the fast line-
of-sight atmospheric analysis of spectral hypercubes (FLAASH) in ENVI5.1. A vegetation
index can monitor dynamic changes in vegetation. Currently, many studies have shown
that the VIs measured in this paper have good correlations with crop yield [4,22]. We
collected three types of vegetation index data (VI), the normalized difference vegetation
index (NDVI), the enhanced vegetation index (EVI), and the enhanced vegetation index
2 (EVI2). In this paper, the time-series NDVI curve is used as an example to analyze the
correlation coefficient between yield and NDVI.

2.3. Soil Data and Fertilizer Data

Soil is a crucial factor affecting crop yield, as are the organic matter and the physical
and chemical attributes distributed in different areas of soil. We selected seven variables
that describe the physical and mineral properties of the soil. For example, organic matter
content for the topsoil layer (0–25 cm and 25–50 cm), soil particle distribution for the topsoil
layer, and soil bulk density data were obtained in different systems in 1992 or 1993.

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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Figure 1. Study area (aerial image on 13 June 1994) ((a), study farm; (b), California and Yolo). 
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Figure 1. Study area (aerial image on 13 June 1994) ((a), study farm; (b), California and Yolo).

The CMT system in RRSAF received mineral fertilizer, and it was applied twice,
including during the application of the base and topdressing. The LMT system was planted
with a WCC. The OMT system received chicken manure compost from Foster Farms
(Livingston, CA, USA) and was planted with a WCC.

2.4. Climate Data

Climate variables (e.g., temperature, precipitation) are important drivers for crop
yield. We selected yearly maximum temperature (TMAX), yearly minimum temperature
(TMIN), and yearly total precipitation (PRE)to predict the maize yield. Climate data were
obtained from the meteorological observation station at Russell Ranch [21].

2.5. Machine-Learning Methods for Estimating Crop Yield

All of the variables and yields from 1994 to 2007 were normalized; therefore, all of
variables in the models are at a common level and are comparable. In this paper, we
had small data sets, so the final model was trained using the full data set. The five-fold
cross-validated (CV) algorithm was used to evaluate model performance, which protects
against overfitting [23]. This method provides a good estimate of the predictive accuracy
of the final model trained using the full data set. The method requires multiple fits, but it
makes efficient use of all of the data, so it works well for small data sets. Appendix A lists
all of the input and output data.



Remote Sens. 2021, 13, 3760 5 of 14

Table 1. Selected RS images in this paper.

Year Dates Numbers Sensors

1994
4/28, 5/30, 7/1, 7/17,
8/2, 8/18, 9/3, 9/19,

10/21
9

Landsat TM 5

1995
5/1, 5/17, 6/18, 7/4,
7/20, 8/5, 8/21, 9/6,
9/22, 10/08, 10/24

11

1996
6/4, 6/20, 7/6, 7/22,

8/7, 9/24, 10/10,
10/26

8

1997
5/6, 6/7, 6/23, 7/9,

7/25, 9/11, 9/27,
10/13

8

1998
5/25, 6/26, 7/12,
7/28, 8/29, 9/14,

10/16
7

1999
5/28, 6/13, 6/29,
7/31, 8/16, 9/17,

10/3, 10/19
8

2000
5/30, 6/15, 7/1, 7/17,
8/2, 8/18, 9/3, 9/19,

10/5
9

2001 5/1, 6/2, 6/18, 8/5,
8/21, 9/6, 10/24 7

2002
6/5, 6/21, 7/7, 7/23,
8/8, 8/24, 9/9, 9/25,

10/11
9

2003
5/23, 6/8, 6/24, 7/10,

7/26, 8/11, 8/27,
9/12, 10/14

10

2004
5/9, 5/25, 6/10, 6/26,

7/12, 7/28, 8/13,
8/29, 9/14

9

2005
5/12, 6/13, 6/29,

7/15, 7/31, 8/16, 9/1,
9/17, 10/3,

9

2006
6/16, 7/2, 7/18, 8/3,

8/19, 9/4, 9/20, 10/6,
10/22

9

2007 5/18, 6/3, 6/19, 7/5,
7/21, 8/22, 9/7 7

2.5.1. Linear Regression (LR)

LR is the first type of regression analysis that has been well studied and widely used
in practical applications [24]. This is because the linear model depends on its unknown
parameters, making it easier to fit than the nonlinear model, which depends on its position
parameters, and the statistical characteristics of the estimation that is produced are easier
to determine. By comparing different kernel functions, the stepwise regression algorithm
performed the best in this study.

2.5.2. Support Vector Machine (SVM)

SVM is a supervised non-parametric algorithm that is characterized by the use of
kernels and by acting on the margin [25]. During SVM regression, the input is mapped
to a high-dimensional feature space using a kernel function, and then a linear regression
model is constructed in the new feature space to balance between minimizing errors
and overfitting. Kernel functions (linear, polynomial, Gaussian, etc.) are one of the most
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important hyper-parameters that need to be tuned. By comparing different kernel functions,
the polynomial kernel function was found to perform the best in this study.

2.5.3. Gaussian Process Regression (GPR)

GPR is a generalized Gaussian probability distribution for nonlinear regressions and a
nonparametric method suitable for a variety of situations, especially for high-dimensional
space problems [26]. The Gaussian process is a collection of random variables whose
properties are any finite number of subsets with a joint Gaussian distribution. However,
matrix inversion is a necessary challenge that needs to be handled, which increases the
computational complexity and causes the model to run very slowly. The GPR used in this
paper is based on the exponential kernel function.

2.5.4. KNN

KNN is a type of instance-based learning that calculates the distance of the predictor
variables to the nearest training group known to the model. KNN tolerates noise and
unrelated properties and has a relatively relaxed concept bias [27].

2.5.5. Adaptive Boost (AB)

AB is an iterative algorithm. Its core idea is to train different weak classifiers with the
same training set and then combine these weak classifiers to form a strong classifier. AB
can deal with classification and regression problems, and an advantage of AB is limiting
overfitting [28].

2.5.6. Random Forests (RF)

Random forests are a combination of tree predictors and are robust with respect to
noise. Each tree is built by selecting random variable sets and dataset samples, and all
of the trees in the forest have the same distribution characteristics. After generating a
large number of individual trees, they determine the final classes based on which trees
were selected the most often. Therefore, RF has the efficiency to handle high-dimensional
datasets and has avoided overfitting over the past decade of use. Additionally, RF can
quantify the relative importance of measured variables and is a reasonable method for
variable selection [29].

2.6. Model Evaluation

In order to evaluate the six ML models, cross-validation (CV) is a widely used strategy
for algorithm selection because of its simplicity, universality, and efficiency in avoiding the
overfitting issue [30]. It is generally accepted that a model with the smallest estimation
error is the best model.

The data from 1994–2006 in even years were used for training and testing, and the
data from 1995–2007 in odd years were used to verify the predicted yield accuracy.

We adopted the root-mean-square error (RMSE) and the coefficient of determination
(R2) to evaluate the performance of the ML models, which can be calculated as follows:

R2 =
(∑n

i=1(yi − yi)(xi − xi))
2

∑n
i=1(yi − yi)

2 ∑n
i=1(xi − xi)

2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (2)

where i (i = 1,2,..., n) is the number of samples used for machine learning model, yi is the
measured maize yield, yi is the corresponding mean value, xi is the predict maize yield,
and xi is the corresponding mean value. The closer R2 is to 1, the higher the prediction
performance of the model is. A small RMSE value indicates less discrepancy within the
measured yield and predicted yield.
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3. Results
3.1. The Key Time Selected for Vis from Correlation Coefficients between Yield and NDVI

Figure 2 is time-series NDVI and the correlation coefficient between the maize yield
and the NDVI in the even years from 1994 to 2006. Figure 2 shows that the NDVI in bot
h the early stage and end stage were strongly correlated with each other, and both show
significant correlations with maize yield (p < 0.05). As for different systems, the overall
trend of the time-series curves of different systems is same, showing a parabola of first
growth and then shows decline. Due to the application of base fertilizer and top dressing,
the NDVI of CMT is better than the other two systems in the early growth stage of maize,
and OMT is better than the other two systems in the vigorous growth stage of maize.
Overall, from the correlation coefficients between NDVI and yield, the dominant time
windows of the VIs controlling yields are both in the early stage and end stage of maize
growth. Therefore, the VIs in early maize growth from the end of May to the beginning of
June were selected to predict maize yield in this study; VIs were also chosen due to the RS
images obtained in this study area.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 14 
 

 

performance of the model is. A small RMSE value indicates less discrepancy within the 

measured yield and predicted yield. 

3. Results 

3.1. The Key Time Selected for Vis from Correlation Coefficients between Yield and NDVI 

Figure 2 is time-series NDVI and the correlation coefficient between the maize yield 

and the NDVI in the even years from 1994 to 2006. Figure 2 shows that the NDVI in bot h 

the early stage and end stage were strongly correlated with each other, and both show 

significant correlations with maize yield (p < 0.05). As for different systems, the overall 

trend of the time-series curves of different systems is same, showing a parabola of first 

growth and then shows decline. Due to the application of base fertilizer and top dressing, 

the NDVI of CMT is better than the other two systems in the early growth stage of maize, 

and OMT is better than the other two systems in the vigorous growth stage of maize. 

Overall, from the correlation coefficients between NDVI and yield, the dominant time 

windows of the VIs controlling yields are both in the early stage and end stage of maize 

growth. Therefore, the VIs in early maize growth from the end of May to the beginning of 

June were selected to predict maize yield in this study; VIs were also chosen due to the RS 

images obtained in this study area. 

1994/5/8 1994/6/8 1994/7/8 1994/8/8 1994/9/8 1994/10/8
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Date

N
D

V
I

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

gfe

dca

 C
o
rr

el
a
ti

o
n

 C
o
ef

fi
ci

en
t

b

1996/5/21 1996/6/21 1996/7/21 1996/8/21 1996/9/21 1996/10/21
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Date

N
D

V
I

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 C
o
rr

el
a
ti

o
n

 C
o
ef

fi
ci

en
t

1998/5/4 1998/6/4 1998/7/4 1998/8/4 1998/9/4 1998/10/4
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Date

N
D

V
I

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 C
o
rr

el
a
ti

o
n

 C
o
ef

fi
ci

en
t

2000/5/17 2000/6/17 2000/7/17 2000/8/17 2000/9/17
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Date

N
D

V
I

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 C
o
rr

el
a
ti

o
n

 C
o
ef

fi
ci

en
t

2002/5/17 2002/6/7 2002/6/28 2002/7/19 2002/8/9 2002/8/30 2002/9/20
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 CMT

 OMT

 LMT

 Correlation Coefficient

Date

N
D

V
I

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 C
o
rr

el
a
ti

o
n

 C
o
ef

fi
ci

en
t

2004/4/12 2004/5/12 2004/6/12 2004/7/12 2004/8/12
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Date

N
D

V
I

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 C
o
rr

el
a
ti

o
n

 C
o
ef

fi
ci

en
t

2006/5/12 2006/6/12 2006/7/12 2006/8/12 2006/9/12 2006/10/12
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Date

N
D

V
I

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 C
o
rr

el
a
ti

o
n

 C
o
ef

fi
ci

en
t

 

Figure 2. Time-series ((a–g), 1994–2006) for NDVI and correlation coefficient (p < 0.05) between yield and NDVI. 

3.2. Fertilizer Factor Analysis between Yield and Fertilizer during 1994–2006 

Figure 3 shows yield and fertilizer curves for different systems from 1994–2006. In 

the RRSAF, the high-yield plots were mostly distributed in the CMT; however, the change 

of yield from 1994 to 2006 was consistent with the application of top dressing mineral 

fertilizer (Figure 3b). As for LMT and OMT, WCC and compost were applied in RRSAF, 

and the yield trends were consistent with that of WCC for LMT and compost for WCC. 

Therefore, in this study, we selected the CMT mineral fertilizer; the WCC moisture for 

LMT and compost; and WCC for OMT to predict the maize yield. 

Figure 2. Time-series ((a–g), 1994–2006) for NDVI and correlation coefficient (p < 0.05) between yield
and NDVI.

3.2. Fertilizer Factor Analysis between Yield and Fertilizer during 1994–2006

Figure 3 shows yield and fertilizer curves for different systems from 1994–2006. In the
RRSAF, the high-yield plots were mostly distributed in the CMT; however, the change
of yield from 1994 to 2006 was consistent with the application of top dressing mineral
fertilizer (Figure 3b). As for LMT and OMT, WCC and compost were applied in RRSAF,
and the yield trends were consistent with that of WCC for LMT and compost for WCC.
Therefore, in this study, we selected the CMT mineral fertilizer; the WCC moisture for LMT
and compost; and WCC for OMT to predict the maize yield.
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Figure 3. Yield and fertilizer curve for different systems from 1994–2006. (a,b), CMT: mineral fertilizer
(total applied fertilizer and nitrogen applied); (a): base fertilizer; (b): top dressing. (c), LMT: winter
cover crop (WCC) moisture. (d), OMT: compost applied.

3.3. The Performances of Multi-Models for Predicting Maize Yield

In this study, six ML models were trained with the measured yields, and 15 maize variables
were measured at the plot level. The results were evaluated based on cross-validation and
were summarized according to different models and different data combinations (Figure 4).
Comprehensively considering the evaluation indicators (R2, RMSE), RF, and AB models showed
the highest accuracy, with higher R2 (0.85~0.98) and lower RMSE (<1000 kg/ha). Although,
the R2 of the other models are above 0.65, all of their RMSEs were over 1100 kg/ha and even
over 1900 kg/ha in some cases (VS for SVM), indicating an insignificant relationship between
the predicted and the measured yields and larger errors. Thus, RF and AB are more suitable
for maize yield prediction than the other algorithms in RRSAF. Moreover, we found that the
accuracy varied by different data combinations even with the same machine learning algorithm,
and VCS and VCSF achieved the highest accuracy. Finally, two algorithms (RF and AB) and two
data combinations (VCS and VCFS) in this paper were selected to establish prediction models
for maize yield at the plot level (Figure 5).
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Figure 4. R2 (a), RMSE (b) of six models for maize at the plot scale in different data combinations (V: VIs; VS: VIs + soil; VC:
VIs + climate; VIs + climate + soil; VF: VIs + fertilizer; VCS: VIs + climate + soil; VCSF: VIs + climate + soil + fertilizer).

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 14 
 

 

  

Figure 4. R2 (a), RMSE (b) of six models for maize at the plot scale in different data combinations (V: VIs; VS: VIs + soil; 

VC: VIs + climate; VIs + climate + soil; VF: VIs + fertilizer; VCS: VIs + climate + soil; VCSF: VIs + climate + soil + fertilizer). 

Based on the trained RF and AB models in last section, the RRSAF yields were pre-

dicted, and we forecasted the different systems separately. The scatter diagrams of the 

predicted and measured yields of the models in different systems from 1994 to 2006 in 

even years are shown in Figure 5. We found that the predicted and measured yields 

showed a good linear fit, with a R2 of above 0.87. Such results indicated that the two ML 

models can predict the maize yield at the plot level with higher accuracy and RF > AB. 

Although all of the predicted yields were close to the measured yields, consistent under-

estimations were found for LMT and OMT and both VCS and VCSF for the two models, 

especially for the AB model. In the next section analyzing the different systems, we used 

the RF model to predicted the maize yield for different systems in odd years. 

  

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VCSF V VS VC VCS VCF VF

R
2

Methods

a

LR

SVM

GPR

RF

AB

KNN

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

VCSF V VS VC VCS VCF VF

R
M

S
E

Methods

b

LR

SVM

GPR

RF

AB

KNN

y = 0.9181x + 914.58

R² = 0.9389

RMSE=468.08
y = 0.8681x + 1135.7

R² = 0.9602

RMSE=452

y = 0.8148x + 1375.1

R² = 0.953

RMSE=389.06

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

P
re

d
ic

te
d

 Y
ie

ld

Measured Yield

a

CMT

OMT

LMT

y = 0.856x + 1573.8

R² = 0.9321

RMSE=559.88

y = 0.6992x + 2416.6

R² = 0.87

RMSE=800.56

y = 0.6568x + 2383.9

R² = 0.711

RMSE=847.44

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

P
re

d
ic

te
d

 Y
ie

ld

MeasuredYield

b

CMT

OMT

LMT

y = 0.9055x + 1146.5

R² = 0.9618

RMSE=373.45

y = 0.8718x + 1092

R² = 0.9592

RMSE=447.78

y = 0.8259x + 1344.1

R² = 0.9503

RMSE=382.43

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

P
re

d
ic

te
d

 Y
ie

ld

Measured Yield

c

CMT

OMT

LMT

y = 0.851x + 1644.8

R² = 0.8978

RMSE=640.00

y = 0.687x + 2503

R² = 0.8861

RMSE=788.02

y = 0.6698x + 2357.7

R² = 0.727

RMSE=806.38

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

P
re

d
ic

te
d

 Y
ie

ld

Measured Yield

d

CMT

OMT

LMT

Figure 5. Scatter plots of measured yield and predicted yield of RF and AB models for different maize systems at the plot
scale from 1994 to 2006 in even years. ((a), RF_VCSF; (b), AB_VCSF; (c), RF_VCS; (d), AB_VCS).

Based on the trained RF and AB models in last section, the RRSAF yields were
predicted, and we forecasted the different systems separately. The scatter diagrams of the
predicted and measured yields of the models in different systems from 1994 to 2006 in even
years are shown in Figure 5. We found that the predicted and measured yields showed a
good linear fit, with a R2 of above 0.87. Such results indicated that the two ML models can
predict the maize yield at the plot level with higher accuracy and RF > AB. Although all of
the predicted yields were close to the measured yields, consistent underestimations were
found for LMT and OMT and both VCS and VCSF for the two models, especially for the
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AB model. In the next section analyzing the different systems, we used the RF model to
predicted the maize yield for different systems in odd years.

Figure 6 shows the scatter plots of the measured yield and predicted yield of RF for
different maize systems at the plot scale from 1995 to 2007 in odd years. It was found that
the accuracy of the RF model is still very high when using the data from odd years.
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Figure 6. Scatter plots of measured yield and predicted yield of RF for different maize systems at the
plot scale from 1995 to 2007 in odd years. ((a), RF_VCSF; (b), RF_VCS).

3.4. Comparison of Forecast Errors in Different Crop Systems

Crop yield is driven by the interaction between fertilizer management, soil, and
weather conditions. Yield variation is not only from soil and climate data but also from
fertilizer systems. To investigate the prediction errors comprehensively, we summarized
them according to the systems and the RF model. The results showed that the errors of
the RF models vary by the systems (CMT, LMT, OMT). The accuracy of the three fertilizer
systems in the VCS is better than that in the VCSF at different degrees (Figures 5 and 6),
and there is no significant difference between the VCS and VCSF in OMT. However, the
LMT and CMT in VCS had better accuracy than the VCFS.

3.5. The Important Factors for Maize Yield Prediction in RRSAF

To identify the critical factors for maize yield prediction in RRSAF, we further analyzed
the important orders of the 15 variables from the RF model. The importance of the
prediction variables is as ordered: EVI > NDVI > EVI2> fertilizer > soil bulk density
(0–25 cm) > soil bulk density (25–50 cm) > PRE > TMAX > SOM (0–25 cm) > TMIN > SOM
(25–50 cm)> soil particle.

Distribution (Figure 7a). EVI is more important for maize yield prediction than NDVI
in RRSAF, which is consistent with the study by Bolton et al. [31]. For the two variables
related to temperature, TMAX contributed more significantly than TMIN to the accurate
prediction of maize yield, implying that TMAX is of greater importance on maize yield. As
for the three systems in RRSAF, CMT was the most affected by TMAX followed by VIs and
fertilizer; LMT was the most affected by WCC followed by TMAX and VIs; and OMT was
more affected by compost + WCC followed by precipitation and TMIN.
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4. Discussion
4.1. Comparing the Performances of ML Models in Predicting Maize Yield

We proposed a framework for yield prediction through the development of a com-
prehensive yield prediction model driven by weather, remote sensing data, soil datasets,
and fertilizer data. Additionally, we found that the non-linear ML methods (RF and AB)
perform better overall than the traditional yield production method (Figure 4), and sim-
ilar results have been reported in previous studies [32]. This could be explained by the
non-linear relationships between variables and crop yields [19]. Moreover, ML methods
have the advantages of computational efficiency and spatial generalizations relative to the
deep learning network, which opens new prospects for crop yield prediction at a plot or
even a larger scale. Additionally, the RF and AB models performed much better for VCS
(VIs + climate + soil) and all combinations including fertilizer data (VCSF: VIs + climate +
soil + fertilizer). It was found that including fertilizer information in the model does not
produce outstandingly better predictions after modeling the three systems together, and
the accuracy of the three systems is different for the different systems (Figures 5 and 6).

4.2. Model Performance for Different Systems and Feature Importance in Yield Prediction

The relative impact of a single variable cannot be quantified independently of other
variables, but the RF method provides a measure for assessing the relative importance of
variables to the prediction results [33]. The results in this study show that all variables
with the exception of soil particle distribution and SOM (25–50 cm) are crucial for yield
prediction (Figure 7a). Additionally, previous studies have also emphasized the importance
of using a vegetation index, precipitation, and temperature in predicting crop yield [34].
However, the use of Vis in this paper to predict the maize yield alone limited yield accuracy
(Figure 4), which is inconsistent with a previous study that showed that the VIs achieved
a lower R2, which was below 0.5, for yield estimation [10]. Moreover, the contributions
to maize yield estimation of other critical factors, such as soil factors, were identified and
isolated. Those factors contribute to better explanations of yield variability, proving the
hypothesis from Guan et al. [34].

In this study, three systems in RRSAF were separated, namely “CMT”, “LMT”, and
“OMT”. We also found that the accuracy of yield prediction varied across different systems
(Figure 6). The importance of VIs is weaker than putting the three data systems together to
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evaluate the different farming systems (Figure 7a). Fertilizer and climate factors can provide
more information for more accurate yield prediction (Figure 7b–d). Additionally, we found
that the relative importance of TMAX is greater than other variables (Figure 7b) in CMT.
Within a certain fertilizer and range of temperatures, an increase of temperature enhances
respiration in crops, and the energy that is generated increases, as is the absorption of
nutrients and the synthesis and accumulation of organic nutrients. It was also found that
crop yields increase with an increase of TMIN and PRE in OMT, which is mainly due to the
increasing ground humidity, which benefits the effect of organic fertilizer. LMT was the
most affected by WCC in terms of soil nutrients and microorganisms; the decomposition of
WCC can not only increase the content of organic matter and activate soil nutrients but can
also provide nutrients for later crops to absorb [13].

4.3. Uncertainties in the Study

This study faced several uncertainties. The first limitation is that using the Mediter-
ranean climate region as a study area could lead to errors when it is applied to other
climatic regions due to its winter dominated precipitation regime. Another concern is
that VIs suffers from the coarse spatiotemporal resolution of Landsat TM 5 at the plot
scale in the RRSAF. With the more recent availability of the Sentinel-2 satellites, higher
spatial and temporal resolution data are expected to be available in upcoming studies. In
addition, the current study focused on predicting plot-level crop yield because the yield
data were recorded and are only available for the whole plot or for two yield data points
per plot. Additionally, we can obtain newer data each year. In future research, new data
will be added to study and yield model correction. Large-scale maize yield prediction
needs further verification when we extract the area for the input variables. In contrast,
we should note that no mechanistic processes for crop growth were included in the ML
models due to their internal black box structures, which the prevented examination of
their physiological processes. Although ML is able to identify RRSAF in this paper effi-
ciently, including unknown processes will inevitably increase the uncertainty of model
performance. Alternatively, crop growth (DSSAT, WOFOST) models are developed and
validated by many experts over decades of research [35]. Crop models have characterized
the internal growth and development mechanism of major crops to some degree, and these
have been widely applied with higher accuracy in many regions. Thus, combining ML
with crop growth models is an idea for future studies on yield prediction.

5. Conclusions

We predicted maize yield at the plot scale based on multi-source data and multiple
machine learning models at the plot scale in RRSAF. It was found that RF and AB predicted
maize yields with the highest accuracy, and RF demonstrated the best generalization
ability among the methods. The RF model can estimate maize yields accurately in advance
(before the harvesting dates) in RRSAF. It was found that fertilizer information does not
produce outstandingly better predictions, and the accuracy is different for different systems.
Additionally, this paper has its limitations, including the restricted access and locality of the
study region. However, our study also highlights the necessity of integrating multi-spectral
satellite data and environmental variables for predicting crop yield.
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Appendix A

Input Data 1 Input Data 2 Out Data

All Data CMT LMT OMT

Measured
Yield

Predicted
Yield

NDVI NDVI NDVI NDVI
EVI EVI EVI EVI
EVI2 EVI2 EVI2 EVI2
SOM_25 SOM_25 SOM_25 SOM_25
SOM_50 SOM_50 SOM_50 SOM_50
sand_% sand_% sand_% sand_%
silt_% silt_% silt_% silt_%
clay_% clay_% clay_% clay_%
SOIL Bulk-
density_25

SOIL Bulk-
density_25

SOIL Bulk-
density_25

SOIL Bulk-
density_25

SOIL Bulk-
density_50

SOIL Bulk-
density_50

SOIL Bulk-
density_50

SOIL Bulk-
density_50

Precipition Precipition Precipition Precipition
Tmax Tmax Tmax Tmax
Tmin Tmin Tmin Tmin
Fertilizer 1:
for total
applied
material+
WCC +
Compost

Total applied
material

WCC
WCC +
Compost

Fertilizer 2:
WCC +
Compost

Nitrogen
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