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Abstract: Tropical forests are a key component of the global carbon cycle and climate change miti-
gation. Field- or LiDAR-based approaches enable reliable measurements of the structure and above-
ground biomass (AGB) of tropical forests. Data derived from digital aerial photogrammetry (DAP) 
on the unmanned aerial vehicle (UAV) platform offer several advantages over field- and LiDAR-
based approaches in terms of scale and efficiency, and DAP has been presented as a viable and 
economical alternative in boreal or deciduous forests. However, detecting with DAP the ground in 
dense tropical forests, which is required for the estimation of canopy height, is currently considered 
highly challenging. To address this issue, we present a generally applicable method that is based 
on machine learning methods to identify the forest floor in DAP-derived point clouds of dense trop-
ical forests. We capitalize on the DAP-derived high-resolution vertical forest structure to inform 
ground detection. We conducted UAV-DAP surveys combined with field inventories in the tropical 
forest of the Congo Basin. Using airborne LiDAR (ALS) for ground truthing, we present a canopy 
height model (CHM) generation workflow that constitutes the detection, classification and interpo-
lation of ground points using a combination of local minima filters, supervised machine learning 
algorithms and TIN densification for classifying ground points using spectral and geometrical fea-
tures from the UAV-based 3D data. We demonstrate that our DAP-based method provides esti-
mates of tree heights that are identical to LiDAR-based approaches (conservatively estimated NSE 
= 0.88, RMSE = 1.6 m). An external validation shows that our method is capable of providing accu-
rate and precise estimates of tree heights and AGB in dense tropical forests (DAP vs. field invento-
ries of old forest: r2 = 0.913, RMSE = 31.93 Mg ha−1). Overall, this study demonstrates that the appli-
cation of cheap and easily deployable UAV-DAP platforms can be deployed without expert 
knowledge to generate biophysical information and advance the study and monitoring of dense 
tropical forests. 
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1. Introduction 
Tropical forests comprise 55% of the current carbon (C) stock of the world’s forests 

and exhibit high gross (GPP) and net (NPP) primary productivity [1,2]. As such, they play 
a pivotal role in the global C cycle. Furthermore, the sensitivity of tropical forest C fluxes 
to climate is a key uncertainty in global climate change mitigation [3]. Reliable field meas-
urements of changes in C stocks and accrual are therefore required [4]. However, field 
inventories are laborious and require a balance between the work objectives and intrinsic 
restrictions such as sample size, observation frequency, budget availability and logistical 
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constraints [5]. The use of remote sensing (RS) data has become a valuable tool to increase 
the efficiency, precision and scale of forest inventories. For forestry applications, RS data 
have mainly been sourced from three systems, i.e., airborne laser scanning (ALS, or air-
borne LiDAR), radio detection and ranging (RADAR) and optical images (e.g., satellite 
and aerial images) [6]. Due to the differences in forest canopy cover, geographical and 
environmental conditions and methodological limitations, it is important to understand 
the potential and limitations of RS approaches. For example, monitoring forests using op-
tical systems is usually hindered by clouds, shadows and/or low spectral variability. RA-
DAR systems, on the other hand, are capable of capturing three-dimensional (3D) data 
regardless of weather and light conditions, but are affected by saturation problems in 
complex mature tropical forest stands and also have difficulty in distinguishing between 
vegetation types [7]. ALS systems have shown great potential for forest monitoring in a 
variety of forest types, yet the wide application of ALS data for large-scale or frequent 
forest monitoring has been limited due to high costs of data acquisition. Recently, space-
borne LiDAR instruments (e.g., GEDI) have been providing unique global data for forest 
structure mapping, but the footprint-level products represent a point sample of a limited 
portion of the land area, and it is challenging to align it to field-based plot and/or moni-
toring efforts [8]. 

In recent years, the advent of versatile and low-cost UAV platforms and the devel-
opment of efficient structure from motion (SfM) algorithms [9] have provided new ways 
to acquire 3D data using digital aerial photogrammetry (DAP). This image-based ap-
proach has demonstrated its capability to retrieve digital surface models (DSM) at a pre-
cision comparable to that of LiDAR-based approaches but at a lower cost [10]. Therefore, 
DAP has been widely used in forest inventories, providing reliable measurements to re-
trieve information on the structure of the upper forest canopy. A UAV-DAP workflow has 
the potential to provide a large amount of spatial information on forest biophysical attrib-
utes, as it allows rapid surveys of larger areas compared to traditional ground-based in-
ventories or terrestrial laser scanning [11]. A canopy height model (CHM) can be derived 
to complement traditional field inventories by providing information such as plant spe-
cies, canopy height, stem location, above-ground biomass (AGB) and canopy structure at 
site scale (e.g., [12–15]). The UAV-DAP workflow has shown great potential in forest mon-
itoring among a large variety of forest types, including temperate European beech forests 
[16], mangrove forests [13], mixed conifer–broadleaved forest [17], tropical woodlands 
[18] and tropical forests [19]. 

The acquisition of accurate digital terrain models (DTMs) is essential for the estima-
tion of CHMs. Despite the many advantages in terms of scale, cost and flexibility offered 
by UAV-DAP workflows, the derivation of quantitative estimates of CHMs has been se-
verely limited by poor ground penetrability of passive light sensors in dense tropical for-
ests. This represents a substantial constraint on the characterization and monitoring of 
dense tropical forests. DAP-derived point clouds poorly represent the lower strata of veg-
etation and the terrain under it [20] (Figure 1). In DAP studies conducted over dense for-
ests, the normalization of the 3D point clouds usually requires external data sources, such 
as shuttle radar topography mission data (SRTM) and LiDAR data [21]. However, the use 
of coarse-resolution SRTM-based DTMs (e.g., [18]) was found to be unsuitable for estimat-
ing above-ground biomass, while LiDAR data, on the other hand, are more reliable but 
may have limited spatial and temporal coverage. It is therefore necessary to develop a 
workflow to derive DTMs from UAV-DAP data without external information. Established 
methods for constructing DTMs developed for LiDAR-derived point clouds such as the 
cloth simulation filter (CSF, [22]) and the progressive triangulated irregular network (TIN) 
densification filtering algorithm [23] are not appropriate for UAV-DAP-derived point 
clouds of dense forests, because these methods require that a large number of true ground 
points be detected. By utilizing ground points, Ota et al. (2015) derived UAV-DAP-based 
DTMs by interpolating local minima in a 10 × 10 m grid in a dense evergreen forest and 
this resulted in less accurate estimation of AGB relative to an ALS-based approach [24]. 
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Giannetti et al. (2018) proposed a method to overcome some of the above-mentioned lim-
itations, using UAV-DAP-derived variables without prior normalization (i.e., DTM-inde-
pendent variables). Their results showed similar accuracy between DAP and ALS work-
flows in predicting the growing stock volume for a dense broadleaf forest in steep terrain. 
However, the site-specific statistical relations between the DAP cloud structure and forest 
biophysical parameters require local calibration and limit the transferability of these mod-
els to other sites [16], particularly to tropical forest with dense vegetation. 

 
Figure 1. Illustration of DAP and ALS data. Transect (thickness = 0.5 m) showing the comparison 
between the DAP and ALS point clouds for a dense tropical forest (from the Yangambi datasets, see 
text below). The black and red dash lines show that the ALS- and DAP-measured digital surface 
models (DSM) are well aligned. The red solid line shows the limited capability of DAP to detect the 
ground. The black line is the ALS-derived digital terrain model (DTM). 

Recently, nationwide airborne LiDAR (ALS) surveys have been carried in the tropical 
forests of central Africa, more precisely in the Democratic Republic of Congo (UCLA, 
WWF, BMUB, KFW, 2017. CARBON MAP OF DRC) (e.g., Figure A1). This dataset pro-
vides a single snapshot with a small spatial footprint of a large variety of landscapes as 
well as forest types, but a very small fraction of the forest is covered (ca. 0.19% of the total 
area of DRC; Figure A1). The use of UAV-DAP-derived point clouds as a complement to 
such ALS (or TLS) approaches to substantially enhance our mapping and monitoring ca-
pabilities of dense tropical forest has potential. If UAV-DAP is sufficiently performant, it 
would (i) enable a wider proportion of the research community to quantify and monitor 
canopy metrics as small, cheap and easily operatable UAV platforms can be implemented 
without expert knowledge, and (ii) enable a larger spatial and temporal coverage to be 
studied as the cost per unit area is lower, which in turn could facilitate the swift upscaling 
of plot-based field studies to the immediate geographic area. Recently, the advent of per-
formant machine learning techniques has provided added value to remote sensing prod-
ucts in several domains (e.g., [25,26]). The potential contribution of these advances to in-
terpret UAV-DAP point clouds in dense tropical forests is not fully explored at this mo-
ment. 

The main objective of this work is to evaluate the potential of UAV-DAP as a 
standalone tool to estimate tree heights in dense tropical forests of the Congo Basin. In 
this study, we develop and evaluate a generally applicable workflow that is transferable 
to other sites and that does not require external topographical data. Our hypotheses are 
that (i) UAV-DAP clouds provide sufficient ground points to construct continuous DTMs 
and (ii) that the identification of these points can be derived without a priori information 
using only structural and/or spectral features of the UAV-DAP cloud. Our method is 
based on machine learning methods to identify the forest floor and generate DTM from 
DAP-derived point clouds. The study was conducted in the dense tropical forests of the 
central part of the Congo Basin near the city of Kisangani and uses a combination of field 
inventories, airborne LiDAR and UAV-DAP surveys for calibration and validation 
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purposes. This study seeks to answer the following questions: For this specific forest eco-
system: (i) can existing LiDAR data inform machine learning methods to identify the for-
est floor in DAP-derived point clouds? (ii) can canopy height models, derived from UAV-
DAP, be quantified with similar accuracy and precision as LiDAR-based approaches? (iii) 
can this UAV-DAP workflow be transferred to other sites to monitor CHMs? 

2. Materials and Methods 
This study consists of two main sections: (i) the development of the DTM generation 

workflow using UAV-DAP and reference ALS data in the Yangambi field site; (ii) an ex-
ternal validation of the proposed workflow using standalone UAV-DAP to generate 
DTMs and CHMs on the Yoko site for evaluating the transferability of the DTM generation 
workflow. Finally, we use forest inventory data from the Yoko site to demonstrate the 
added value of the UAV-DAP DTM and CHM generation for AGB estimations in dense 
tropical forests. A flowchart showing the structure of the article is presented in Figure 2. 

 
Figure 2. Flowchart showing the structure of the study. 

2.1. Survey Area 
The two study sites used in this study, the Yangambi biosphere reserve and the Yoko 

reserve, are located in the Tshopo province of the Democratic Republic of Congo. Ex-
tended on the two sides of the equator, the Tshopo province is located in the central Congo 
Basin (2°S–2° N, 22°E–28° E). The Yangambi biosphere reserve is located around 90 km 
west of Kisangani (Isangi territory) while the Yoko site is located in the Ubundu territory 
32 km south-east of Kisangani (Figure 3) [27,28]. The climate falls within the Af-type (trop-
ical rainforest climate), following the Köppen–Geiger classification. Soils in the region are 
typical deeply weathered and nutrient-poor Ferralsols. The monthly average temperature 
of the Yangambi biosphere reserve ranges between 22.4 and 29.3 °C, and the annual rain-
fall ranges from 1600 to 2200 mm with a long-term average of ca. 1828 mm [29]. The annual 
rainfall in the Yoko site is between 1500 and 2000 mm, with a mean annual temperature 
of 20 °C. An average climatic year has a long rainy season interrupted by two small drier 
seasons from December till January and from June till August [29]. The dominant forest 
types in the Yoko site are lowland mixed forest (LMF) and lowland monodominant forest 
(LMoF), where >60% of the basal area consists of one species, Gilbertiodendron dewevrei (De 
Wild.) J. Léonard. According to forest-type classification by Réjou-Méchain et al. (2021), 
both Yangambi and Yoko regions are characterized as semideciduous–evergreen 
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transition [30]. The elevations within the two sites range from 350 to 500 m a.s.l., and the 
terrains are undulating, interspersed with gently rolling hills (slopes range between 0 and 
15%). 

 
Figure 3. Description of the study sites. (a) Location of the study site. (b) Satellite image of the study sites. (c) Illustration 
of the remote sensing data sources in the Yangambi site. The gray-scale background layer indicates the ALS-based DEM. 
(d) Location of inventory plots in the Yoko site. The orthomosaic depicts the survey area covered by DAP. The gray-scale 
background layer represents SRTM altimetry. 

2.2. UAV Data Acquisition and Processing 
2.2.1. UAV Platforms 

Two UAV platforms were used in the surveys: (i) a consumer-grade DJI Mavic 2 Pro. 
This UAV was equipped with a Hasselblad L1D-20c camera (20 megapixels, 5184 × 3456 
pixels, ca. 77° FOV). The onboard GNSS supports GPS and GLONASS. (ii) A customized 
DJI Phantom 3 Advanced. We removed the DJI camera-gimbal system and mounted a 
GoPro Hero 3 camera (12 megapixels, 4000 × 3000 pixels, with 2.92 mm F/2.8 123° HFOV 
lens) and connected the camera to a real-time kinematic and post-processing kinematic 
(RTK/PPK)-enabled GNSS receiver to determine the camera exposure position at 
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centimeter level (Figure 4; more details can be found in [31]). The Mavic camera provided 
higher image quality but with lower GNSS accuracy, while the GoPro camera provided 
accurate positioning with the PPK solution but had lower resolution of images. In brief, 
the main survey mission was performed using the Mavic camera, while we used the Go-
Pro PPK-GPS system to assist in precise georeferencing by jointly processing the images 
of the two setups (for details, see Section 2.2.3). 

 
Figure 4. Setup of the UAV survey. (a) Mavic drone with a L1D-20c camera model. (b) GoPro Hero 3 camera mounted on 
a Phantom 3 drone with the PPK-GPS system. (c) Reach RS base station placed in an open area providing positioning 
correction for the PPK solution. (d) Flight plan for UAV photogrammetry of the Yangambi site. (e) Images of the Yoko site 
processed in the Pix4D Mapper by applying the “fusion” approach. 

2.2.2. UAV Survey 
The UAV surveys were carried out at Yangambi on 19 February, 2020, and at Yoko 

on 9 February, 2020, respectively. The Yangambi flight mission covered an area of 348.8 
ha. The Yoko survey consisted of five different flight areas due to the dispersed locations 
of the 12 inventory plots and, in total, covered an area of 301.7 ha (Figure 3). For both 
UAV/camera systems, 90% forward overlap and 80% side overlap were programmed in 
the flight plan. The flight height was set at ca. 180 m from the ground level, providing an 
average ground sampling distance (GSD) of ca. 0.04 m px−1 for Mavic and 0.10 m px−1 for 
GoPro. For each survey site, the flight plan contains an intersection region where both 
UAVs/cameras surveyed on. During the flights, a Reach RS (Emlid Ltd.) base station was 
mounted on a tripod placed in an open area within the surveyed region to provide posi-
tioning correction for PPK georeferencing. The absolute coordinate of the base station was 
determined using the ca. 8 h average value of the single solution throughout the survey. 
This setup provides meter-level absolute accuracy but centimeter-level precision (relative 
accuracy). 

2.2.3. UAV Data Processing 
The images were processed using the Pix4D Mapper software 

(https://www.pix4d.com/). The software uses an SfM algorithm to generate 3D point 
clouds, DSMs and orthophoto mosaics of the surveyed area. The procedure consists of 
three main steps: (i) initial processing, (ii) point cloud generation and (iii) DSM and ortho-
mosaic generation. First, the photographs are aligned using a point matching algorithm 
that automatically detects matching points on overlapping photographs and uses these 
points to simultaneously solve for exterior orientation (EO) parameters. During the pro-
cessing, we fused the images acquired from the intersection area where both 
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UAVs/cameras surveyed, where the Mavic images were set at a low image geolocation 
accuracy (10 m) in the bundle block adjustment (BBA) procedure, while the GoPro images 
that were geolocated with the PPK workflow were set at a rigid accuracy (0.05 m). There-
fore, the GoPro images played a role similar to “ground control points,” only to constrain 
the positional computation of Mavic images and improve the quality of the SfM outputs. 
Finally, the outputs (i.e., point cloud, DSM and RGB mosaics) had centimetric precision 
(see Appendix, Figure A2). Note that only the Mavic camera outputs were used for sub-
sequent DTM generation. 

2.3. ALS Data Acquisition and Processing 
A published ALS dataset was used as a reference [32]. The ALS survey was con-

ducted using the Optech ALTM 3100 LiDAR scanner from June 2014 to February 2015 in 
the tropical forest region of DR Congo (Figure A1). The ALS data used in this study inter-
sect the above-mentioned UAV flights with a surface area of 120 ha. The preprocessing of 
ALS data included trajectory calculation, ALS point calibration and classification. The 
DTM was created using the mean elevation of ALS points labeled as class 2 (ground) in 
each 5-meter pixel. The DSM was created using the maximum elevation of the ALS points 
in each 5-meter pixel. Pixels with missing data were interpolated by natural neighbor in-
terpolation. The canopy height model (CHM) was calculated as the height difference be-
tween the ALS-derived DSM and DTM. The ALS-derived products described here are re-
ferred to as “reference” DSM, DTM and CHM in the remainder of the text. It should be 
noted that there is a 5- to-6-year gap between the ALS and DAP data collection, and we 
discuss potential bias below. 

2.4. DTM Generation and Assessment 
2.4.1. DTM Generation Workflow  

Based on a preliminary analysis of different DTM generation methods (the results 
that are presented in the Supplementary Materials), we identified the most performant 
approach. This approach is described here in detail. This methodology identifies ground 
points from the UAV-DAP point cloud, which are then used to interpolate a DTM. The 
proposed workflow can be summarized by the following three steps: 

(i) Selection of local minima candidate points. 
The first round of selection aims to identify a large selection of local minima as “can-

didate” ground points. A DEM was constructed by rasterizing the DAP-based point cloud 
using minimum elevation values of each grid at 0.5 m resolution. Then, a moving window 
was applied to select the local topographic minimum. The size of the moving window 
involves a trade-off between the number and probability of the points to be the true 
ground points. We perform simulations to identify the optimal size of the moving win-
dow.  

(ii) Classification of true ground points. 
In the next step, additional filters were applied on the local minima “candidate” 

points to distinguish between true ground points and low vegetation points. The latter 
should be excluded from the interpolation procedure. To this end, we performed a super-
vised classification using an ensemble learning method based on a set of spectral and 
structural features derived from the raw DAP-based point cloud. All candidate points 
within a 2 m vertical distance from the true ground, as inferred from the reference ALS 
DTM, were considered to be true ground points, while others were regarded as non-
ground (i.e., substory). This threshold of 2 m was determined after an exploratory analysis 
of the difference between the DAP cloud and ALS-derived ground points. Afterwards, 
structural features were extracted around these candidate points to contribute to the clas-
sification of ground points, including grid density (number of points in each cell), stand-
ard deviation of height and height range in each cell (for an illustration of these features, 
see Figure A3). These cell-based statistics were extracted at grid sizes of 1, 5, 10, 20 and 40 
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m, respectively. In addition, spectral features of the candidate points were extracted from 
both the top and bottom layers of the cloud, including their R-, G- and B-band values, 
YUV values (a brightness index). Considering possible changes in light conditions during 
data collection, we included only their normalized values in the analysis, i.e., subtracting 
the mean and dividing by the standard deviation. As such, each value would reflect the 
distance from the mean in units of standard deviation. In total, 23 variables were extracted 
into the exploratory analyses to determine their importance and construct the classifica-
tion model. A random forest (RF) classification was applied to classify the candidate 
points into ground or non-ground points. Note that the data used for model calibration 
were a subset from the Yangambi study area (Figure 3), while validation was performed 
on another region. The RF approach has several advantages: first, it is a simple approach 
that requires fewer decisions on the model parameterization than other methods [33]; sec-
ond, it can handle a large number of input variables without variable deletion. This is 
achieved through a combination of individual decision trees, each being based on a ran-
dom subset of the available dataset. As an exploratory method, it provides information 
on whether variables are important or not in the classification, which gives directions for 
final model calibration. We validate the performance of the developed classification 
model by applying it on the area not used for model calibration and evaluate the estimated 
DTM by comparing it to the reference DTM. The accuracy of the RF classification was 
estimated by using the proportion of correct predictions among the total points. The fea-
ture importance of the predicting model was also derived for exploratory analysis (Figure 
A3). The classifier training and assessment were performed in R (Version 3.5.1; R Core 
Team). In the next step, we performed a geometry-based filter, i.e., TIN densification fil-
tering algorithm, to further screen ground points. The algorithm first generates a sparse 
TIN through seed points (the original term from the paper, similar to “candidate points” 
in this case by definition) and then iteratively processes layer-by-layer densification until 
all ground points have been classified. The iterations traverse all the unclassified points, 
query the triangles that each point belongs to in the horizontal projection plane and cal-
culate the distance (d) from the point to the triangle and the maximum angle between the 
point and three vertices with the triangle plane. The distance and maximum angle are 
compared with the threshold values to determine the classification and repeat this process 
until all ground points have been classified [23]. This procedure was performed using the 
LiDAR360 software (GreenValley, Ltd, Berkeley, CA, USA). These resulting selections of 
points are then very likely to be ground points that can be used for interpolation. 

(iii) DTM interpolation. 
We applied a co-kriging technique, i.e., kriging with external drift (KED), where a 

down-sampled DSM (i.e., DAP-derived DSM) was used as a covariable to assist in the 
interpolation [34]. The underlying assumption is that the dense canopy is relatively ho-
mogeneous at coarser spatial resolution and covaries with terrain (Figure A4). Thus, it can 
improve interpolation, particularly in regions where a limited number of ground points 
are detected. We evaluate different down-sampling resolutions. In addition, we create a 
prediction standard error map. These procedures were performed in ArcMap 10.4 (ESRI).  

2.4.2. DTM Evaluation 
The generated DTMs were evaluated using the following indices: (i) the Nash–Sut-

cliffe model efficiency coefficient (NSE). For the application of NSE in regression proce-
dures (i.e., when the total sum of squares can be partitioned into error and regression 
components), the NSE is equivalent to the coefficient of determination (r2) of the 1:1 re-
gression line, thus ranging between 0 and 1. In the situation that the estimated error vari-
ance equals zero, the resulting NSE equals unity. Here we used this index to assess the 
consistency of grid-to-grid raster values between the UAV-DAP-based DTMs and the ref-
erence ALS DTM; (ii) the RMSE of grid-to-grid raster values between the predicted DTM 
and the reference DTM. 
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𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ =𝑖𝑖 1𝑛𝑛(𝐸𝐸𝑖𝑖 − 𝑂𝑂𝑖𝑖)2

∑ =𝑖𝑖 1𝑛𝑛(𝑂𝑂𝑖𝑖 − 𝑂𝑂�)2
 (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �� = 1𝑛𝑛
(𝑂𝑂𝑖𝑖−𝐸𝐸𝑖𝑖)2

𝑛𝑛
𝑖𝑖

 (2) 

where n is the number of observations, Oi is the observed (reference ALS) value, Ei is the 
estimated (DAP-based) value, 𝑂𝑂� is the mean of the observed values and i is the counter 
for individual observed and predicted values. Note that the evaluation is performed on 
an area that was not used for model calibration. 

2.5. CHM Generation and Assessment 
The CHM was derived by subtracting the DTM from the DSM at the same spatial 

resolution based on DAP products. To examine to what extent the DAP approach pro-
vides estimates of canopy height in terms of accuracy and precision as ALS does, we com-
pared the CHM products (DAP vs. ALS) at grid level, individual tree level and plot level. 
For grid-level comparison, we resampled both CHMs to the same resolution of 0.5 m and 
compared the values grid-to-grid. For tree-level comparison, a treetop detection proce-
dure was applied prior to the comparison to extract the heights of identical trees from 
both CHMs. To achieve this, a moving window scans the CHM to detect the highest point, 
the size of which varies dynamically with crown sizes [35]. The plot-level comparison was 
performed by resampling both CHMs to the resolution of 40 m to simulate the size of an 
inventory plot (not a real plot, but a plot size, typically 40 m × 40 m), whereby each grid 
can be regarded as a plot. Afterwards, the height metrics, which include mean canopy 
height (Hmean, the average value of the CHM height), and the 75th percentile of the canopy 
height (H75) derived from each grid were compared. All these observations were defined 
as high and low quality based on standard error of co-kriging during the DTM interpola-
tion, where SE > 1.5 m was considered with higher uncertainty (lower quality) in CHM 
generation. 

2.6. External Validation on the Yoko Site 
2.6.1. UAV-Based CHM Generation 

To evaluate to what extent the DTM generation approach presented in this paper is 
transferable to other sites and can be considered a general model for a certain type of 
forest, we applied the aforementioned workflow (developed on Yangambi) to the Yoko 
site, where no ALS data are available. Note that both forest sites are situated in a similar 
environment and both are classified as semideciduous–evergreen transition (Figure A1). 
Using the workflow outlined above, both the DTM and CHM of the Yoko site were gen-
erated, including the CHMs of the 12 inventory plots. For each plot, metrics were derived 
from the CHMs (Table 1). Due to the complexity of the forest canopy, some canopies, es-
pecially those of younger forests, showed homogeneous structures and heights in the 
CHM, leading to large uncertainties in identifying individual trees using the canopy max-
ima method. Moreover, the detection of individual trees is susceptible to the size of the 
moving window for detecting the local maxima when the canopies do not have clear 
boundaries with each other. Therefore, the CHM-derived metrics for Yoko are area-based 
rather than tree-centric. The metrics include mean canopy height (Hmean, the average value 
of the CHM height) and the 75th percentile of canopy height (H75). This approach is con-
sistent with field-based inventories (see below). 

2.6.2. Field-Based Measurements 
There are 12 inventory plots of 0.16 ha (40 × 40 m) within the Yoko site, three for each 

stand age class (5-, 12-, 20- and 60-year). The center and four corners of the plots were geo-
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referenced using a GPS (Garmin GPSMap 64). The diameter at breast height (DBH, de-
fined at 130 cm above-ground level) of each tree with DBH ≥ 10 cm was measured using 
a measuring tape. In all plots, the tree height of at least 20% of the individual trees across 
the DBH classes was measured using a hypsometer (Nikon Forestry Pro, Nikon, Japan). 
Subsequently, DBH–height relations were fitted to the plot-level data to estimate the tree 
heights of all trees in the plot [28]. Tree species were identified and recorded for wood 
density calculations. Wood density was assigned using the World Wood Density database 
for tropical trees [36]. In the cases where tree identification was missing or did not match 
any name in our databases, we assigned the genus-level wood density to that individual, 
since the within-genus variability of wood density is rather low [36]. AGB was then cal-
culated using the pantropical allometric models developed by Chave et al. [37]: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 =
10−3

𝐴𝐴
� 0.0673 × (𝜌𝜌𝑖𝑖𝐷𝐷𝑖𝑖2𝐻𝐻𝑖𝑖)0.976
𝑁𝑁

𝑖𝑖=1

 (3) 

where AGBest is the above-ground biomass in units of Mg ha−1, A is the area of the plot in 
hectare (ha), Di is the diameter of each tree in the plot in centimeter (cm), Hi is the height 
of each tree in meter (m) and ρi is the wood density of each tree in g cm−3.  

2.6.3. CHM Evaluation with Field-Based Methods 

Tree Height 
To evaluate the consistency between the DAP-based CHM and field-based measure-

ments of tree heights, we selected the five biggest trees per plot so as to represent the 
dominant tree height at the plot level. This is due to the lumped nature of the inventory 
methods; the data cannot be directly related to the high-resolution DAP products at the 
tree level, and only data aggregated at the plot level can be compared. Furthermore, the 
big trees are key to estimate biomass [38]. The measured mean height and standard error 
(SE) were calculated and compared with the CHM-derived Hmean and H75. 

AGB 
Predictive models for AGB were calibrated at the plot level based on the metrics men-

tioned above. Non-linear least-squares analysis was performed to fit a power-law model 
between field-estimated AGB and DAP-CHM height metrics. The 12 inventory plots were 
used to develop the models. The model is given by 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎 × 𝐻𝐻𝑏𝑏  (4) 

where H is the height metric derived from CHM (e.g., Hmean and H75, Table 1) in meter (m). 
The accuracy of the models was assessed using a bootstrapping (5000 times) cross-

validation approach by randomly selecting 90% of the data for model fits and 10% for 
validation. For each iteration, the RMSE was computed and the average values were 
taken. Finally, the AGB stock at site level was estimated using the predictive model with 
the best performance, based on the CHM of the Yoko site, where only the region of CHM 
> 10 m was considered. 

3. Results 
3.1. DSM Reconstruction 

The DSM of the Yangambi site as derived from UAV-DAP is very similar to the ALS 
data (Figure 5). A grid-to-grid comparison showed a high NSE of 0.82, indicating the ALS 
and UAV products are comparable in terms of georeferencing. The majority of observa-
tion points are clustered on the 1:1 line (Figure 5b), with an RMSE of 4.26 m, and about 
half of the UAV-DAP data were within 1.5 m of the ALS reference (Figure 5c). This is 
reasonable given the 5-year span between the ALS and UAV acquisition times and 
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potential changes in vegetation height (e.g., treefall, vegetation growth). A transect illus-
trates the good alignment between the DAP- and ALS-derived DSMs (Figure 1). Figure 
A2 shows the precision maps, which represent the uncertainty associated with the posi-
tioning of the tie points during SfM processing (details can be found in [31]). When using 
the single GPS of the Mavic images, the precision of the generated DSM was meter level 
(up to 1.09 m). With the “image fusion” approach applied where the GoPro PPK-GPS sys-
tem assisted in georeferencing, the precision of the DSM was submeter level, ranging from 
0.22 to 0.48 m. The precision map using single GPS showed a spatial structure where the 
uncertainty increased from the center to periphery of the study region, while the PPK-
GPS-assisted map showed an evenly distributed precision throughout the region.  

 
Figure 5. (a) Digital surface model (DSM) of the Yangambi site derived from DAP (framed in red outline) and ALS (outside 
the red frame). (b) Comparison of the elevation values of each grid (0.5 × 0.5 m) between DAP- and ALS-derived DSMs. 
(c) Cumulative probability of the absolute error between DAP- and ALS-derived DSMs. 

3.2. Ground Point Detection 
We first use our datasets to verify the basic hypothesis: the UAV-DAP can capture a 

fraction of the ground points over a dense forest cover under our flight settings. By com-
paring the normalized UAV-DAP point cloud with the reference ALS point cloud, we 
found that ca. 18 points per ha from the UAV-DAP cloud fell within 1 m vertical distance 
of the true ground, representing ca. 0.01% of the total number of points, which were 
evenly distributed within the test site (Figure 6). Although the upper 30 m of the canopy 
is well represented by the DAP cloud, relative to the ALS data, it has a much more limited 
penetration capacity below 15 m. In particular, the large difference between the number 
of ground returns (i.e., normalized height of 0 m) is noteworthy. In comparison, the ALS 
method resulted in ca. 1000 points per ha within 1 m of the true ground (representing 3% 
of the ALS point cloud). Nevertheless, this demonstrates that passive optical sensors are 
capable of detecting the ground, even in dense pristine tropical forests. These ground 
points are evenly distributed over the ROI, but several clusters are visible (Figure 6).  
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Figure 6. (a) Normalized point cloud of the intersection area in the Yangambi site derived from ALS 
(top) and DAP (bottom). (b) Horizontal mirrored histogram showing elevation profiles of DAP- and 
ALS-derived point clouds. (c) Demonstration of ground point distribution using a threshold of 2 m 
from the DAP point cloud (n = 8547 pts). 

3.3. DTM Generation 
The identification of ground points follows a series of filtering steps. Local minima 

as the preliminary filter were applied to select the candidate points. Figure 7 shows the 
results of local minima filtering for detecting ground points. With the size of the moving 
window increasing from 5 m to 50 m, ground points represented a larger proportion of 
the total points, yet the amount decreased from ca. 500 to 30 (Figure 7c). Therefore, an 
additional filter was needed for the smaller window sizes where ground information was 
to be maintained to the largest extent possible. By contrast, a larger moving window re-
quires less effort to remove non-ground points, as shown in Figure 7b (the ratio of ground 
to non-ground points was close to 1 when the radius of the moving window was set to 20 
m). Using a very large window, the selected local minima already contain mostly true 
ground points, but this method has poor spatial coverage, as shown in Figure 7. 
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Figure 7. (a) 3D view of the DAP-derived digital elevation model (DEM) and local minimum points. 
The DEM was the bottom layer of the raster, which was rasterized from the DAP point cloud using 
the minimum elevation value at 0.5 m resolution. Local minima points reflect candidate points de-
tected by a moving window (r = 20 m) based on the DEM. (b) Histogram showing the shift of eleva-
tion values of the candidate points (r = 20 m) between ALS and DAP measurements. (c) Variation of 
ground/non-ground points with different sizes of the moving window. The accuracy indicates the 
ratio of ground points to the total number of candidate points. 

For the candidate points that were selected using smaller moving windows, the clas-
sification procedure based on a random forest showed promising results with an accuracy 
of 72.7% using a bootstrapping (1000 times) cross-validation. Figure A3 shows the im-
portance of the variables in the RF model. The local height range (i.e., the elevation shift 
to the nearby tree/crown top) in a 5 m window had the best discriminatory power, while 
the features based on RGB provided much less useful information than structural varia-
bles. 
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As stated earlier, the coarse-resolution DSM contains the general features and trends 
of the underlying terrain and can assist in the DTM interpolation. As shown in Figure A4, 
the 30 m-resolution down-sampled DSM showed the highest correlation with the true 
ground as inferred from the reference DTM. This information was integrated as an exter-
nal drift into the kriging interpolation, assisting in retrieving trends of terrain where 
ground points are sparse. The results show that the final DTM has high consistency with 
the ALS-based reference (RMSE = 2.1 m, NSE = 0.894; Figure 8). 

 
Figure 8. Comparison of DAP-based outputs and the ALS reference. (a) DTM generated using DAP-
based methods. The black marks depict the points that were classified as ground. (b) The reference 
ALS DTM. (c) Comparison of elevation values between DAP-derived DTMs and the reference ALS 
DTM of each grid. (d) Difference map between DAP-derived DTMs and the reference ALS DTM. 

3.4. CHM Features 
The generated DTM was then used to derive a CHM based on the UAV-DAP prod-

ucts. We assessed the robustness of UAV-DAP-derived CHMs by comparing the results 
with those derived from the reference, i.e., ALS-derived CHM (Figure 9). The CHM de-
rived from our UAV-DAP workflow fits very well with the reference CHM. At the grid 
level, high-quality observations (i.e., where the SE of the prediction is below 1.5 m) repre-
sent 80.1% of the area, with an RMSE of 1.755 m and an NSE of 0.946 (Figure 9d). For the 
evaluation at the tree level, the RMSE of the estimated tree height was 2.282 m for all 
observations while the RMSE was 1.814 m when only high-quality observations were con-
sidered. When aggregated at the plot level (i.e., 40 × 40 m), we obtained an RMSE of 1.60 
and 1.602, and a NSE of 0.77 and 0.86 for Hmean and H75, respectively. 
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Figure 9. (a) CHM generated using the DAP approach. (b) CHM of the ALS reference. (c) Standard error map of co-kriging 
in DTM generation. The black marks refer to the points that were classified as ground. We qualified the DTM/CHM spa-
tially by an SE of 1.5 m as the threshold for the following figures. (d) CHM comparison at grid level (0.5×0.5 m). Black 
points show high-quality observations, and red points show low-quality observations. The “overall” statistics includes all 
observations, and “high quality” refers to statistics that include only high-quality observations—the same for the remain-
der. (e) CHM comparison at tree level. The observations were treetop heights. (f) Segmentation of tree crowns. Points 
within the polygon show the treetops. Blue outlines show high-quality observations, and red outlines show low-quality 
observations. (g) Plot-level (40×40 m) comparison of mean canopy height. (h) Plot-level comparison of the 75th percentile 
of canopy height. 

3.5. External Validation and AGB Estimation 
This validation reflects the transferability of the DTM generation approach presented 

in this paper to other sites and to what extent it can be considered as a general model for 
a certain type of forest. Note that both Yangambi (calibration/validation) and Yoko (exter-
nal validation) sites have a similar forest type and are classified as the semideciduous–
evergreen transition [30] (Figure A1). As CHMs are routinely used to estimate AGB at the 
plot level, we also evaluate the potential of our approach to estimate AGB. Figure 10 
shows the DAP-derived CHMs at the plot level for the 12 Yoko sites. Our DAP-based 
estimates of tree height at the plot level are highly consistent and show little bias to field 
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observations (r2 = 0.675). For almost all plots, the observed tree heights fall within the pre-
diction uncertainty (Figure 10a).  

 
Figure 10. Application of DAP-derived CHM and AGB estimations for the Yoko site (external validation). (a) Comparison 
between CHM-derived mean canopy height (Hmean) and tree height measured from field inventory. The error bar on X 
shows the standard error of sampled trees, and the error bar on Y shows the standard error in DTM generation. (b) AGB 
estimation using CHM-derived mean canopy height (Hmean). The CHM-AGB model was calibrated using field inventory 
plots with different stand age classes. (c) AGB estimation using CHM-derived 75th percentile of canopy height (H75). (d) 
AGB estimation map in the Yoko site. 

With field observations available at the plot level, AGB for the Yoko region was esti-
mated. The summary statistics of the field inventory are shown in Table 1. The field-esti-
mated AGB and mean tree height increased with stand age. With the supplementary in-
formation derived from the DAP-CHM, the AGB was estimated using height metrics (Fig-
ure 10b and c). H75 showed a better performance as predictor (r2 = 0.659) than Hmean (r2 = 
0.618). A bootstrapping cross-validation suggested that the model had a RMSE of 52.31 
Mg ha−1 with Hmean and a RMSE of 48.51 Mg ha−1 with H75 in predicting AGB. We also 
observe a much better prediction for older stand ages (i.e., above 20 years), probably be-
cause the wood density is less variable as forest matures. For old forest, we obtained per-
formant models to predict AGB from the tree height alone (r2 = 0.91). This predictive model 
based on H75 was then applied for the spatial prediction of AGB for the Yoko site. The 
resulting AGB map is illustrated in Figure 10d and had a prediction range between 4.81 
Mg ha−1 and 426.64 Mg ha−1. 
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Table 1. Descriptive statistics of the field inventory and DAP-based CHM. 

Stage Plots Area (ha) 
Statistics of Field Inventory  Statistics of CHM 

Number of 
Trees 

Mean DBH 
(cm) 

Mean Tree 
Height (m) 

AGB 
(Mg ha−1) 

 Hmean (m) H75 (m) 

5yr 5Y1 0.134 102 19.70 11.80 129.31  19.12 18.94 
5yr 5Y2 0.134 90 13.83 11.16 40.17  17.31 18.00 
5yr 5Y3 0.172 99 16.83 12.32 74.98  20.93 22.45 
12yr 12Y1 0.131 70 22.10 14.26 124.50  26.13 28.68 
12yr 12Y2 0.135 68 26.82 16.60 133.99  20.22 21.23 
12yr 12Y3 0.122 81 20.31 18.99 115.33  18.82 20.95 
20yr 20Y1 0.148 116 20.04 21.38 153.96  21.15 21.95 
20yr 20Y2 0.090 74 20.43 22.08 149.08  20.56 22.38 
20yr 20Y3 0.123 81 22.37 15.78 117.98  16.98 18.78. 
60yr 60Y1 0.100 72 22.01 27.44 324.69  31.38 34.01 
60yr 60Y2 0.143 52 27.58 30.93 257.95  23.28 27.08 
60yr 60Y3 0.162 73 23.56 25.94 159.71  22.79 25.27 

Hmean: mean CHM height, H75: 75th percentile of CHM height. 

4. Discussion 
Our study demonstrated that a solid observational database and machine learning 

can assist DAP in providing accurate 3D information on dense tropical forests that go 
beyond the canopy. The derivation of CHMs and DTMs and estimates of AGB can be done 
with similar performances as ALS. Relative to other remote sensing approaches (e.g., sat-
ellite and ALS) applied in forest inventory, UAV-DAP techniques have the advantage of 
being low-cost, flexible, user-friendly and with high spatial resolution. We suggest that 
this has the potential to enable a wider proportion of the research community to study 
canopy metrics and enable a much larger spatial coverage whereby the swift upscaling of 
plot-based studies becomes possible. The advent of RTK-PPK enabled DAP systems to 
provide accurate geolocation (<20 cm), which provides a tool to perform high-temporal-
resolution monitoring of tropical forests. The DAP workflow presented here could be de-
ployed quickly after a disturbance event, such as a storm, drought or fire, to measure its 
effects and also assist in a wide range of conservation-related projects and programs to 
promote an interest in canopy processes outside of the academic community (e.g., [39,40]). 

In the stage of DSM reconstruction, the DAP with high-precision direct georeferenc-
ing and proper camera calibration has shown its capability to generate reliable 3D prod-
ucts [41]. The use of PPK positioning improved the precision of the georeferencing process 
and is critical because georeferencing methods relying on GCPs are non-practicable due 
to the dense forest coverage. Moreover, precise georeferencing leads to robust DSM re-
construction (e.g., [31]), which is particularly relevant for frequent surveys or monitoring 
to enable the detection of forest change. In this study, we assessed the “image fusion” 
approach and demonstrated that different image sources can be combined in a single SfM 
workflow, where the images with precise georeferencing can assist in the bundle adjust-
ment procedure during SfM to have a function similar to that of GCPs. As such, the PPK-
GPS-assisted output showed more robust estimation of tie points (Figure A2), as well as 
the accuracy of point clouds and DSMs. 

The capability to detect ground points is the cornerstone of our DTM generation 
workflow. By analyzing the comparison between the normalized UAV-DAP point cloud 
and the reference ALS point cloud, we have verified the hypothesis that UAV-DAP can 
capture a fraction of the ground points over a dense forest cover under our flight settings. 
Based on the well-spread pattern of ground points shown in Figure 6, we suggest that 
these points are likely canopy gaps that are dynamically formed due to ecological pro-
cesses such as treefall, and this makes it possible to detect some ground points. Moreover, 
according to a spatial autocorrelation analysis based on the reference DTM, the ranges of 
the semivariogram were ca. 300 m for the valley region and ca. 800 m for the flatter region 
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in the northern part of the study area. This suggests that the surface density of these 
ground points (2.46 pts ha−1 after classification in the validation ROI) is sufficient for inter-
polation in the lowland tropical forest ecosystem of the Congo Basin. Obviously, in a more 
complex terrain, the ranges will be much smaller, because of which a denser selection of 
ground points will be required. In that case, more favorable flight setups to capture more 
ground points are recommended, e.g., higher quality of camera, higher overlap of flight 
plan, better illumination condition and georeferencing precision. 

The DTM generation procedure comprises the determination of ground points and 
the interpolation of DTM. To identify ground points from the massive point cloud, we 
proposed a series of filtering steps. In the primary filtering by local minima, there is a 
trade-off between finer resolution (requiring a small grid size) and fewer noises (requiring 
a large grid size to remove large non-ground features) through the parameter tuning as 
shown in Figure 7 (also reported in [42]). Finally, we selected a small size (5 m) of the 
moving window to retain as many details as possible, and we applied an additional ma-
chine learning-based filter (RF classifier) and a geometry-based filter (TIN classifier) to 
this end. The results of RF-based classification showed that structural features, especially 
local height range, provided more information for identifying ground points, indicating 
that the general tree heights were considered an important reference in the classification. 
Regarding spectral features, although it is hypothesized that ground points are more 
likely to have lower brightness than substory due to the limited illumination, the features 
based on RGB were much less explanatory than structural variables as shown in the result 
(Figure A3). Finally, the RF model excluded spectral features and only took HR and SDH 
into calibration. In the literature, it has been reported that the ground detectability is 
highly related to the camera property (e.g., sensor size, resolution, field of view), flight 
plan design (e.g., front and side overlap, flight height), ambient conditions (e.g., illumina-
tion) and georeferencing precision during the structure from motion (SfM) [21]. Never-
theless, the prediction model based on structural features alone, i.e., without spectral in-
formation, provides a robust classification (accuracy of ca. 70% before TIN filter), and 
these features relate to the inherent nature of forest type and tree species, which are rarely 
affected by varying light and data collection conditions. This helps to improve the robust-
ness of the model as well as its general applicability. Overall, although this workflow 
(small moving window + RF and TIN filters + co-kriging) requires more effort in classifi-
cation and requires reference data to train the classifier, it provides satisfactory robustness 
in the DTM reconstruction and shows a promising capability to be generalized. It should 
be noted that the RF-based classifier is designed to detect ground points from a forest 
cover. If the target area contains surface types other than forest cover (e.g., the Yoko site 
contains road and buildings), we suggest applying a ground filter such as cloth simulation 
filter (CSF) [22] in combination with our workflow and then use the minimum value of 
both approaches (see Figure A5 for illustration). 

The generated DTM can be used to retrieve canopy information to assist in forest 
management. When generating a CHM, the uncertainty during DTM generation can be 
considered, as shown in Figure 9. These results indicate that our method is capable of 
identifying the areas where accurate predictions are possible, and areas where insufficient 
ground points were detected. In addition, this analysis indicates that our UAV-DAP ap-
proach is capable of providing estimates of CHM at a similar accuracy and precision as 
ALS. Especially, the height metrics derived at the plot level are highly consistent with 
those obtained from ALS-based approaches, which is important for monitoring applica-
tions as area-based plot-level AGB estimations are widely adopted in tropical forest re-
search (e.g., [32,43]). 

We further evaluated the application of our DTM generation workflow in tree height 
and AGB estimation in an external case study. As shown in Figure 10, the accurate pre-
diction of tree heights demonstrates its potential in AGB estimation as AGB in forests are 
highly dependent on dominant trees (ca. 25–30 m), which contribute to a large proportion 
of the above-ground carbon stored [38]. In addition, this external validation demonstrates 
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the transferability of our DTM/CHM generation model, at least to other sites with a similar 
forest type and structure. High-resolution LiDAR products covering the diverse forest 
types of the Congo Basin are available (Figure A1), and follow-up research should evalu-
ate the performance of our algorithms under different conditions. The approach devel-
oped here may contribute to the use of a standalone UAV-DAP-based workflow to create 
CHMs for forest monitoring without relying on other data sources for the acquisition of 
DTM. 

UAV-DAP data are increasingly used in forest management for estimating variables 
such as dominant height (e.g., [44,45]) or AGB (e.g., [18]) and in some cases the perfor-
mances are comparable with ALS-based forest inventories [32]. However, this requires 
that the canopy gaps are sufficiently big and generally homogeneous to permit the detec-
tion of the terrain. In a study by Puliti et al. (2015), where data acquired from UAV were 
applied in boreal forests, a RMSE of 14.9% was observed when estimating the forest stand 
volume [44]. Kachamba et al. (2016) estimated AGB using UAV-DAP and observed an 
RMSE of 18.21 Mg ha−1 (relative RMSE of 46.7%) in the study in a tropical woodland [18]. 
Such predictive difference is mainly attributed to the different forest structure. For the 
tropical forest with complex structure variability and limited detection capability of the 
substory, a UAV-DAP-based AGB estimation is still confronted with uncertainties. The 
performance of the UAV-DAP-based AGB estimates obtained in this study is slightly bet-
ter than those obtained from ALS in the same region [32]. In the present study, we showed 
that the UAV-DAP workflow has the potential to generate a realistic CHM independently 
in a dense forest to assist AGB estimation and achieve an accuracy similar to that of LiDAR 
products. 

Although low-cost RGB camera systems have less capability to penetrate dense can-
opies as LiDAR sensors, they provide spectral information in RGB bands, which may fa-
cilitate tree species classification. For instance, UAV-based photogrammetric and hyper-
spectral data have been used in tree species classification [46,47], and the integration of 
the machine learning approach such as the convolutional neural network (CNN) can fur-
ther improve the efficiency in classification [48]. This may improve the capability of UAV-
DAP to detect the individual trees so as to allow tree-level rather than area-based AGB 
estimation. This is conceptually similar to allometric equations used in field-based inven-
tory and hence has a robust theoretical basis [49]. Thus, wood density can be integrated 
in a precise way into the AGB estimation. As such, DAP-derived morphometric data, as 
presented in this study, may be combined with spectral data to provide a multi-dimen-
sional information source to study dense tropical forests. 

We do emphasize that our workflow and algorithms were developed on mature low-
land semideciduous–evergreen forests of the Congo Basin. Although an external valida-
tion, providing a challenging test with observations covering a 60-year forest age gradient, 
demonstrated its robustness under similar conditions, there is a need to study the algo-
rithm parameters as a function of other forest types. We suggest that with an increasing 
availability of high-resolution ALS data, the parameters for the DAP-classification model 
for DTM generation can be adjusted to a range of dense tropical forest types. This would 
allow research communities to use UAV-DAP as a means to conduct forest monitoring. 
Furthermore, the algorithm was developed for a relatively simple topographical setting 
(with slopes ranging between 0 and 20°) in a lowland forest context. Complex terrain will 
most likely require a higher number of ground points to reconstruct the DTM with suffi-
cient accuracy. 

5. Conclusions 
In this study, we show that digital terrain models and canopy height models under 

dense tropical forest cover can be retrieved from point clouds derived from UAV-DAP, 
even when using low-cost UAV systems with consumer-grade cameras. We developed a 
standalone workflow consisting of detection, classification and interpolation of ground 
points, which allows the generation of DTM under dense canopy cover. A machine 
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learning approach was applied using reference data to build a transferable model that can 
be applied to other sites. We demonstrate that the height metrics that were extracted from 
CHMs can be used to construct predictive models of AGB, and that the UAV-DAP work-
flow facilitates the swift upscaling of plot-based measurements at the regional scale. Given 
the low cost, ease of use and flexibility of consumer-grade UAVs, this highlights the large 
potential of data derived from UAV photogrammetry for studying the dynamics of dense 
tropical forests at ultra-high spatial and temporal resolutions. Although the accuracy of 
the resulting UAV-DAP-based CHM is not as good as ALS data for individual tree meas-
urements, valuable characteristics at the stand level can be quickly derived and monitored 
with good accuracy using the workflow presented in this study. This study showed that 
the UAV-DAP approach has the potential to create reliable DTMs and CHMs for forest 
monitoring in dense tropical forests without relying on other data sources, and this may 
enable a wider proportion of the research community to study forests in high temporal 
resolution at scale. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/rs13183777/s1, a comparison of different DTM generation methods. 
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Appendix A 

 
Figure A1. DRC LiDAR sampling distribution over the forest-type classification map. The study sites (Yangambi and 
Yoko) were located within the same type of forest. Note: the LiDAR transects (~1.5 km × 11 km) are highlighted in bold 
for display. Data source of forest-type classification map: Réjou-Méchain et al. (2021) [30]. 
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Figure A2. Precision maps of the Mavic camera derived from Monte Carlo simulation. (a) Precision map using the single 
GPS of the Mavic drone without the assistance of GoPro PPK-GPS. (b) Precision map with the assistance of GoPro PPK-
GPS georeferencing. 

 
Figure A3. (a) Demonstration of spectral and structural features extracted from the UAV-DAP point cloud for ground 
point classification. (b) Importance of features in the RF classification model. The candidate points were derived from a 
moving window of 5 m. 
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Figure A4. Relation between resampled coarse DAP DSM and reference ALS DTM. Note: the black 
auxiliary line is the 1:1 reference line, and the red auxiliary line is the 1:1 reference line with mean 
tree height as intercept. 

 
Figure A5. DTM generation in the Yoko site. (a) Raw orthomosaic. (b) Ground points filtered by CSF. (c) Rasterized DTM 
based on CSF and the ground points filtered by RF+TIN workflow. (d) DTM generated by the “stack and minimum” 
method. 
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