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Abstract: Despite high fragmentation and deforestation, little is known about wildlife species richness
and occurrence probabilities in tropical dry forest (TDF) landscapes. To fill this gap in knowledge,
we used a Sentinel-2-derived land-cover map, Normalized Difference Vegetation Index (NDVI) data
and a multi-species occupancy model to correct for detectability to assess the effect of landscape
characteristics on medium and large mammal occurrence and richness in three TDF areas that differ
in disturbance and seasonality in Ecuador. We recorded 15 species of medium and large mammals,
distributed in 12 families; 1 species is critically Endangered, and 2 are Near-Threatened. The results
indicate that species occupancy is related to low forest cover and high vegetation seasonality (i.e., high
difference in NDVI between the wet and dry seasons). We believe that the apparent negative effect
of forest cover is an indicator of species tolerance for disturbance. The three sampling areas varied
from 98% to 40% forest cover, yet species richness and occupancy were not significantly different
among them. Vegetation seasonality indicates that more seasonal forests (i.e., those where most tree
species lose their leaves during the dry season) tend to have higher mammal species occupancy
compared to less seasonal, semi-deciduous forests. Overall, occupancy did not vary between the
dry and wet seasons, but species-specific data indicate that some species exhibit higher occupancy
during the wet season. This research offers a good understanding of mammal species’ responses to
habitat disturbance and fragmentation in TDFs and provides insights to promote their conservation.
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1. Introduction

Worldwide, biodiversity is declining at very high rates and land-cover change is
considered the main driver [1–3]. The relationship between land-cover changes and
biodiversity loss is particularly evident in tropical dry forests (TDFs) [4,5]. Globally, TDFs
have been subject to intense forest clearing, with some regions of the world losing more
than 80% of their estimated original TDF cover since 2001 [5]. The largest remnants of
TDF are located in Latin America, a region where up to 40% of the original forest cover
remains, but also the region where estimated deforestation (1980 to 2000) in TDFs is the
highest [5]. Despite these high deforestation trends, TDFs are not well represented in
conservation efforts in Latin America [6,7]. Particularly in the northwestern Pacific coast of
South America, TDFs are estimated to be unprotected, highly fragmented and consequently
at higher risk of human disturbance and further deforestation [6,7]. While these numbers
call for increasing conservation efforts to protect remaining forests, they also suggest that a
better understanding of human-impacted TDF landscapes is needed.
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Anthropogenic land-cover changes often have significant impacts on wildlife commu-
nities [1–3,8,9]. Especially for large-bodied animals, habitat reductions ultimately cause
local or regional extirpations or extinctions [8]. Most evidence suggests that Neotropical
mammals are negatively affected by forest loss and fragmentation [10,11]. However, there
are exceptions to this general trend, and some species will benefit and adapt to live in
human-impacted landscapes [9,12,13]. The effect of land-cover on mammal species richness
and abundance is probably higher in TDFs than in other more conserved environments. A
study of various taxa suggests that given the large extent of human-dominated landscapes
in Neotropical TDFs, the negative effects of land-cover change on local biodiversity will be
among the highest in the globe [3]. Despite this trend, more localized studies show that
significant numbers of species can persist in human-impacted ecosystems [9], suggesting
the need for more research about wildlife persistence in human-impacted landscapes. In
Ecuador’s TDFs, more than 70% of forests have been cleared [14,15], and many wide-
ranging and keystone species have already been extirpated [16,17]; however, little is known
about wildlife in the TDF fragments that persist [18,19].

In addition to high human impacts, TDFs in northwestern South America are seasonal,
and mammals’ species numbers likely vary not only among forest types but also by
seasons [20–23]. In TDFs in Colombia, detection probabilities have shown no variation
across seasons, but the overall richness has been found higher in more deciduous forest
types [22], and some species exhibited higher occurrence probabilities during months
of lower precipitation [20]. In Ecuador, detection rates were higher in semi-deciduous
tropical forests than in dry forests, but species richness values were similar [21]. These
findings suggest that species richness and abundance patterns are likely influenced by both
seasonality and forest type within TDFs. Thus, in order to better understand the effects
of human impacts on mammal communities within highly fragmented TDFs, a detailed
analysis of these factors in relation to anthropogenic land-cover change is necessary.

Wildlife inventories and monitoring, especially for medium and large-sized mammals,
have evolved quickly from the use of indirect methods, such as transects, hair traps or
footprint traps through the use of cameras. Camera traps underwent enormous advances
and have been increasingly used in the last decade to gather information about different
groups, including with notable success mammals, a group that tends to be highly elu-
sive [24–26]. In addition, complex analytical methods, such as multi-species occupancy
models, have been successfully used to analyze this type of information and offer multiple
advantages over traditional methods. Advantages include the following: incorporation
of uncertainty about detectability to overcome sampling biases related to the detection
differences among species, improved occupancy estimations of rare or infrequent species,
accurate calculations of community features by including potential undetected species
and the inclusion of habitat covariates, such as detailed spatial and temporal information
derived from remote sensing occupancy models are also ideal for dealing with small sam-
ple sizes. [27–30]. Remote sensing has been an important tool for wildlife management,
especially for the conservation of large animals over extensive areas [31–33]. The recent
availability of finer sensors and the development of advanced classification approaches has
made the assessment of habitat quality for smaller areas possible [34]. From a conservation
planning perspective, grouping spatially explicit information from multiple species is a
powerful combination of tools, allowing us to understand species’ responses to changes in
their landscapes and to accurately design management strategies according to the species
realities [31–33].

This research focuses on understanding mammalian persistence and occurrence patterns
in a highly fragmented landscape in central coastal Ecuador. We develop a hierarchical multi-
species-occupancy model using detailed remote-sensing-derived covariates to investigate the
influence of landscape characteristics on medium and large mammal occurrence probabilities
and richness. We aim to fill gaps in the knowledge about wildlife species’ responses to
significant human-driven changes in their habitats and to provide critical information about
TDF wildlife species to enhance their conservation in fragmented landscapes.
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2. Materials and Methods
2.1. Study Area

The study landscape comprises Cantón Sucre, an area of about 39,875 ha located in
Manabí province, central coastal Ecuador (Figure 1a,b). TDF formerly covered extensive
areas of central coastal Ecuador, but most forests were cleared during the 1950s and
1960s [15], and recent estimates suggest that the few remnants left continue to be cleared
at high rates [35]. The temperature fluctuates around 25 ◦C year-round. Precipitation
is seasonal, around 450 mm annually, with 70% of it occurring between January and
March and with a pronounced dry season of up to eight months. The months of lowest
precipitation, typically July to September, could receive as low as 4 mm of monthly rainfall.
(Data are derived from Climate Hazard Group InfraRed Precipitation with Station Data
(CHIRP) between 2016−2019.) The northern part of Cantón Sucre is watered by the mouth
of the Chone River, while the western part nears the Pacific Ocean. The coastline areas to
the west quickly gain elevation inland, reaching almost 460 m at the highest point, forming
a small chain of hills known as Coordillera del Bálsamo [36] (Figure 1b). Because of the low
forest cover but high species diversity and endemism, this area is considered a biodiversity
hotspot [37].
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Figure 1. Study landscape. (a) Location of Cantón Sucre within Ecuador; (b) Section of the study
landscape where camera traps were used; (c) The three camera trap sampling areas.

Wildlife sampling occurred in three areas in the Coordillera del Bálsamo section of
the study landscape. The Bosque Verde (BV) reserve comprises approximately 20 ha of
deciduous forest dominated by Ceiba trischistandra (Ceiba) trees. This site is estimated to be
the most disturbed area because of its close proximity to the city of Leonidas Plaza. The
other two areas are located inside the Punta Gorda reserve of about 50 ha, south and west
of BV. The area more toward the coastline of the Punta Gorda reserve is also deciduous
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forest dominated by Ceiba trischistandra trees (hereof referred to as DF), while the area more
toward the interior of the reserve is characterized by more semi-deciduous vegetation with
various dominant canopy trees (hereof referred to as SF) (Figure 1c). Both of these reserves
have been dedicated to conservation by private initiatives, and they are part of a network
of approximately nine private reserves that joined efforts in the late 2000s to form corridors
and promote biodiversity conservation in the area [36]. While small, we estimate these
three sampling areas encompass all major variations in terms of vegetation phenology and
human disturbance of the entire study landscape.

2.2. Camera Trapping

Camera-trapping was conducted from August 2016 to December 2017. Twenty Stealth-
cam G42 cameras were deployed across our three sampling areas. Eight cameras each were
deployed within DF and SF areas, whereas 4 cameras were deployed in BV. Cameras were
deployed along the linear geographical features, such as drainages and ridgelines, and
were spaced 250−500 m apart, depending on accessibility. Fewer cameras were placed
in BV mainly because the area was substantially smaller compared to DF and SF but also
because it contained less geographic variation. In all cases, cameras were deployed along
visible animal trails and attached to trees at an average height of 50 cm. Cameras were
programmed to take 3 shots per trigger with a 5-s interval delay between triggers.

Cameras were checked on average every two weeks. During the wet season, weather
conditions made it impossible to reach some cameras. Once accessibility was possible,
we realized most cameras remained operational, but others had failed or had their view
completely obstructed due to vegetation growth. Despite these problems, data from the wet
season were included in our analyses, accounting for different sample sizes. Our survey period
included the dry season of 2016 as well as both the wet and dry seasons of 2017. Sampling
efforts over the entire survey period amounted to 6172 camera trap days. Total camera days
reflect the total number of days that cameras were deployed and fully operational.

Photographs of mammal species were identified based on the Field Guide to the Mam-
mals of Ecuador [38], and the taxonomic status was assigned according to the Mammals of
Ecuador: updated species checklist [39,40]. Photographs of individual species were considered
unique detections if they were separated from the previous detection by at least 24 h. For
analyses of mammals, we included all species that triggered the cameras, except for small
rodents, which were unidentifiable.

2.3. Landscape Characteristics

The following landscape characteristics were analyzed to understand the effect of
human activities on wildlife species:

2.3.1. Land-Cover

We used Sentinel-2 data to classify the study landscape into forest, agriculture, built
areas and managed wetlands, which are estimated to be the dominant landscapes of
the study landscape. The forest class comprises evergreen and deciduous forests with
various degrees of degradation, including some secondary regrowth. The agriculture class
comprises annual crops and introduced pastures for cattle ranching. Built areas include
human settlements, construction areas and paved roads. “Managed wetlands” refers to
shrimp farms, rice fields or other managed ecosystems with a significant contribution of
water in reflectivity. In general, pastures occur along major roads, forests occur adjacent
to pasture in less accessible areas (including the coastline), built areas border pastures or
occur scattered within them and “managed wetlands” border pastures in areas with high
accessibility by the coastline.

Training data for classification analysis were obtained during field inventories con-
ducted in July 2016. Additional training data for the built and managed-wetland classes
were derived from Google Earth’s freely available high-resolution images. The built and
“managed wetlands” classes were distinctive enough to be differentiated visually on Google
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Earth. A total of 82 training points were obtained for forest, 96 for agriculture, 53 for built
areas and 40 for managed wetlands.

To obtain cloud-free composites for image classification, we masked out clouds from
all Sentinel-2 images between January 2015 and December 2017 using the Sentinel-2 QA
and Cirrus brands. We then created a single composite using the median value of each
pixel. No major changes in land-cover were identified or reported during this time period.
Additionally, spectral differences between land-cover types are estimated to be higher
than seasonal differences within each class, making it possible to combine images from all
months to create a cloud-free composite for land-cover classification.

We used Random Forest (RF) as a classification approach. RF is a machine learning
technique that consists of tree-structured classifiers built by bootstrapped randomly selected
predictors [41]. RF has been successfully used to classify complex landscapes in the humid
and dry tropics [35,42,43]. Predictors for the RF classification included six Sentinel-2 bands,
four band ratios, two vegetation indices and five image transformations (Table A1). We used
80% of the training data for classification analysis and 20% for accuracy assessment.

2.3.2. Forest Structure and Seasonality

We used the Normalized Difference Vegetation Index (NDVI), also derived from
Sentinel-2 data, to characterize vegetation in terms of structure and seasonality. As a
continuous index, NDVI provides details about vegetation not accounted for in the land-
cover analysis.

We used the same process described in Section 2.3.1 to obtain cloud-composites but
expanded the time frame to 2016−2020. This was conducted to reduce the potential effect
of climate anomalies in the data and to increase the availability of cloud-free pixels for
seasonal analyses. To estimate the vegetation structure, we calculated the mean-annual-
NDVI for the 2016−2020 period. In vegetated areas, the maximum mean-annual-NDVI
corresponds to mature forests, while the minimum mean-annual-NDVI corresponds to
annual crops. Degraded forests, secondary forests and more seasonal forests will tend to
have NDVI values closer to the maximum, while pastureland and annual crops values are
closer to the minimum.

To characterize vegetation, especially forest, in terms of seasonality, we calculated the
wet-season NDVI, dry-season NDVI and the difference between the wet and dry NDVI.
We used annual precipitation occurring in each month to define seasons. We defined
the wet season as that occurring between December and April and the dry season as
that occurring between August and November. The remaining months were considered
transitional and were excluded from this analysis. We calculated NDVI for each season and
the difference between wet and dry-season NDVI. Non-seasonal vegetation, such as more
mature and evergreen forests, was expected to exhibit similar NDVI values in both seasons
and, therefore, a difference between seasons close to zero. Highly seasonal vegetation, such
as deciduous forest, secondary forests and agriculture, was expected to be highly impacted
by low precipitation and therefore exhibit significantly lower NDVI values during the dry
season. In these cases, the difference between wet-season NDVI and dry-season NDVI will
tend to be closer to one. All remote sensing analyses were performed using the Google
Earth Engine (GEE).

2.3.3. Topography

Given the small size of the study landscape, we calculated the slope as the single
most important predictor to topographically characterize the study landscape. We use the
Shuttle Radar Topography Mission (SRTM, [44]) digital elevation data available in GEE.

2.4. Camera Trap Data Analysis
2.4.1. Model Predictors

The land-cover, annual-NDVI, wet-season-NDVI, dry-season-NDVI, difference be-
tween wet and dry NDVI maps and slope were used to calculate 16 landscape predictors.
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The percentage of forest, agriculture and built cover were calculated around each sampling
site in 250 and 1000 m buffers. “Managed wetland”, which encompass rice fields and
shrimp farms, was excluded because it does not represent a variable of importance to
wildlife. The mean value of each NDVI metric and of the slope were also calculated for
each buffer per sampling site. The sizes of the buffers were selected based on other similar
studies [45,46] to estimate local-scale and broad-scale landscape characteristics. To further
evaluate human impacts, we also calculated the shortest distance between each sampling
site and paved or unpaved roads. From this pool of 17 predictors, the following seven
uncorrelated predictors were selected as a predictor for occupancy models: percent forest
cover in 1000 m buffers, percent built in 1000 m buffers, annual NDVI in 250 m buffers,
wet-season NDVI in 250 m buffers, dry-season NDVI in 1000 m buffers, the difference
between wet and dry season NDVIs in 1000 m buffers and distance to the road (paved and
unpaved). When selecting uncorrelated predictors, we tried to include variables calculated
at two buffer sizes to account for local and more broad geographic scales (See Table A2 for
correlation of all variables). In addition to landscape variables, the presence of dogs, cattle
and a slope (250 m) were also used to build the detection model. All variables included in
the model were standardized (mean set equal to zero and variance equal to one) (Table 1).

Table 1. Description of predictors used as covariates for occupancy (ψ) and for detection (p) in the multi-species occupancy
analysis and the mean (±standard deviation) of each predictor for each sampling area. Sampling sites: Bosque Verde
deciduous forest (BV), Punta Gorda deciduous forest (DF) and Punta Gorda semi-deciduous forest (SF).

Name Description BV SF DF

Covariates for occupancy (ψ)

Percent forest cover (250 m)
Percent of pixels classfied as forest in 250 m buffers around each
sampling site. This variable indicates habitat extent for mammal
species and is inversly proporcional to percent agrigulture.

40 ± 20 98 ± 2 88 ± 10

Built area percentage (250 m) Percent of pixels classfied as built in 250 m buffers around each
sampling site. This variable indicates direct human activity. 0 0 1.3 ± 2.4

Annual NDVI (250 m)

Average Normalized Difference Vegetation Index (NDVI) in
250 m buffers around each sampling site. This variable
indicates overall vegetation greenness is taken to be a good
estimator of forest quality in the study landscape.

0.29 ± 0.01 0.39 ± 0.05 0.37 ± 0.02

Mean NDVI—wet season (250 m)

Average Normalized Difference Vegetation Index (NDVI) from
the wet season in 250 m buffers around each sampling site. This
variable indicates vegetation greenness during the wet season is
taken to be a good indicator of forest type and habitat quality.

0.27 ± 0.02 0.37 ± 0.1 0.33 ± 0.05

Mean NDVI—dry season (1 km)

Average Normalized Difference Vegetation Index (NDVI) from
the dry season in 1 km buffers around each sampling site. This
variable indicates vegetation greenness during the dry season
is taken to be a good indicator of forest type and habitat quality.

0.24 ± 0.01 0.26 ± 0.02 0.26 ± 0.02

Difference wet and dry NDVI (1 km)

Average Normalized Difference Vegetation Index (NDVI) from
the wet season minus average NDVI from the dry season in
1 km buffers around each sampling site. Indicator of forest and
vegetation seasonality. High values of this variable indicate
high seasonality and vice versa.

0.02 ± 0.0 0.09 ± 0.04 0.2 ± 0.03

Distance to roads Distance (in m) to paved or unpaved roads. This variable
indicates direct and indirect human activity. 237 ± 140 1114 ± 330 263 ± 264

Covariates for detection (p)

Number of days Number of days each camera was active. 1420 ± 32 1603 ± 74 2444 ± 45

Dogs presence Number of dog photographs per day in each camera. Indicator
of human activity. 8 ± 2.5 5 ± 1.2 42 ± 3.7

Cattle Number of photographs detecting cattle per day in each
camera. Indicator of human activity. 7 ± 2.3 0 0

Slope (250 m) The mean slope in 250 m buffers around each sampling site.
Indicator of topography. 10.1 ± 0.3 8.9 ± 0.5 8.9 ± 0.5
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2.4.2. Multispecies Occupancy Modeling

We used a multi-species occupancy framework with a Bayesian approach to calculate
species occupancy and understand the influence of landscape predictors on species across
the study landscape while accounting for detection biases during the sampling. We used
this approach to improve species-specific estimates of occupancy [25,29,47]. To identify
possible differences in terms of richness and occupancy between the two seasons, we
assume two survey periods (dry and wet). We slightly modified the definition of seasons
detailed in Section 2.3.2 to be able to include all camera trap data in our analysis. The
months from January to mid-July were considered the “wet season”, while those between
mid-July and December were the “dry season”.

We built the final model with the program JAGS [48] implemented in R, which uses
Markov Chain Monte Carlo (MCMC) simulation to estimate parameters based on a pos-
terior distribution. We used vague prior distributions for all parameters. We assessed
convergence based on R-hat values < 1.1 [49]. We assessed the statistical significance
of occupancy covariates based on whether 95% of credible intervals of beta estimates
overlapped 0. For the analysis, we included all mammal species with at least 3 records.

To estimate the occurrence probability of each species at each sampling site, we
included the predictors detailed in Section 2.4.1 using a logit link function. Each parameter
was indexed by species and thus separately estimated for all the species present in the
mammal community.

2.4.3. Analysis of Species Richness

To determine the pattern of terrestrial mammal richness across sampling sites, camera-
level richness was calculated within the multi-species occupancy model using a data
augmentation approach [27,28]. This data augmentation approach ensured that the number
of all-zero detection histories was larger than the number of species that could have been
missed in our sampling.

In addition, for sampling level richness, we used a rarefaction approach because the
number of cameras differed across the three sampling areas and by seasons. These rar-
efaction analyses were performed using the R package iNEXT [50], which uses a bootstrap
resampling method and extrapolation sampling curves to estimate an asymptotic species
richness (bootstrap replicates = 100). As the input for our calculation of species richness,
we used the median realized presence/absence (Z) matrix produced by the multi-species
occupancy model, which is an estimate of the observed presence/absence matrix corrected
for detection [27,29].

3. Results
3.1. Landscape Structure and Seasonality

The classification results highlight the human-impacted nature of the landscape. Forest
accounted for only 42% of the landscape, while 58% encompassed anthropogenic land-
cover types. Across the sampling areas, the percentage of forest cover in 1000 buffers
was the lowest in BV (49%), followed by SF (81%) and DF (89%), suggesting a gradient
of deforestation from BV to SF and DF. This trend persisted in 250 m buffers, indicating a
similar landscape structure at both scales. Low forest cover means high agriculture cover
as both variables are correlated (−0.98 1 k scale and −0.99 250 m). The percent of built in
1000 buffers exhibited a different pattern than that of forest. A higher percentage of built
pixels were recorded in DF (3.6%), followed by SF (1.8%) and BV (1.5%), suggesting that,
at least in small percentages at a scale of 1000 m around each site, there is no relationship
between the presence of human settlements and forest cover. This trend is different at a scale
of 250 m, where no built pixels were recorded in BV and DF, and a small percentage (1.3%)
was recorded in SF (Figure 2a). Out-of-bag accuracy of 83% and Kappa of 0.75 indicate a
reliable classification model (Table A3).
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Figure 2. Landscape characteristics of the study landscape. (a) Land-cover map; (b) Mean Annual
NDVI; (c) Seasonality: Wet season NDVI—Dry season NDVI. Areas with high values indicate
high seasonality; (d) NDVI metrics used as predictors in occupancy models; (e) Seasonality across
sampling areas. Boxes detail wildlife sampling area. Red dots indicate sampling sites.

Normalized Difference Vegetation Index (NDVI) data provided critical details about
the studied landscape, helping us to understand the broader implications of our findings
and suggesting that BV, SF and DF are composed of different forest types. Annual NDVI
data was the lowest in BV sites, followed by DF and SF at both 250 and 1000 m buffers. This
pattern confirms our initial assumption when selecting sampling areas that SF is composed
of more dense forests. DF is composed of less dense forest, while BV-NDVI reflects the
high percentages of agriculture in this area (Figure 2a,b,d; Table 1).

Seasonal details of NDVI data provided further details about the landscape and the
wildlife sampling areas. No differences were apparent between sampling areas in dry-
season NDVI at either scale, 250 or 1000 m (Figure 2d). In contrast, wet-season NDVI
patterns differed when analyzed at 250 and 1000 m. At 250 m, although the lowest wet-
season NDVI was recorded in BV sites, many DF and SF sites exhibited similar values,
indicating high within-sampling-area variation and little difference across sampling sites
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at this scale (Figure 2d). Significant seasonal differences became apparent when analyzing
wet-season in 1000 m buffers and in the difference between wet and dry season NDVI.
DF sites consistently showed higher NDVI values during the wet season at both scales,
which translates into big differences in the NDVI between seasons in this sampling area.
Apparently, DF sites are composed of highly seasonal forests followed, by far, by SF sites,
which are likely composed of more evergreen vegetation. BV sites seem to have the lowest
seasonality, but it is important to consider that high percentages of vegetation in BV sites,
at least in the 1000 m buffer, were agriculture (Figure 2c,e; Table 1).

3.2. Wildlife Records

Overall, the total sampling effort yielded 835 independent records, 654 records from
the dry season and 181 records from the wet season. A total of 15 species of mammals
from 12 taxonomic families were documented. Of the species recorded, one is classified as
critically endangered, and two are classified as near threatened at the global level in the
IUCN Red List [51]. At the national level, one species is classified as Critically Endangered,
one species is classified as Endangered, one species is classified as Near-Endangered,
two species are classified as Vulnerable, and four species are classified as Near-Threatened
in the Red Book of Mammals of Ecuador [39] (Table 2).

Table 2. Recorded mammal species with IUCN and national conservation status. In order of conservation status acronyms
mean: DD = Data deficient, LC = Least concern, NT = Near-Threatened, VU = Vulnerable, EN = Endangered.

Scientific Name English Name IUCN
Status

National
Status * 1

Altitudinal
Range

Independent Records (1-day)

DF SF BV

Canidae
Lycalopex sechurae Sechuran fox NT NT 0–2000 11 0 32

Cervidae
Odocoileus virginianus ssp. peruvianus Peruvian White-tailed deer – EN 0–5000 121 35 32

Dasypodidae
Dasypus novemcinctus Nine-banded armadillo LC LC 0–2000 6 20 0

Didelphidae
Didelphis marsupialis Lowland opossum LC LC 0–2000 6 0 5

Felidae
Leopardus pardalis Ocelot LC NT 0–3000 59 55 11
Leopardus wiedii Margay NT VU 0–3000 75 49 5

Herpailurus yagouaroundi Jaguarundi LC NT 0–3200 12 15 8
Mustelidae
Eira barbara Tayra LC LC 0–2400 25 13 4

Galictis vittata Greater Grison LC DD 0–1200 4 1 0
Myrmecophagidae
Tamandua mexicana Northern tamandua LC VU 0–2000 47 11 6

Procyonidae
Nasua nasua South American coati LC LC 0–2500 61 100 33

Sciuridae
Simosciurus stramineus Guayaquil squirrel – LC 4 0 5

Tayassuidae
Pecari tajacu Collared peccary LC NT 0–3000 2 26 0
Leporidae

Sylvilagus daulensis Daule tapeti – NE * 2 0–3400 16 7 0
Cebidae

Cebus aequatorialis Ecuadorian white-fronted capuchin CR CR 0–2000 8 0 0

* 1 Based on Tirira (2011) [40], * 2 NE = Not Evaluated. The status is not evaluated due to the lack of studies and because it hass been
recently recognized as a species [52].

3.3. Species Occupancy and Richness

We did not find differences in richness at the camera (Figure 3a) level among sampling
areas and between seasons, but a slightly higher mean richness was found at DF during
the dry (Species richness = 10 with confidence intervals (CI): 7.3–13.4) and wet seasons
(Species richness = 10.8 with CI: 7.6–14.4) than in the two other forest types. When
calculating community-level estimates, we detected that both Shannon and Simpson
diversity estimates for DF were greater especially compared to SF (No overlap between
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them) and in lower proportion to BV. However, confidence intervals for BV suggest more
uncertainty in the prediction for both indexes (Figure 3b).
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Figure 3. Richness estimates: (a) Camera-level and (b) Sampling-area estimates using two estimators
Shannon and Simpson indexes in the Bahia forest of southwestern Ecuador.

The mean response of species occupancy was significantly negative (CI did not overlap
zero) to the percentage of forest cover at 250 m buffers (B = −3.4; 95% CI (−6.4–−0.77)),
positive to the distance to roads (B = 1.25; 95% CI (−1.19–3.57)) and positive to the difference
between wet and dry season NDVIs at (B = 2.96; 95% CI (−1.19–3.57)). For the last two
predictors, the CI of the community-level parameter slightly overlapped zero, but most of
the posterior distribution was positive. The other parameters evaluated (Table 1) did not
present a distinctive response (Figure 4). In addition to occupancy, detectability patterns
showed that the presence of cattle has a strong negative effect on species, and the number
of days and slope (250 m) has a positive effect on species detection (Figure A1).
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The mean probability of occupancy across the 15 species evaluated was 0.60 (±0.04 SD)
in the dry season and 0.63 (±0.025 SD) in the wet season. In addition, when analyzing
the data per species, per sampling area and per season, differences in occupancy among
sampling areas was stronger than variation between seasons (Figure 5). Seven out of the
fifteen species of mammals analyzed—Nasua nasua, Odocoileus virginianus ssp. peruvianus,
Leopardus pardalis, Leopardus wiedii, Herpailurus yagouaroundi, Eira barbara and Tamandua
mexicana—supported the highest occupancy estimates ranging from 0.71 to 0.95 (dry season)
and for the same species from 0.55 to 0.91 during the wet season (Figure 5). Species such
as Lycalopex sechurae, Sylvilagus daulensis and Didelphis marsupialis, on the other hand,
presented the lowest occupancy rates among sampling areas and between seasons, with
the lowest occupancy rates during the dry season.
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4. Discussion

Land-cover change is driving massive losses of biodiversity globally [1–3]. Given
the vulnerability of wildlife species to human impacts, understanding the relationship
between TDF landscape structure, seasonality and wildlife species is of critical importance
to improving our knowledge of species’ responses to changes in their habitats.

Although we estimate that we documented most of the species of the study land-
scape, we found a lack of big predators, such as Panthera onca (jaguar) and Puma concolor
(puma). These species were extirpated from this landscape [16,17]. Additionally, medium
to large species, including Tayassu pecari (white-lipped peccary) and Mazama gulea, i.e.,
species highly sensitive to human disturbance and heavily hunted in other regions, were
absent [16]. Notably absent from our records are also Dasyprocta punctata, which has been
recorded in the wider region [16,21,22] but were likely extirpated from our study land-
scape presumably by bushmeat hunting, and Procyon cancrivorus, a cryptic species that
is fairly common in the north of its distribution but infrequently recorded in the west of
Ecuador [53]. While these data indicate an incomplete mammal community, the species
documented in this research also indicate that heavily human-impacted TDF fragments can
still retain significant conservation value and could be important repositories of endemic
fauna. We found many species of conservation concern, including the critically endan-
gered Cebus aequatorialis (Ecuadorian capuchin monkey) [54] and regionally endangered
Odocoileus virginiaus ssp. peruvianus (white-tailed deer) [16,17]. These findings highlight
the importance of the study landscape in conserving Ecuador’s mammal species despite
high human impacts and provide important insights to promoting the conservation of
endangered species outside reserves. Important findings that contribute to understanding
species distributions include the finding that the study landscape might support a substan-
tial population of Leopdardus weidii, a threatened species reported previously in very low
detection rates [21].

Wildlife occupancy and key landscape attributes derived from Sentinel-2 data highlight
the complex relationships between mammals and landscape characteristics. Forest cover
was found to be the single most important predictor negatively associated with overall
high occupancy. While this finding might seem contradictory because low forest cover
means less habitat for wildlife species [23], it is important to analyze it in conjunction with
all land-cover and vegetation data. On average, all sampling areas had some agriculture
cover (2–60% in 250 m buffers and 25–51% in 1000 m buffers) and built areas within 1000
buffers were even higher in sampling sites with high occupancy. As reported for other forest
types [9], these numbers highlight the human-impacted nature of the landscape and, in
the context of occupancy, suggest that some species could benefit or at least tolerate some
human interventions in their habitat. For instance, Odocoileus virginianus ssp. peruvianus,
is considered a species with high adaptability that is able to move long distances in a
short time. Additionally, Herpailurus yagouaroundi and Tamandua mexicana have been
found to be opportunistic and human-commensals that could live in some anthropogenic
landscapes [12,13]. These species are likely contributing significantly to overall occupancy.
It is also possible that many wildlife species live in constant stress as the study landscape is
considered a defaunation hotspot where species are declining [8,16]. The study landscape
is overall agriculture-dominated, and keystone species have been already extirpated from
all central coastal Ecuador [16,17]. It is possible that species known for being less tolerant
to human presence (e.g., Leopardus pardalis, Leopardus wiedii, Eira barabara; [12]) are just
restricted to the very few forest remnants in the northwestern side of the study landscape
where camera trap data were taken with no option to migrate to more intact forest areas.
Finally, it is important to note that forest quality might not be related to forest cover
because many forests could be old secondary, degraded or otherwise modified forests [35].
Many well-preserved forest sites are adjacent to agriculture, more isolated and even more
protected by private initiatives. Although not significant, there is a trend in our data to
have higher occupancy as the distance from roads (paved and unpaved) increases, which
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supports the idea that habitat isolation from direct and constant human contact is an
important factor, as found in many other studies [12].

Vegetation seasonality is another critical variable to explaining species occupancy. In
agreement with other studies [22], the results indicate that DF, which are more seasonal
forests (i.e., high differences between wet and dry season NDVI), are more species-rich
compared to more evergreen areas (i.e., SF) and human-impacted areas (i.e., BV). However,
other studies have found no differences in species richness between TDF types but higher
detection rates in dry forests for some species, including Lycalopex sechurae, Odocoileus
virginianus ssp. peruvianus and Sylvilagus daulensis [21]. Our results provide a more robust
analysis of the relationship between species and forest types. NDVI allows for greater
spatial explicitness and numeric quantification of vegetation productivity and seasonal-
ity [55]. Occupancy analyses account for different detection probabilities [24,25,27,30] and
indicate that DF exhibits higher species occupancy. Many factors could contribute to this
finding. First, it is important to consider that landscape characteristics such as land-cover
(i.e., more agriculture and built pixels around them) indicate that less seasonal areas of
the landscape (i.e., SF) are more exposed to human impacts than in DF. Therefore, higher
occupancy could be a function of an expected relationship between high occupancy and
low human impacts [9,13]. Species richness values seem to confirm that DF is likely the
most diverse sampling area but also suggest that BV could host as many species as DF
despite having significantly more agriculture cover than DF and SF. This finding suggests
complex landscape relationships between species and landscape. We believe it is unlikely
that BV is as equally diverse as DF and SF. Conversely, species richness findings suggest
that species are willing to venture into human-dominated areas (i.e., BV) potentially to
obtain resources such as water or food [20]. The three sampling areas analyzed do not
significantly differ in species richness and diversity, suggesting an overall trend of species
to be at least tolerant to some human interventions. However, more detailed analyses are
needed to better understand species movement and dynamics between the three studied
sampling areas.

Finally, while our results show no significant differences in occupancy and richness
across forest types or seasons, species-specific occupancy values provide some insight into
specific species. In general, species exhibit similar occupancy values across sampling areas
and seasons. Occupancy in BV shows the fewest differences between seasons. We believe
this finding indicates a similar supply of resources, likely related to anthropogenic activities
in BV and reinforces our belief that some recorded species tolerate a certain level of distur-
bance [9,13]. A couple of species, including Cebus equatoriali, and Lycalopex sechurae, show
higher occupancy in DF and SF during the wet season, Galictis vittata higher occupancy
during the dry season in DF and Pecari tajacu high occupancy during the dry season in SF.
These findings indicate the importance of not only considering richness but also occupancy
because, in our case, less common species (almost half of the species found) showed a
higher occupancy during the wet season than in the dry season. They also constitute an
important contribution to increasing our knowledge about poorly studied species [18,19],
especially in varying habitat use across seasons, reinforcing the finding that it is important
to protect different patches and land types with heterogeneous coverage to protect those
species [21].

This research provides a critical understanding of landscape characteristics on medium
and large mammals’ occurrence and richness in a human-impacted landscape in coastal
Ecuador. However, results should be interpreted cautiously considering that more exten-
sive, longer and continuous monitoring is necessary to fully understand species changes
over time. We believe our study reflects spatial patterns over the entire study landscape
because forest types and human activities do not significantly vary across the landscape. As-
sessments over broader land-cover types and across the entire study landscape are needed
to fully understand species changes across space. Finally, while the use of Sentinel-2 images
allows for a good differentiation of landscape structure and configuration, analyses with
finer resolution sensors could potentially allow for a more detailed characterization of
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habitat quality and further clarify species occupancy. For instance, detailed forest struc-
tural differences derived from Light Detection and Ranging (Lidar) products (e.g., Global
Ecosystem Dynamics Investigation (GEDI)) would help clarify species’ habitat preferences.

5. Conclusions

A significant number of mammal species can persist in highly fragmented human-
impacted landscapes of tropical dry forests. More species were found in dry forests
dominated by Ceiba trischistandra (Ceiba) trees compared to semi-deciduous forests dom-
inated by various canopy trees. Occupancy was not significantly different in areas with
high human disturbance (i.e., lower forest cover). While this finding is encouraging for
the conservation of species in human-impacted landscapes, it is imperative to collect more
information over longer periods of time to estimate changes in density, habitat use over
years and community changes (e.g., loss of functional diversity). This information is es-
pecially needed to better set conservation priorities for vulnerable species. Additionally,
future studies should focus on the species movement and landscape permeability neces-
sary for assessing animal movement between habitat patches. This should help clarify the
relationship between landscape and wildlife species.

The use of remote sensing (e.g., Sentinel-2 images) to generate land-cover and vegetation
maps to analyze occupancy allowed us to spatially and explicitly contextualize our findings.
Our analyses of landscape conditions were essential for explaining complex relationships
between forest cover and species occupancy. Given the high potential of remote sensing
analyses to evaluate changes in habitat cover and quality over time, we suggest more of its
use to analyze species–landscape relationships, especially in fragmented landscapes.
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Table A1. Sentinel-2 predictors used in the Random Forest (RF) classification analysis.

Variable Description/Formula

Sentinel-2 bands
Blue B2 (490 nm)

Green B3 (560 nm)
Red B4 (665 nm)
NIR B8 (842 nm)

SWIR1 B11 (1610 nm)
SWIR2 B12 (2190 nm)

Simple ratios
NIR/Red NIR/Red

SWIR 1/Red SWIR1/Red
SWIR 1/NIR SWIR1/NIR

SWIR 1/SWIR 2 SWIR1/SWIR2
Vegetation indices

NDVI (NIR-Red)/(NIR+Red)
SAVI a ((NIR-Red)/(NIR+Red+L))(1+L)

Image transformations
VIS123 Blue + Green + Red
MID57 SWIR1 + SWIR2
TCT 1 b K1 × Blue + K2 × Green + K3 × Red + K4 × NIR + K5 × SWIR1 + K6 × SWIR2
TCT 2 b K7 × Blue + K8 × Green + K9 × Red + K10 × NIR + K11 × SWIR1 + K12 × SWIR2
TCT 3 b K13 × Blue + K14 × Green + K15 × Red + K16 × NIR + K17 × SWIR1 + K18 × SWIR2

a L = 1, b K = band-specific coefficients retrieved from Nedkov (2017) [56].
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Table A2. Correlation of all analyzed model predictors.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1. Distance to roads 1 0.40 0.44 −0.12 −0.28 0.52 0.33 −0.24 −0.35 −0.15 −0.30 0.20 −0.19 0.52 0.15 0.71 0.75
2. Annual NDVI (250 m) 0.40 1 0.51 0.18 −0.03 0.64 0.02 0.34 0.36 −0.62 0.05 0.58 −0.65 0.15 0.64 0.57 0.45
3. Mean NDVI—dry (250 m) 0.44 0.51 1 0.05 −0.35 0.56 0.17 0.07 0.03 −0.30 −0.22 0.34 −0.37 −0.09 0.38 0.52 0.18
4. Mean NDVI—wet (250 m) −0.12 0.18 0.05 1 0.92 0.31 0.23 0.50 0.47 −0.53 0.05 0.51 −0.45 −0.26 0.47 0.13 −0.15
5. Difference wet and dry NDVI (250 m) −0.28 −0.03 −0.35 0.92 1 0.07 0.15 0.44 0.43 −0.37 0.13 0.35 −0.28 −0.21 0.29 −0.09 −0.21
6. Annual NDVI (1 km) 0.52 0.64 0.56 0.31 0.07 1 0.68 0.60 0.45 −0.74 −0.46 0.83 −0.69 0.18 0.67 0.77 0.48
7. Mean NDVI—dry (1 km) 0.33 0.02 0.17 0.23 0.15 0.68 1 0.37 0.12 −0.34 −0.71 0.51 −0.28 0.21 0.26 0.60 0.25
8. Mean NDVI—wet (1 km) −0.24 0.34 0.07 0.50 0.44 0.60 0.37 1 0.97 −0.85 −0.02 0.86 −0.75 −0.19 0.75 0.17 −0.01
9. Difference wet and dry NDVI (1 km) −0.35 0.36 0.03 0.47 0.43 0.45 0.12 0.97 1 −0.82 0.17 0.78 −0.72 −0.26 0.73 0.02 −0.08
10. Percent Agriculture (1 km) −0.15 −0.62 −0.30 −0.53 −0.37 −0.74 −0.34 −0.85 −0.82 1 −0.10 −0.98 0.94 −0.03 −0.93 −0.52 −0.31
11. Percent Built (1 km) −0.30 0.05 −0.22 0.05 0.13 −0.46 −0.71 −0.02 0.17 −0.10 1 −0.12 −0.15 −0.06 0.15 −0.24 −0.13
12. Percent Forest (1 km) 0.20 0.58 0.34 0.51 0.35 0.83 0.51 0.86 0.78 −0.98 −0.12 1 −0.90 0.04 0.89 0.57 0.33
13. Percent Agriculture (250 m) −0.19 −0.65 −0.37 −0.45 −0.28 −0.69 −0.28 −0.75 −0.72 0.94 −0.15 −0.90 1 0.09 −1.00 −0.59 −0.38
14. Percent Built (250 m) 0.52 0.15 −0.09 −0.26 −0.21 0.18 0.21 −0.19 −0.26 −0.03 −0.06 0.04 0.09 1 −0.15 0.40 0.46
15. Percent Forest (250 m) 0.15 0.64 0.38 0.47 0.29 0.67 0.26 0.75 0.73 −0.93 0.15 0.89 −1.00 −0.15 1 0.56 0.35
16. Mean Slope (1 km) 0.71 0.57 0.52 0.13 −0.09 0.77 0.60 0.17 0.02 −0.52 −0.24 0.57 −0.59 0.40 0.56 1 0.66
17. Mean Slope (250 m) 0.75 0.45 0.18 −0.15 −0.21 0.48 0.25 −0.01 −0.08 −0.31 −0.13 0.33 −0.38 0.46 0.35 0.66 1
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Table A3. Confusion matrix and user and producer’s errors of the Random Forest (RF) classification.

Reference Data

Agriculture Built Forest M. Wetland TOTAL User. Acc.

Agriculture 44 2 11 0 57 77.19
Built 3 23 0 0 26 88.46

Forest 8 2 51 0 61 83.61
M. Wetland 1 1 1 20 23 86.96

TOTAL 56 28 63 20 167
Prod. Acc. 78.57 82.14 80.95 100.00

Overall Accuracy: 0.826
Kappa: 0.753
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