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Abstract: Frequency diverse array (FDA) radar has attracted much attention due to the angle
and range dependence of the beam pattern. Multiple-input-multiple-output (MIMO) radar has
high degrees of freedom (DOF) and spatial resolution. The FDA-MIMO radar, a hybrid of FDA
and MIMO radar, can be used for target parameter estimation. This paper investigates a tensor-
based reduced-dimension multiple signal classification (MUSIC) method, which is used for target
parameter estimation in the FDA-MIMO radar. The existing subspace methods deteriorate quickly in
performance with small samples and a low signal-to-noise ratio (SNR). To deal with the deterioration
difficulty, the sparse estimation method is then proposed. However, the sparse algorithm has high
computation complexity and poor stability, making it difficult to apply in practice. Therefore, we
use tensor to capture the multi-dimensional structure of the received signal, which can optimize the
effectiveness and stability of parameter estimation, reduce computation complexity and overcome
performance degradation in small samples or low SNR simultaneously. In our work, we first obtain
the tensor-based subspace by the high-order-singular value decomposition (HOSVD) and establish a
two-dimensional spectrum function. Then the Lagrange multiplier method is applied to realize a
one-dimensional spectrum function, estimate the direction of arrival (DOA) and reduce computation
complexity. The transmitting steering vector is obtained by the partial derivative of the Lagrange
function, and automatic pairing of target parameters is then realized. Finally, the range can be
obtained by using the least square method to process the phase of transmitting steering vector.
Method analysis and simulation results prove the superiority and reliability of the proposed method.

Keywords: FDA-MIMO radar; target location; MUSIC; HOSVD; parameter estimation

1. Introduction

MIMO radar has received widespread attention in the field of target parameter es-
timation, which has great development potential [1–5]. With constantly developing and
progressing in the field of wireless communication, MIMO radar has also gained popularity
in the fields of national defense, navigation, remote sensing, and unmanned driving [6–9].
It has been confirmed in practical applications that MIMO radar transmits orthogonal
waveforms to form virtual array elements to enlarge the array aperture, which has a higher
degree of freedom and spatial resolution [10–12]. Based on such advantages, MIMO radar
has a high application value in overcoming the fading effect and optimizing the perfor-
mance of the target location [13–15]. Among the wide applications of MIMO radar, target
location plays an important role in both industry and research fields. For example [12],
multiple unmanned aerial vehicles are used to achieve cooperative localization of maritime
targets. The paper [16] proposed a DOA and polarization estimation in MIMO radar.

With the harsh electromagnetic environment, only the angle information cannot
satisfy the increasing demands for target localization. Some scholars consider the range
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estimation as another important parameter to describe the target location more accurately.
However, the beam pointing is independent of range, which makes it difficult to obtain
range information with traditional MIMO radar [3]. In response to the disadvantage, FDA
radar has been proposed in [17,18]. The FDA radar sets the frequency increment on the
transmitting array elements so that the beam pointing changes with the target range [19].
This can be applied for the joint DOA and range estimation, which has great potential in
practical applications [1,20,21].

However, for FDA-MIMO radar, the angle information and range information of
the target are coupled and the phase period is ambiguous. It is possible that one target
corresponds to more than one angle [22]. So as to deal with these problems, a double-pulse
target location method has proposed in [23]. Firstly, the frequency increment can be preset
to zero, i.e., the traditional phased array radar can be employed to estimate the angle of the
target. Then the range information of targets is obtained. Moreover, the method eliminates
the phase ambiguity by adjusting the frequency increment and obtains the correct target
parameter. In [24,25], the subarray-based FDA has been proposed, where the transmitting
array is composed of two sub-arrays, with different frequency increments of each sub-array.
The angle and range coupling problem is solved by applying the nonlinear frequency offset
method. In fact, FDA-MIMO radar is the most practical method for decoupling the angle
and range of the target, which combines the advantages of FDA radar and MIMO radar.

Based on the idea, the [26] has proposed the FDA-MIMO radar. It has adopted the
characteristics of the freedom of transmission waveform and beam range pointing, which
improves the speed resolution and target observation time of the radar system [27,28].
These characteristics are very suitable for suppressing clutter interference. Currently, there
are some target location methods based on FDA-MIMO radar [29,30]. A joint angle and
range of target minimum variance distortion-free response method is proposed in [31], but
this method cannot fully use the high DOF. In [32], the author has proposed the estimation
of signal parameters via the rotational invariance technique (ESPRIT) method. To optimize
the computational efficiency, the unitary ESPRIT method has been proposed in [33]. A
target location method via real-valued subspace decomposition has been proposed in [34],
which implements the unitary ESPRIT method in sub-array FDA-MIMO. However, these
methods rely on the rotation invariant structure of the received signal and are only suitable
when the frequency of the transmitting antenna increases linearly. Moreover, the subspace
method relies on the accuracy of the signal subspace, while the effectiveness declines
rapidly in the case of small samples or low SNR. As the singular value decomposition
loses the array aperture, the performance is lower than the MUSIC method [35]. In [8],
it has proposed a two-dimensional MUSIC method in FDA-MIMO radar. The method is
difficult to be employed in practical applications due to the high computation complexity,
which is brought by two-dimensional spectrum peak search. In addition, sparse DOA and
range estimation methods attract the attention of scholars. The block sparse representation
with mutual coupling has been proposed in [36]. In [37], an off-grid method based on
Bayesian learning has been proposed, which implements the estimation of DOA and range.
Unfortunately, high computation complexity is also a disadvantage of the sparse method,
and it is hard to bear the cost of actual applications.

However, these methods introduced above have two main shortages: (1) the received
signals are stacked in matrix form and the target parameters are estimated by matrix
decomposition, which ignores the inherent multi-dimensional structure of the received
signal [38,39]. (2) the peak search methods (MUSIC) have huge computation complexity
and are not suitable to apply in practical scenarios if the work needs to deal with multi-
dimensional peak search, e.g., joint DOA and range estimation. Therefore, it is necessary to
study a target parameter estimation method that can effectively utilize multi-dimensional
structure and overcome the performance degradation of low SNR and snapshot number.
Besides, the new method also needs to reduce the dimensionality of the conventional
two-dimensional MUSIC method.
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In this paper, a tensor-based dimension reduction MUSIC method in FDA-MIMO
radar is proposed. We use tensor storage to receive signals to capture multi-dimensional
structures. Then HOSVD is used to process the signal model based on tensor and reduce
the dimensionality of the MUSIC method [40]. Thus, DOA information can be estimated
by a one-dimensional spectrum peak search. After that, according to the characteristic of
the transmit-receive steering vector in FDA-MIMO radar, the Lagrange multiplier method
is applied to estimate the transmitting steering vector. Finally, the phase of the transmitting
steering vector is extracted to obtain the range of the target. As each DOA corresponds to a
unique range parameter, the automatic matching work is also realized. We list the main
contributions of the proposed method as follows:

(1) In the tensor domain, the proposed method realizes joint angle and range estima-
tion of FDA-MIMO radar. The inherent multi-dimensional structure of the signal model is
stored in the tensor, which improves the accuracy of target parameter estimation. This is
the unique advantage of the tensor-based method.

(2) With the Lagrange multiplier method, the DOA and range parameters are decou-
pled, which further reduces the dimension of peak search. Then we use the one-dimensional
spectrum function to estimate the DOA of the target and improve the accuracy.

(3) As the range of the target is not limited to a small interval, it’s too difficult to find
the range information in a defined search area. Instead of peak search, our work uses
constraint conditions to derive the transmitting steering vector. Then the phase is extracted
and the least square method can be applied to estimate the range information that also
reduces computation complexity. Moreover, the proposed method achieves automatic
matching of the angle and range.

The definition notations are shown in Table 1 to facilitate the derivation of subse-
quent formulas.

Table 1. Related notation.

Notation Definition

Q(bold Euler script letter) tensor
A(bold capital letter) matrix

a(bold lowercase letter) vector
◦ Hadamard product
⊗ Kronecker product
� Khatri-Rao product
IQ Q×Q identity matrix
0Q Q×Q zero matrix
(·)∗ conjugate of matrix
(·)T transpose of matrix
(·)H conjugation-transpose of matrix

diag(∗) diagonalization of matrix
angle(∗) extract phase
CM×N M× N matrix set

2. Basic Knowledge of Tensor and Signal Model Based on Tensor
2.1. Basic Knowledge of Tensor

This section mainly defines the basic operations of tensor to facilitate the derivation
and display of the proposed method. Please refer to [41–43] for more details.

Definition 1. (Tensor unfolding of n-mode): Define Q ∈ ZI1×I2···×IN as an N-order tensor,
whose dimension is I1 × I2 · · · × IN . The n-mode tensor unfolding of Q can be expressed as
[Q](n). The (in, j)-th element of [Q](n) is equal to (i1, i2, · · · , iN)-th element of Q that j =

1 + ∑N
k=1,k 6=n(ik − 1)Pk, and Pk = ∏k−1

m=1,m 6=n Im.
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Definition 2. (Tensor-matrix product of n-mode): It can be expressed as X = Q ×n R for
the n-mode product, which is the tensor Q ∈ ZI1×I2···×IN and the matrix R ∈ ZJn×In . Fur-
ther we derive the element correspondence between X and Q as [X ]i1,i2,··· ,in−1,jn ,in+1,··· ,iN

=

∑In
in=1[Q]i1,i2,··· ,in−1,in ,in+1,··· ,iN

[R]jn ,in . In addition, the dimension of X is I1 × I2 × · · · × In−1
×Jn × In+1 × · · · × IN .

Definition 3. (HOSVD of Tensor) The high-order singular value decomposition (HOSVD) is an
important part of tensor decomposition [44]. It is written as

Q = G ×1 F1 ×2 F2 ×3 · · · ×N FN (1)

where the core tensor of Q is defined as G, whose dimension is the same as to I1 × I2 × · · · × IN .
Then select the left singular vector of [Q](n) to form Fn ∈ CIn×In(n = 1, 2, · · · , N).

2.2. Signal Model Based on Tensor

We present a monostatic FDA-MIMO radar system, as shown in Figure 1, which is
wide beam and narrow-band. The uniform linear arrays(ULA) is applied to the transmitting
array and the receiving array, and d represents the spacing between adjacent antennas of
the array. Generally, we define the reference frequency as f1, which is the transmitting
frequency of the first element in the transmitting array. In addition, the radar system has
M transmitting elements and N receiving elements. Then fm denotes the transmitting
frequency of m-th transmitting element, which can be defined as

fm = f1 + (m− 1)∆ f , (m = 1, 2, · · · , M) (2)

where ∆ f stands for the frequency increment. It should be noted that ∆ f should be much
smaller than f1.

Mf1f 2f

receiving antennasN

target

r

transmitting antennasM
M1 2

21 3 N

d

d

Figure 1. Schematic diagram of monostatic FDA-MIMO radar

The transmitted signal of the m-th transmitting element is written as

sm(t) = φm(t)ej2π fmt, 0 ≤ t ≤ T (3)

where φm(t) and T denote baseband signal of the m-th transmitting antenna and the
radar pulse duration, respectively. The transmitted signal is wide beam and narrow-band
complex. On the premise that the waveforms are orthogonal to each other, and the time
shift is set to τ that is derived as∫ T

0
φm(t)φ∗n(t− τ)ej2π∆ f (m−n)tdt =

{
0, m 6= n, ∀τ
1, m = n, τ = 0.

(4)
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Suppose there are P targets, which are unrelated to each other and in the far-field. For
the p-th (p = 1, 2, · · · , P) target, the DOA and range parameters are denoted by θp and rp,
respectively. The at(θp, rp) represents the transmitting steering vector that is written as

at(θp, rp) =


1

e−j2π( f1d sin(θp)−2∆ f rp)/c

...
e−j2π(M−1)( f1d sin(θp)−2∆ f rp)/c

 (5)

The ar(θp) represents the receiving steering vector that is written as

ar(θp) =


1

e−j2π f1dsin(θp)/c

...
e−j2π(N−1) f1dsin(θp)/c

. (6)

The expression of received signal is as follows:

x(t) = [ar(θ1)⊗ at(θ1, r1), · · · , ar(θP)⊗ at(θP, rP)]s(t) + n(t) (7)

where the speed of light is denoted by c, and c = 3× 108 m/s.
Then arrange the received signal into the form of matrix multiplication, which is

written as
x(t) = As(t) + n(t) (8)

where the transmitting signal is denoted by s(t) = [s1(t), s2(t), · · · , sp(t)]T ∈ CP×1,
whose elements are the product of the reflection coefficient of P targets and the doppler
frequency shift, and the element can be written as sp(t) = βp(t)e−j2π f1rp/c. In addi-
tion, we can get A = Ar � At where Ar = [ar(θ1), · · · , ar(θP)] ∈ CN×P and At =
[at(θ1, r1), · · · , at(θP, rP)] ∈ CM×P represents the direction matrix of receiving and trans-
mitting, respectively; n(t) ∈ CNM×1 represents the received additional white Gaussian
noise matrix.

The received signal matrix is formed after receiving L snapshots that is denoted by

X = [Ar � At]ST + N (9)

where the specific composition of the received signal is X = [x(t1), x(t2), · · · , x(tL)], and
S = [s(t1), s(t2), · · · , s(tL)]

T ∈ CL×P. After receiving L snapshots, the received noise
matrix can be denoted by N = [n(t1), n(t2), · · · , n(tL)] ∈ CNM×L, which is uniform
Gaussian white noise.

Then to store the received signal, we employ a third-order tensor X , whose dimension
is M× N × L. According to the Definition 1, Equation (9) is divided into blocks along
the snapshot direction. Let [N ]T(3) = N, then stack the blocks of X following the third-
dimension of X , which is written as

[X ]T(3) = X. (10)

In this way, we get the signal model based on tensor for FDA-MIMO radar. Using tensor
algebra for target location can optimize the performance of target parameters estimation.

3. Doa and Range Estimation VIA Tensor for FDA-Mimo Radar
3.1. Signal Subspace Estimation VIA HOSVD

The tensor-based target location method requires HOSVD of the received signal, which
is different from the traditional matrix decomposition-based method [43]. According to
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Definition 2 and Definition 3, the HOSVD of tensor-based received signal model X is
written as

X = G ×1 U1 ×2 U2 ×3 U3 (11)

where the core tensor can be denoted by G, which is obtained by HOSVD. Un ∈ CIn×In(n =
1, 2, 3) are formed of the left singular ,which is obtained by the n-mode tensor unfolding
of X according to Definition 1, namely [X ](n) = UnΛnVH

n . Moreover, because we have
assumed P targets, the rank of X is P. The subspace based on the tensor is obtained by
truncated HOSVD, which is written as

X t = G t ×1 Ut1 ×2 Ut2 (12)

where G t = X ×1 UH
t1 ×2 UH

t2 ×3 UH
t3 denotes the truncated core tensor. Perform eigenvalue

decomposition on Un(n = 1, 2, 3) and extract the eigenvectors corresponding to the P
largest values of Un(n = 1, 2, 3) to form Utn. Then substituting G t into Equation (12), after
simplification, the result is written as

X t = X ×1 (Ut1UH
t1 )×2 (Ut2UH

t2 )×3 UH
t3 . (13)

Therefore, the subspace based on tensor that is expressed as

Us = [X t]
T
(3) = (Ut2UH

t2 ⊗Ut1UH
t1 )[X ]T(3)U

∗
t3 (14)

where [X ](3) = U3Λ3VH
3 . Similarly, [X ]T(3) ≈ V∗t3Λt3UT

t3 is obvious. Substituting [X ]T(3)
into Equation (14), simplifying the formula is written as [38]

Us = (Ut2UH
t2 ⊗Ut1UH

t1 )V
∗
t3Λt3. (15)

So far, the signal subspace Us based on tensor has been estimated.

3.2. DOA Estimation VIA Tensor-Based Reduced-Dimension Music

The signal subspace and the noise subspace are orthogonal to each other, which is the
basis of the MUSIC method [45]. The signal subspace is transformed into a unit orthogonal
column matrix by orthogonalization. After orthogonal projection, we can get the noise
subspace, which can be expressed as

UnoiseUH
noise = INM −UoUo

H (16)

The tensor-based spectrum function is constructed as

f (θ, r) =
1

[ar(θ)⊗ at(θ, r)]H[INM −UoUo
H][ar(θ)⊗ at(θ, r)]

(17)

where Uo represents the orthogonal basis of Us, and define Uorth = UnoiseUH
noise. However,

Equation (17) involves peak searching for two-dimensional spectral peaks, which requires
a lot of computation and is inefficient in practical application. Inspired by the Ref. [40], a
dimensional strategy is investigated to reduce the computation complexity based on the
characteristic of transmit-receive steering vector of FDA-MIMO radar, and the detail is
showed as follows.

In order to facilitate the derivation of the subsequent formula, according to the prop-
erties of the Kronecker product [43]. Set W1 ∈ Cd1×d2 , W2 ∈ Cd2×d3 , W3 ∈ Cd4×d5 and
W4 ∈ Cd5×d6 , we can get

(W1W2)⊗ (W3W4) = (W1 ⊗W3)(W2 ⊗W4) (18)

W1 ⊗W3 = (W1 Id2)⊗ (Id4W3) = (W1 ⊗ Id4)(Id2 ⊗W3) (19)
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Because of ar(θ) ∈ CN×1 and at(θ, r) ∈ CM×1, we can get the simplified ar(θ) ⊗
at(θ, r), which is expressed as

ar(θ)⊗ at(θ, r) = [ar(θ)I1]⊗ [IMat(θ, r)]

= [ar(θ)⊗ IM][I1at(θ, r)]

= [ar(θ)⊗ IM]at(θ, r).

(20)

So we define and simplify as follows

F(θ, r) = [ar(θ)⊗ at(θ, r)]HUorth[ar(θ)⊗ at(θ, r)]

= at(θ, r)H[ar(θ)⊗ IM]HUorth[ar(θ)⊗ IM]at(θ, r)

= at(θ, r)HF(θ)at(θ, r)

(21)

For the convenience of expression, we define F(θ) = [ar(θ)⊗ IM]HUorth[ar(θ)⊗ IM].
Inspired by the Ref. [40], the quadratic optimization of Equation (21) when constraint
condition is eH

o at(θ, r) = 1 and eo = [1, 0, · · · , 0]T ∈ CM×1, so as to eliminate the solution
of at(θ, r) = 0M. Because Equation (21) is essentially an issue of conditional extreme
value. We introduce the Lagrange multiplier method to address this issue, which can be
constructed as follows

L(θ, r) = at(θ, r)HF(θ)at(θ, r) + λ(eH
o at(θ, r)− 1) (22)

where λ is a constant.
According to the nature of Lagrangian extreme value, the partial derivative of the

Equation (22), which can be expressed as

∂L(θ, r)
∂at(θ, r)

= 2F(θ)at(θ, r)− λeo = 0

⇒ at(θ, r) =
λ

2
F(θ)−1eo

(23)

According to the constraint condition, we can get

eH
o at(θ, r) = 1

⇒at(θ, r) =
1

eH
o

(24)

Substituting Equation (24) into Equation (23), it is shown as

λ

2
F(θ)−1eo = at(θ, r) =

1
eH

o

⇒λ =
2

eH
o F(θ)−1eo

(25)

So at(θ, r) is derived as

at(θ, r) =
F(θ)−1eo

eH
o F(θ)−1eo

. (26)

Inserting at(θ, r) of Equation (26) into Equation (17) and Equation (21), we can estimate
the DOA via

θ̂ = arg max f (θ, r)

= arg min at(θ, r)HF(θ)at(θ, r)

= arg min e−1
o F(θ)e−H

o

= arg max eH
o F(θ)−1eo

(27)
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It is clearly concluded from Equation (27) that the spectrum function has actually been
independent of the range, thus achieving dimension reduction. DOAs of the P targets
should correspond to the P largest peaks of f (θ, r), which is obtained by θ ∈ [−90◦, 90◦].

3.3. Range Estimation

Since the DOA and range are coupled in at(θ, r), if the conventional MUSIC method
is used, the computation complexity is too high due to the excessive range. We use
reduced-dimension to estimate the range of the target.

Defining the estimation of DOA as θ̂p(p = 1, 2, · · · , P), and then substituting DOA
into Equation (26) to estimate the corresponding transmitting steering vector ât(θp, rp).
Normalize ât(θp, rp) to eliminate scale ambiguity. Extract the phase of ât(θp, rp) and
combine it with Equation (5), which can be written as

φ̂p = −angle(ât(θp, rp))

=


0

π(sin(θp)− 4∆ f rp
c )

...
π(M− 1)(sin(θp)− 4∆ f rp

c )

.
(28)

obtain the range information of the target, we introduce the least square method. The
least-square is constructed as follows

min||Gqp − φ̂p||2F (29)

where qp ∈ C2×1 represents the estimation parameter vector. G can be expressed as

G =

[
1 1 · · · 1
0 π · · · (M− 1)π

]T

∈ CM×2 (30)

Define q̂p as the estimation of qp, which can be expressed as

q̂p = (GTG)−1GTφ̂p (31)

Define the second element of qp as q̂p(2), which is the estimated value of sin(θp)−
4∆ f rp

c . Substituting the DOA θ̂p into Equation (31) to obtain the range information of target
that can be written as

r̂p =
c(sin(θ̂p)− q̂p(2))

4∆ f
. (32)

So far, using the proposed method, we have estimated the DOA and range parameters
of the target.

4. Performance Analysis of the Proposed Method
4.1. Computation Complexity

We introduce the computation complexity to reflect the efficiency of the proposed
method, which can be expressed as follows:

(1) The HOSVD computation complexity of X ∈ CM×N×L is O( MNL(M + N + L) ) in
Equation (11);
(2) The signal subspace estimation needs O(4PLMN) in Equation (15);
(3) In Equation (21), the dimensionality reduction of the two-dimensional search requires
O(M2N2P2(MN + P2));
(4) The spectrum peak search of DOA estimation in Equation (27) is O(dθ(MP)!(MP− 1)),
where dθ represents the search times within the search DOA, and (∗)! stands for factorial;
(5) Computing the range requires O(2M3P + M2P);
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The total computation complexity is O{4MNL+ M2N2P2(MN + P2)+ d(MP)!(MP−
1) + 2M3P + M2P + MNL(M + N + L)}.

We choose ESPRIT [32], MUSIC, [8] and Tensor-ESPRIT [30] as comparison methods.
According to Refs. [32,46] and combined with calculations, we can get the computation
complexity of the ESPRIT, MUSIC, and Tensor-ESPRIT. Table 2 shows the computation
complexity of the proposed method, ESPRIT, MUSIC, and Tensor-ESPRIT.

Table 2. Computation complexity comparison.

Method Computation Complexity

Proposed O{4MNL + M2N2P2(MN + P2) + dθ(MP)!(MP− 1)
+2M3P + M2P + MNL(M + N + L)}

ESPRIT O{(2MN)2L + (2MN)3 + 4(5MN − 2M− 2N)K2

+K3(L + M) + MNK2 + 31K3}

MUSIC O{dθ ∗ drange[(MN)2(2(MN − P) + MN)]
+(MN)2L + M2N + MN2}

Tensor-ESPRIT O{2(MNL)3 + MNL(M + N + L) + MLK(N + K)
+K3(L + M) + MNK2 + 31K3}

It should be noted that in Table 2, drange represents the search times of range-dimension.
The conventional target range is kilometer level, so drange is very large. It causes the
computation complexity of MUSIC to be not at the same level as that of other methods.
Subsequent simulations confirmed this view.

4.2. Cramér-Rao Bound

The received signal can be converted into

X = [Ar � At]ST + N = AST + N. (33)

Define a(θp, rp) = ar(θp)⊗ at(θp, rp). Let ζ represent the signal power, and the noise
power is denoted by σ2.

The corresponding Fisher information matrix (FIM) is expressed as

Fθ = 2Lζ Re
[
(QH

θ W⊥
A Qθ) ◦ R−1

n

]
(34)

Fr = 2Lζ Re
[
(QH

r W⊥
A Qr) ◦ R−1

n

]
(35)

where Rn = σ2 IP represents the noise covariance matrix, Qθ =
[

∂a(θ1,r1)
∂θ1

, · · · , ∂a(θp ,rp)
∂θp

]
,

Qr =
[

∂a(θ1,r1)
∂r1

, · · · , ∂a(θp ,rp)
∂rp

]
and W⊥

A = IMN − A(AH A)−1 AH.
The partial derivative can be expressed as

∂a(θp, rp)

∂θp
=

∂ar(θp)

∂θp
⊗ at(θp, rp) + ar(θp)⊗

∂at(θp, rp)

∂θp
(36)

∂a(θp, rp)

∂rp
= ar(θp)⊗

∂at(θp, rp)

∂rp
(37)

with

∂ar(θp)

∂θp
= −j2π

f1

c
dcos(θp)DN ar(θp) (38)

∂at(θp, rp)

∂θp
= −j2π

f1

c
dcos(θp)DMat(θp, rp) (39)
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∂at(θp, rp)

∂rp
= −j4π

∆ f
c

DMat(θp, rp) (40)

where DK = diag(0, · · · , K− 1).
The CRBθ can be expressed as

CRBθ = mean(diag(F−1
θ )) (41)

CRBr = mean(diag(F−1
r )) (42)

where mean(∗) represents the mean of the array.

5. Numerical Simulations

In this section, we perform numerical simulations to analyze the effectiveness and
reliability of the proposed method under different situations. The FDA-MIMO radar
related parameter setting are as follows: M = N = 8; f1 = 10GHz; ∆ f = 1000 Hz
d = c

2 f1
. The P = 3 independent targets are supposed at (θ1, r1) = (10.923◦, 58 km),

(θ2, r2) = (50.456◦, 30 km), (θ3, r3) = (−5.789◦, 9 km), respectively. The radar and target
parameters remain unchanged unless otherwise stated. The total of Monte Carlo trials can
be denoted by T, and T = 500.

5.1. Spectrum Peak Search for DOA Estimation

The parameters of this simulation are as follows: the number of snapshots to L = 50,
and SNR = 20 dB. Select the matrix decomposition-based classical MUSIC method as the
comparison method. Comparing the performance of DOA estimation of the two methods.
The spatial spectrum is shown in Figure 2.
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Figure 2. The spatial spectrum of angle dimension

In the actual simulation of the proposed method, we firstly set the search range and
step size to [−90◦, 90◦] and 1◦, respectively, to get the angle information DOA1◦ . Then
marrow down the two search parameters appropriately, namely [DOA1◦ − 5◦, DOA1◦ + 5◦]
and 0.1◦. In this way, the computation complexity is reduced.

It can be found from Figure 2 that the accuracy of the signal subspace is improved,
making the spatial spectrum more sharp and accurate. The reason is that the proposed
method utilizes the multi-dimensional structure of the tensor-based received data to im-
prove the estimation accuracy of the signal subspace. In order to show the difference
of the spatial spectrum more clearly, the more high-precision spatial spectrum is shown
in Figure 3. Figure 3 shows the part of the spatial spectrum at three target angles with
the accuracy of 0.1◦. It can be seen from Figure 3 that the proposed method has more
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significant peaks and narrower bandwidth, which also proves that the proposed method
has a higher resolution.
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Figure 3. Partial view of the spatial spectrum of angle dimension

5.2. 2D Point Cloud of the Target Landing Point

In this simulation, the estimation of results are shown in Figure 4. The signal param-
eters are set to L = 50 and SNR = 20 dB. The DOA and range of target are displayed as
X-axis and Y-axis, respectively. We can get from the Figure 4 that the landing point of the
estimated target coincides with the real target position. The automatic matching of DOA
and range can be realized. This can intuitively reflect the superiority of the stability and
accuracy of the proposed method.
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Figure 4. 2D point cloud of estimated targets

5.3. RMSE Performance

It is important for the root mean square error (RMSE) to measure the comprehensive
performance of the proposed method. The important index can be expressed as

RMSEθ =
∑P

p=1

√
∑T

t=1(θ̂
t
p − θp)2/T

P
(43)

RMSEr =
∑P

p=1

√
∑T

t=1(r̂t
p − rp)2/T

P
(44)

where the estimation of DOA and range are denoted as θ̂t
p and r̂t

p, which are the t-th
monte carlo tarils estimation results of the p-th target, respectively. The ESPRIT, MUSIC,
Tensor-ESPRIT, and CRB are used to measure the comprehensive performance of the
proposed method.
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We show the performance of the methods with SNR when L = 50. The RMSE of DOA
and range are shown in Figures 5 and 6, respectively. We can obtain that the proposed
method outperforms all other methods in accuracy and stability. This is because the
proposed method uses a multi-dimensional structure through tensor, which improves the
accuracy of the target location. It’s worth noting that the ESPRIT-based method loses the
array aperture when decomposing and estimating the signal subspace, so the performance
is lower than that of the MUSIC-based method.

Figures 7 and 8 show the RMSE of DOA and range estimation of these methods with
L when SNR = 5 dB. It corresponds to the DOA RMSE and range RMSE, respectively.
Similarly, we introduce the comparison methods. We can get that the RMSE curve of the
proposed method is smoother and closer to CRB. This shows that the performance of the
proposed method is the best. The performance of the ESPRIT-MUSIC method will surpass
that of MUSIC when the total of snapshots is high. It is because the increase in the number
of snapshots compensates for the loss of the array aperture during signal decomposition.
However, the proposed method uses tensor to ensure performance. In addition, the
proposed method can also achieve excellent target positioning at low snapshots.
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Figure 5. RMSE of DOA estimation versus SNR
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Figure 6. RMSE of range estimation versus SNR
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5.4. Probability of Successful Detection

The probability of successful detection (PSD) is another important index, which can
measure the stability and robustness of the method.

Define the total of successful detections as V. PSD is denoted by

PSD = V/T × 100% (45)

If the difference between the estimated and the true of DOA and range are within
±0.1◦ and ± 0.1 km, respectively, then it can be regarded as a victory target detection. It
can be regarded as a successful detection, when the difference between the estimated value
and the true value of DOA and range is within ±0.1◦ and ±0.1 km, respectively.

Figures 9 and 10 show the PSD of DOA and range estimation with SNR when the
number of snapshots is L = 50, respectively. We can conclude that the method is the best
compared to the comparison methods. This indicates that the stability and effectiveness of
the proposed method is excellent. In addition, the proposed method can achieve a 100%
successful detection rate with a lower SNR, which indicates that our method overcomes
the defect of performance degradation when SNR is low.
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5.5. The Simulation Time Versus Trial Number

In this simulation, we compare the simulation running time of the methods, and the
results are shown in Figure 11. The signal parameters are set to SNR = 20 dB and L = 50.
In particular, the total of Monte Carlo trials is T = 100. The X-axis and Y-axis represent the
trial number and simulation running time, respectively.

Figure 11 shows the simulation running time comparison of ESPRIT, MUSIC, Tensor-
ESPRIT, and Proposed method. From the previous calculation of computation complexity, it
can be seen that the computation complexity of MUSIC is much higher than that of the other
methods, which is caused by the range-dimensional spectral peaks. The proposed method
eliminates the high computational cost of range-dimension spectral peaks through reduced-
dimension. It can be seen from the partial enlargement that the simulation running time of
the proposed time is close to that of ESPRIT and Tensor-ESPRIT methods. This shows that
the computation complexity of the proposed method is the same order of magnitude as
that of ESPRIT and Tensor-ESPRIT methods. The performance of the proposed method is
more excellent under the same computation complexity.
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6. Conclusions

We propose a reduced-dimensionality MUSIC method based on tensor in this paper,
which realizes joint DOA and range estimation in FDA-MIMO radar. A tensor-based
signal model can be established to store inherent multi-dimensional structures that can
optimize the performance and stability of target parameter estimation. Then use the
HOSVD to obtain the signal subspace based on tensor, which can be used to construct
the two-dimensional spectrum function. The Lagrange multiplier method is utilized to
reduce the dimensionality of the spectrum function. The estimation of DOA is realized
by a one-dimensional spectrum peak search. The constraint condition is constructed to
eliminate the limit situation when the transmitting steering vector is zero matrix. We
can derive the transmitting steering vector from the partial derivative of the Lagrange
function. Finally, extract the phase of the transmitting steering vector. Range information
is estimated by the least square method. Moreover, the high computation complexity of
two-dimensional MUSIC is overcomes in the proposed method, and uses tensor-based
signal model to optimize the performance of the proposed method, which can remain
stable in low SNR and low snapshot. The superiority of the proposed method can be
verified by numerical analysis and simulation. In the future, we will optimize the proposed
method to make target location more accurate and suitable for more application.
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