
remote sensing  

Article

Thermal Imagery Feature Extraction Techniques and the Effects
on Machine Learning Models for Smart HVAC Efficiency in
Building Energy

Yaa Takyiwaa Acquaah 1,*, Balakrishna Gokaraju 1, Raymond C. Tesiero III 2 and Gregory H. Monty 3

����������
�������

Citation: Acquaah, Y.T.; Gokaraju, B.;

Tesiero, R.C., III; Monty, G.H.

Thermal Imagery Feature Extraction

Techniques and the Effects on

Machine Learning Models for Smart

HVAC Efficiency in Building Energy.

Remote Sens. 2021, 13, 3847. https://

doi.org/10.3390/rs13193847

Academic Editor: Zhenwei Shi

Received: 29 July 2021

Accepted: 22 September 2021

Published: 26 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computational Data Science and Engineering, North Carolina Agricultural and Technical
State University, Greensboro, NC 27411, USA; bgokaraju@ncat.edu

2 Department of Civil, Architectural, and Environmental Engineering, North Carolina Agricultural and
Technical State University, Greensboro, NC 27411, USA; rctesier@ncat.edu

3 Center for Energy Research and Technology, North Carolina Agricultural and Technical State University,
Greensboro, NC 27411, USA; ghmonty@ncat.edu

* Correspondence: ytacquaah@aggies.ncat.edu

Abstract: The control of thermostats of a heating, ventilation, and air-conditioning (HVAC) system
installed in commercial and residential buildings remains a pertinent problem in building energy
efficiency and thermal comfort research. The ability to determine the number of people at a particular
time in an area is imperative for energy efficiency in order to condition only occupied regions and
thermally deficient regions. In this study of the best features comparison for detecting the number of
people in an area, feature extraction techniques including wavelet scattering, wavelet decomposition,
grey-level co-occurrence matrix (GLCM) and feature maps convolution neural network (CNN) layers
were explored using thermal camera imagery. Specifically, the pretrained CNN networks explored
are the deep residual (Resnet-50) and visual geometry group (VGG-16) networks. The discriminating
potential of Haar, Daubechies and Symlets wavelet statistics on different distributions of data were
investigated. The performance of VGG-16 and ResNet-50 in an end-to-end manner utilizing transfer
learning approach was investigated. Experimental results showed the classification and regression
trees (CART) model trained on only GLCM and Haar wavelet statistic features, individually achieved
accuracies of approximately 80% and 84%, respectively, in the detection problem. Moreover, k-nearest
neighbors (KNN) trained on the combined features of GLCM and Haar wavelet statistics achieved
an accuracy of approximately 86%. In addition, the performance accuracy of the multi classification
support vector machine (SVM) trained on deep features obtained from layers of pretrained ResNet-50
and VGG-16 was between 96% and 97%. Furthermore, ResNet-50 transfer learning outperformed
the VGG-16 transfer learning model for occupancy detection using thermal imagery. Overall, the
SVM model trained on features extracted from wavelet scattering emerged as the best performing
classifier with an accuracy of 100%. A principal component analysis (PCA) on the wavelet scattering
features proved that the first twenty (20) principal components achieved a similar accuracy level
instead of training on the whole feature set to reduce the execution time. The occupancy detection
models can be integrated into HVAC control systems for energy efficiency and security systems, and
aid in the distribution of resources to people in an area.

Keywords: wavelets; wavelet scattering; feature extraction

1. Introduction

Detecting the number of people in a space is an important task to help reduce energy
consumption in homes and office buildings. The main function of the heating, ventila-
tion, and air-conditioning (HVAC) system in commercial and residential buildings is to
maintain comfortable indoor conditions, and to provide safe and acceptable indoor air
quality. However, the downside of these HVAC systems is high consumption of energy.
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According to the building energy data book of the United States Department of Energy
(DOE) published in 2015, about 50% of the energy consumption in buildings is directly
related to space heating, cooling and ventilation. Considering a large room as shown in
Figure 1, conditioning portions that are only occupied (blue quadrants) can save energy.
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Figure 1. Smart HVAC efficiency diagram with air conditioning only in blue quadrants [1].

However, achieving this level of individualized optimum comfort control within
the same room/space in buildings is currently unattainable. It is partially available in
automobiles and aircrafts in manual mode. Most organizations only use a limited portion
of their office space, hence the ability to condition only those occupied parts of the office can
save energy. Traditionally, the thermostats of the HVAC system depend on the setpoint in
hallway or entry of the rooms, which represents the worst scenario of occupants. Achieving
a level of personalized personal comfort is not possible.

This study aims to explore the possibility of utilizing thermal images to train machine
learning models for occupancy detection, which can be integrated into the control models
of an HVAC system. The models developed in this research are different from previous
works where people utilized motion detection as a concept to detect whether a human
is present or not in a conference room. This study contributes to the field of building
energy efficiency by proposing new feature sets and prediction algorithms to develop multi
classification machine learning models for up to three people sitting at office desks using
thermal images. In addition, four different feature extraction techniques and their effects
on machine learning models are investigated for comparison. Textural features in the
form of grey-level co-occurrence matrix (GLCM) and wavelet statistics feature extraction,
wavelet scattering features and pretrained convolutional neural network feature maps
were pursued for a linear discriminant analysis (LDA), support vector machines (SVM),
classification and regression tree (cart) and k-nearest neighbors (KNN) machine learning
models. Specifically, the pretrained CNN networks explored are the deep residual network
(ResNet-50) and visual geometry group networks (VGG-16). ResNet-50 and VGG-16
pretrained networks are selected because of their performance in various deep learning
competitions with very high accuracy. ResNet-50 is a convolutional neural network that is
50 layers deep and has been trained on a wide range of images. As a result, the network
has learned varied and informative feature representations [2]. The classification of objects
which are not part of these 1000 object categories can be performed with this pretrained
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network by adjusting the network. VGG-16 is a CNN model proposed by Simonyan
and Zisserman and won the Imagenet Large Scale Recognition Challenge competition in
2014 [3]. Transfer learning architectures of these top pretrained CNN models will also be
investigated on the thermal imagery dataset.

2. Related Work

Many studies that have been published focused on the estimation of occupancy in
enclosed buildings using machine learning algorithms. Amongst the recent research
published in the past five years, environmental variables have been used extensively for
the development of machine learning models for occupancy detection [4–7]. This is partly
because these sensors used for the data collection are readily available in the market at
economical prices. In a study conducted by Kumar et al., machine learning techniques
were explored to develop an occupancy detection model based on environmental factors
such as date and time, temperature, humidity, light, the level of carbon dioxide (CO2) and
humidity ratio [4]. Similarly, Vela et al. adjudged the KNN as the best performing machine
learning classification model to estimate occupancy based on environmental variables (that
is humidity, temperature, and pressure) [5]. Data fusion of environmental sensors were
confirmed to validate individual sensors for improved performance [7]. Some previous
studies on estimating the number of people present in buildings utilized red, green, and
blue (RGB) camera thermal arrays [8–18]. A head detection method with an accuracy
ranging from 90 to 95% for different scenarios was proposed by Oosterhout and coauthors
based on range data from stereo cameras for counting people [18]. In contrast, we rely
on thermal cameras to preserve people’s privacy and to be able to capture the number of
people present in thermal images even during the night.

Other researchers explored the usage of non-invasive methodologies such as fast-
sampling infrared array sensors to estimate the number of persons in a specific indoor
space [12]. A non-intrusive sensing methodology for predicting occupancy towards re-
ducing building emission while also promoting a comfortable and productive working
environment was implemented by Parise et. al [19]. A system for estimating occupancy
called ThermoSense based on a thermal sensor array and a PIR sensor was presented
by Beltran et al. [20]. Similarly, a passive infrared based wireless surveillance network
was leveraged in the research performed by Zappi et al. to detect presence [21]. The
model could detect occupancy with a root mean square (RMS) error of approximately
0.35 persons. An occupancy estimation sensor system based on low pixel count sensor
arrays and a classification algorithm was proposed by Tyndall et al. [22]. The system was
based on ThermoSense but is different from ThermoSense in the choice of the thermal
sensor, positioning of the sensor and the classification algorithm. Two different workflows
based on computer vision, and one based on machine learning for occupancy prediction
were proposed by Sirmacek et al. [23]. A low-resolution (8 × 8) and non-intrusive heat
sensor was employed to collect data from an actual meeting room. WiFi-based occupancy
detection for smart buildings have been explored by other authors [24–27]. However,
discontinuity in WiFi communication presents a practical challenge in occupancy detection.
Irrelevant or unwanted WiFi communications from outside and non-human WiFi devices
may also be included [25].

Considerably, many deep learning methodologies for image and environmental sensor-
based occupancy estimation research showed promising results [11,28–35]. A people
counting algorithm on thermal images-based on CNN was developed by Gomez et.al. [11].
The CNN algorithm can provide an error-free detection accuracy of 53.7%. A data-driven
occupancy detection using a particle swarm optimization (PSO)-based artificial neural
network (ANN) was proposed by Nuzhat et al [28]. In this work, performance of the
PSO-based ANN model was more acceptable in comparison to only ANN models. The
work performed by Tien et al. proposed a demand-driven method based on a CNN model
developed to enable occupancy activity detection using a camera [29]. In this work, training
data were obtained from online image sources and captured images of various occupant
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activities in the office spaces. More recently, an indoor occupancy counting algorithm
based on the CNN model which learns features from a received signal strength indicator
(RSSI) and phase data were proposed by Sharma et. al [30]. The performance of the model
was 0.82 probability for detecting the correct number of occupants, and 1.0 if ±1 error
was permitted. A comprehensive review on research published on occupancy detection
was performed by Rueda et. al [31]. The literature examined were categorized based on
the type of algorithm as analytical, data-driven and knowledge-based. Analysis from this
study showed that data-driven methods such as the hidden Markov model (HMM) and
ANN are the most common family of algorithms for occupancy detection [31].

However, none of the related papers discussed above focused on feature extraction
techniques and their effects on machine learning models. This study also explores another
non-invasive (non-intrusive) methodology through the utilization of thermal imagery to
estimate the number of people in a building. In literature, there has not been a broad
study to specifically expatiate on different feature extraction techniques for the training
of occupancy detection models. This study facilitates effective comparisons between
different feature extraction techniques and their effects on occupancy estimation machine
learning models. The importance of feature extraction when it comes to machine learning
classification problems cannot be overemphasized. A researcher’s ability to engage in
sophisticated ways of extracting features contribute to a classification model performing
well. In an image dataset, feature extraction helps in dimensionality reduction; thereby,
doing away with redundant data and increasing the speed of model training and inferences.
In this study, methods including wavelet scattering, wavelet feature extraction, GLCM
feature extraction and feature extraction from layers of pretrained ResNet-50 and VGG-16
networks were explored for the thermal images dataset. Furthermore, the performance of
VGG-16 and ResNet-50 in an end-to-end manner in which both architectures are trained
with the cross-entropy loss function is also investigated. This research is being conducted
in phases and the long-term objective is to develop an HVAC automation control to save
building energy and improve human comfort in buildings.

The main contributions of this study are as follows:

1. Collect data of thermal images for occupancy detection;
2. Study and identify the best textural image features that work for occupancy detection;
3. Inference learning based on the feature map output from layers of pretrained CNNs

such as ResNet-50 and VGG-16;
4. Comparative analysis of different CNN architectures and different feature extraction

techniques for thermal images-based occupancy detection;
5. Performance of VGG-16 and ResNet-50 in an end-to-end manner using the transfer

learning approach for occupancy detection.

3. Materials and Methods

This section presents the overview of the materials and methods for the experiment as
shown in Figure 2.
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3.1. Thermal Images Dataset

The hardware for this research consists of a PI 160 thermal camera, a temperature and
humidity sensor and an Arduino uno micro-controller board. Both sensors interrogated
the same space. Figure 3 shows a snapshot of the Optrix PI connect software, Optrix PI
connect infrared camera and the temperature and humidity sensor for the experiment. The
PI connect software makes it possible to assess the infrared camera.
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Figure 3. (a) Optrix PI 160 infrared camera, (b) Optrix PI Connect software and (c) temperature and
humidity sensor and Arduino uno connection.

The PI 160 infrared camera was connected directly to a laboratory computer and
the temperature and humidity sensors were interfaced through the Arduino uno which
was also connected to the same desktop. The temperature readings obtained from the
temperature and humidity sensor was used to calibrate the temperature on the PI160
thermal camera. Thermal images which contain a different number of occupants in the
laboratory were captured every minute while they work around a desk. The accuracy
and optical resolution of the Optrix PI 160 infrared camera was ±3.5 ◦F and 160 × 120
pixels, respectively. The data collection was implemented with the Optrix PI connect
software while the implementation of models was performed with MATLAB version
2020a and Sklearn Python package. The training of models was performed on a windows
platform with an Intel Core i7-8550U CPU @ 1.80 GHz, 1992 MHz, four core(s), eight logical
processor(s) and a single GPU. Figure 4 shows a sample thermal image in each of the
four categories to provide a clear picture of data collection and how occupants can be
distinguished from the background. This experimental setup is a similar set up presented
by Acquaah et al. [1]. The number of samples collected is 341. The dataset was divided into
70% training and 30% testing to obtain the general accuracy. The images were saved and
grouped to their various classes depending on the number of people in the images (That is
one person, two persons, three persons and the background). The background, one person,
two persons and three persons classes contained 112, 72, 85 and 72 images, respectively.
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3.2. Wavelet Statistics Feature Extraction

Since the 1980’s wavelets have been applied in harmonic analysis, seismic exploration,
quantum mechanics, computer vision and computer graphics. In expounding the usage of
wavelets in the field of computer vision, the sparse representation property of wavelets
has many important real-world applications such as image compression (e.g., the JPEG
2000 format), denoising, edge detection, numerical solutions of differential equations,
computer generated graphics, modeling curves and surfaces, compressed sensing, and
feature extraction. A wavelet is a rapidly decaying wave-like oscillation that has zero mean
and exits for a finite duration and in different sizes and shapes. An application needs to
be investigated well-before the right type of wavelet is chosen. Continuous and discrete
wavelet transforms are the two major transforms in wavelet analysis. These transforms
differ based on how the wavelets are scaled and shifted. Discrete wavelet transforms (DWT)
are used to obtain manageable wavelet coefficient data size. The coefficients of a continuous
wavelet transform (CWT) are innumerable which makes it computationally inefficient.
CWT cannot be implemented with filter banks whereas decimated and undecimated (DWT)
can be implemented with the help of filter banks (low-pass filtering and high-pass filtering).
Many wavelets available for both continuous and discrete analysis are included in the
wavelet toolbox of MATLAB 2020a. Examples of wavelets for discrete analysis included
in the wavelet toolbox are orthogonal wavelets (Daubechies extremal phase and least
asymmetric wavelets) and B-spline biorthogonal wavelets. Examples for wavelet families
for continuous analysis present in the wavelet toolbox are Morlet, Meyer, derivatives of
Gaussian and Paul wavelets. Appendix A presents some examples of wavelets for discrete
and continuous analysis. Wavelet families can be distinguished based on the support of the
wavelet in time and frequency, rate of decay, symmetry or antisymmetric and the existence
of a scaling function. Lastly, the regularity of the wavelet is a very important distinguishing
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property. Smoother wavelets provide sharper frequency resolution. Additionally, iterative
algorithms for wavelet construction converge faster. DWT is a good choice for applications
such as denoising, compression, feature extraction and studying statistical properties of
wavelet coefficients. Feature extraction is undeniably a very important stage in training a
machine learning model as the accuracy and predictability is directly influenced by the type
of data extracted from the training data. Due to the reasons above, the DWT wavelet was
adapted in this study as the basis function. Selection of the appropriate wavelet transform
for an application is not always very clear. The properties of wavelets discussed helps make
an informed decision on the right wavelet transform to choose. For example, Wavelets
with smaller support to separate the heterogenous features of interest such as Haar, db2
and sym2 can be used in the detection of closely spaced textural features. Unlike smaller
support, wavelets with larger support tend to have difficulty detecting closely spaced
features which can result in coefficients that do not distinguish individual features.

In this section of the study, statistics (such as mean, variance, kurtosis, and skewness)
based on the Haar, db2 and sym2 wavelet transforms are computed to obtain interested
information for classification. The complete procedure is provided in Appendix B.

3.3. Grey-Level Co-Occurrence Matrix

Textures are complex visual patterns consisting of spatially organized entities that
have characteristic brightness, color, shape, and size. In addition, textures can also be
referred to as the description of the spatial arrangement of color or intensities in an image.
In images or portions of images where the pixel values are not varying much or are nearly
similar, then the texture is said to be homogenous or smooth. On the other hand, varying
pixels over a region depicts a coarse texture. Textural features tell the local variation in
intensity and are usually extracted from a single band. Texture features from different
bands of the image are generally different and have different discriminating capabilities.
Texture in an image can be perceived at different levels of resolution. Zooming out in an
image makes an area smooth endowed compared with zooming in which locates all textural
features. GLCM is a second order statistical method for texture analysis. An image is
composed of pixels, each with an intensity or specific grey level, the GLCM is the tabulation
of how often different combinations of grey levels co-occur in an image. Texture feature
calculations use the entries of the GLCM to provide a measure of the variation in intensity
of the region of interest. The GLCM is a square matrix with the same number of rows and
columns as the quantization level and can be calculated at any angle and at any of the eight
directions as shown in Appendix C. The quantization level was five, with a distance of
one and horizontal offset. The computation of the grey-level co-occurrence matrix was
performed by computing the number of co-occurrences of pixel i to the neighboring pixel
value j also in Appendix C. The size of the resultant co-occurrence square matrix was 5 × 5
because the quantization levels were five in the image. The co-occurrence matrices only
capture properties of a texture and are therefore not directly useful for further analysis.
However, second order statistics were computed to obtain the feature vectors as shown in
Appendix D. The step-by-step algorithm for extracting the GLCM features from thermal
images for implementation in MATLAB 2020a can be found in Appendix D. Amongst the
features that were computed for further analysis in this task are contrast, homogeneity,
correlation and energy.

3.4. Wavelet Scattering Transform

Convolution, rectified linear units (RELU), and pooling are repetitive stages that are
cascaded to form layers of a deep CNN. However, deep CNNs require large datasets
and computational power and choice of hyperparameters for networks, which do not
independently affect performance. Explaining the features that are extracted can also be
difficult. Wavelet scattering addresses these problems by starting with known filters. Filter
weights are learned in the case of CNNs, while filter weights are fixed in the wavelet
scattering network. For a low variance representation of a dataset without losing detail
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and critical information, the wavelet scattering technique generates a representation that
is invariant to data rotation (rotation) and stable to deformations. The wavelet scattering
network is referred to as a deep network because it also performs three main tasks that
make a deep network. An illustration of the tasks performed by a wavelet scattering
network is presented in Figure 5.
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A mathematical framework for studying convolutional neural architectures was in-
troduced by Mallat, with Bruna and Andén. Andén and Lostanlen developed efficient
algorithms for wavelet scattering of 1D signals. Oyallon developed efficient algorithms
for 2D scattering. Andén, Lostanlen, and Oyallon are major contributors to the ScatNet
and Kymatio software for computing scattering transforms [36–42]. The wavelet scattering
transform starts with the convolution of the original image by wavelets to produce an
approximation of the data known as scattering coefficients. The zeroth-order scattering
coefficients are computed by a simple averaging of the input. The information lost on each
level is captured on subsequent levels. The MATLAB 2020a waveletscattering2 function
has six input parameters and returns the scattering coefficient matrix. The data can be in
the form of a vector, matrix or 3D array. In this study, data were in the form of an image,
specifically a matrix. The image size for the wavelet image scattering network can be
specified as a two-element integer-valued vector of a number of rows and a number of
columns. The special support in the row and column dimensions of the scaling filter is
termed invariance scale. Specification of the number of rotations per wavelet per filter
bank in the scattering network was performed as an integer-valued vector. The number of
rotations provided as integer-vector [5 5], means a network of five rotations per wavelet is
created in the first filter bank and five rotations per wavelet in the second filter bank. The
algorithm for this methodology is elaborated in Appendix F.

3.5. Resnet-50 and SVM

The ResNet-50 architecture was repurposed to solve a different classification on the
thermal images data obtained from the experiment [1]. The image input size is 224-by-
224-by-3, which represents the height, width, and channel for the ResNet-50 network. The
channel size 3 corresponds to the color channel, which are red, green, and blue (RGB) values.
For experimentation, these images were divided into a different training set and test set at
70% and 30%, respectively, to obtain the general accuracy. An image datastore enables you
to store large image data, including data that does not fit in memory, and efficiently reads
batches of images during the training of CNN. These features were processed by deeper
network layers which combine the early features to form the higher-level image features.
The features for this study were extracted from the layer right before the classification
layer using the activation method. This is because the mentioned layer is endowed with
combination of rich features from deeper layers [1].

3.6. VGG-16 and SVM

VGG-16 is a convolutional neural network that is 16 layers deep [3]. A pretrained
version of the network trained on more than a million images from the ImageNet database
can be loaded in MATLAB. The network has already learned rich feature representations
for a wide range of images. Similar to Resnet-50, the network has the input size of 224-by-
224-by-3. This network is leveraged as a feature extractor with traditional SVM. The dataset
was once again split into 70% training and 30% test data. The images were automatically
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labelled based on the folder names, and the data were stored as an image datastore object in
MATLAB. The images were resized to the input size before they were put into the network.
The training and testing features were extracted from the fully connected layer ‘fc7’as
shown in Figure 6 and used to train a support vector machine model.
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3.7. VGG-16 and ResNet-50 Transfer Learning Frameworks

Transfer learning involves using weights that have been learned from standard com-
puter vision benchmark datasets, such as the ImageNet to solve a different problem by
replacing the last layers with the number of categories of the new problem. Top performing
models such as ResNet-50 and VGG-16 can be downloaded and integrated into a new
model for occupancy detection. In this section, the VGG-16 and ResNet-50 models were
used as transfer learning frameworks to classify the occupancy detection dataset into four
classes. The classification layer_fc1000, fc1000_softmax and the fc1000 layers were removed
to repurpose the ResNet-50 CNN model to solve the occupancy detection task of four
classes. These layers were replaced with a new fully connected layer, softmax layer and
classification layer that is equivalent to the number of categories in the sample dataset.
Similarly, the last three layers of VGG-16 were also replaced with a fully connected layer
comprising of the number of classes in the thermal imagery dataset, softmax layer and the
classification layer. It is worth noting that a classification layer which follows the softmax
layer computes the cross-entropy loss for classification and weighted classification prob-
lems with mutually exclusive classes. In the classification layer, values from the softmax
function are assigned to one of the K mutually exclusive classes using the cross-entropy
function for a 1-of-K coding scheme [43]. This is presented in Equation (1):

loss = − 1
N

N

∑
n=1

K

∑
k=1

wktnklnynk (1)

where N is the number of samples, K is the number of classes, wk is the weight for class
k, tnk is the indicator that the nth sample belongs to the kth class, and ynk is the output
for sample n for class k, which is the value from the softmax function. ynk is described
as the probability that the network associates the nth input with class k. Cross-entropy
loss is an important cost function that is utilized to optimize classification models. The
purpose of the cross-entropy is to take the output probabilities and measure the distance
from the truth values. Model weights are iteratively adjusted during training to minimize
the cross-entropy.

The thermal imagery occupancy detection dataset was preprocessed by resizing
the training and validation images to the requirement of 224-by-224-by-3. Additional
data augmentation operations including randomly flipping training images along the
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vertical axis and random translation up to thirty pixels horizontally and vertically were
performed to prevent the network from overfitting. In specifying the training options,
stochastic gradient descent momentum (SGDM) was adapted for error optimization at
a learning rate of 0.0001. The remaining hyperparameters were a batch size of ten and
the maximum number of epochs was ten. A total of 230 iterations were completed for
both transfer learning architectures. Since training is computationally intensive, MATLAB
online was leveraged with the following hardware environment specifications: Intel(R)
Xeon(R) Platinum 8259CL CPU @ 2.50 GHz with sixteen CPU(s).

4. Results and Discussions
4.1. Wavelet Statistical Features and GLCM Modelling Accuracy

Table 1 summarizes the mean accuracy, standard deviation, and area under the curve
for stratified 10-fold cross validation comparison for GLCM features. Haar wavelet statisti-
cal features and the combination of both CART models trained on only GLCM and the Haar
wavelet statistic features individually achieved accuracies of approximately 80% and 84%,
respectively, in the detection problem. K-nearest neighbors (KNN) trained on combined
features of GLCM and Haar wavelet statistics achieved an accuracy of approximately 86%,
which outperformed LDA and CART. Table 2 also summarizes the same performance
metrics for combined GLCM and Daubechies features and combined GLCM and Symlets
wavelet features. CART and LDA achieved the same accuracy performance for combined
GLCM and Daubechies features and combined GLCM and Symlets wavelet features.

Table 1. Summary of mean accuracy, standard deviation, and area under the curve for Haar wavelet.

Models GLCM Features Wavelet Statistical
Features

GLCM and Wavele
Statistical Features

ACC STD AUC ACC STD AUC ACC STD AUC

LDA 0.80 0.09 0.86 0.61 0.10 0.86 0.84 0.06 0.86

KNN 0.75 0.06 0.88 0.53 0.06 0.80 0.86 0.05 0.87

CART 0.8 0.065 0.84 0.84 0.06 0.80 0.85 0.06 0.83

Table 2. Mean accuracy and standard deviation for combined GLCM and Daubechies features and
combined GLCM and Symlets wavelet features.

Models. GLCM and Daubechies Features GLCM and Symlets Features

ACC STD AUC ACC STD AUC

LDA 0.75 0.07 0.84 0.75 0.07 0.84

CART 0.80 0.06 0.84 0.80 0.06 0.83

4.2. Performance Results Based on Wavelet Scattering Feature Extraction

The support vector machine model with polynomial kernel achieved an accuracy score
of 100% provided the number of rotations to be [5 5]. This means the discriminating power
of the classifier is perfect. All the test data were correctly classified by the polynomial
SVM model. Table 3 provides the different feature matrices that were obtained by varying
number of rotations per wavelet in the first and second filter banks.

The visualization of the results in Table 4 is presented in Figure 7 to provide a visual
representation. An observation can be made that SVM with a polynomial kernel achieved
an accuracy of 100% with 20 principal components.
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Table 3. Evaluation of number rotations and SVM Model Accuracy.

Number of
Rotations

Feature Matrices
(Rows × Columns)

Accuracy
(%) Execution Time (s)

[1 1] 341 × 16 89.55 14.78

[2 2] 341 × 51 98.51 21.92

[3 3] 341 × 106 98.52 3024

[4 4] 341 × 181 98.52 57.57

[5 5] 341 × 276 100.00 68.12

Table 4. Evaluation of number of principal components and model accuracies.

Number of Principal
Components

Polynomial
SVM
(%)

Quadratic
SVM
(%)

Cubic
SVM
(%)

LDA
(%)

KNN
(%)

2 (341 × 2) 73.13 77.40 77.10 69.50 78.00

5 (341 × 5) 94.03 92.70 93.30 80.60 94.40

10 (341 × 10) 98.50 94.40 93.80 88.30 92.10

20 (341 × 20) 100.00 95.90 95.90 92.40 94.40

All features (341 × 276) 100.00 95.60 96.20 70.70 95.90
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Figure 7. Accuracy of models based on wavelet scattering feature extraction.

4.3. Pretrained CNN Deep Features: ResNet-50 with SVM and VGG-16 with SVM

The accuracy results for ResNet-50 with SVM and VGG-16 with SVM is presented in
Table 5. The area under the curve of the receiver operator curve (ROC) for the polynomial
SVM model is as shown in Figure 8a. The receiver operating characteristic (ROC) curve for
the pretrained VGG-16 with multi SVM classification model showing the area under the
curve (AUC) is presented in Figure 8b. The confusion matrix illustrating the performance
of the pretrained wavelet scattering features with a multi classification SVM model is
shown in Figure 8c. In addition, the confusion matrix illustrating the performance of the
pretrained deep features from pretrained VGG-16 with multi classification SVM model is
shown in Figure 8d. Few misclassifications of the test dataset with the multi SVM model
trained on deep features extracted from VGG-16 can be observed. All the thermal images in
test dataset were correctly classified with the multi class SVM trained on wavelet scattering
features.
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Table 5. Accuracy results of ResNet-50 with SVM and VGG-16 with SVM.

Pretrained CNN Accuracy

ResNet-50 + SVM 96.30%

VGG-16 + SVM 97.12%
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4.4. Analysis of Results of VGG-16 and ResNet-50 Transfer Learning Frameworks

The accuracy scores for ResNet-50 and VGG-16 transfer learning frameworks for
10 epochs is presented in Table 6. The confusion matrices for the two transfer learning
architectures are shown in Figure 9a,b. The validation accuracy and cross entropy loss
comparison curves for ResNet-50 and VGG-16 are presented in Figure 9c,d, respectively.
It is observed that the ResNet-50 transfer learning architecture had the best performance.
It can also be observed from Table 6 that ResNet-50 transfer learning framework trained
faster than the VGG-16 transfer framework by about 31% on the thermal imagery dataset
for occupancy detection. Accuracy of data analysis techniques utilized by other relevant
research works is summarized in Table 7.

Table 6. Summary of the validation accuracy and training time.

Transfer Learning
Framework

Accuracy
(%)

Training Time
(s)

ResNet-50 98.04 2015

VGG-16 89.42 2954
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Figure 9. Confusion matrices, accuracy and cross-entropy loss comparison for ResNet-50 and VGG-16
transfer learning frameworks on the validation set. (a) ResNet-50 transfer learning architecture, (b)
VGG-16 transfer learning architecture, (c) validation accuracy for ResNet-50 and VGG-16 and (d)
cross-entropy loss for ResNet-50 and VGG-16.

Table 7. Summary of the accuracy of data analysis techniques utilized by other research work.

Reference Sensor Output Processing Accuracy

[1] Thermal Numbered AlexNet CNN 98.80%

[11] Thermal Numbered CNN 53.70%

[22] PIR+Thermal Numbered K*algorithm 82.56%

[21] PIRs Numbered Custom 89.00%

[32] Thermal Numbered FNN 98.9%

This paper Thermal Numbered Wavelet scattering and
SVM 100%

5. Conclusions

This study explored the possibility of utilizing thermal images to train machine
learning models for occupancy detection, which can be integrated into the control models of
an HVAC system. Four different feature extraction techniques including wavelet scattering,
wavelet feature extraction, grey-level co-occurrence matrix (GLCM) feature extraction and
feature maps of pretrained CNNs (ResNet-50 and VGG-16) were explored to estimate the
number of people in a large room by using thermal camera imagery. This study used
the contrast, homogeneity, energy, and correlation as the GLCM features while the mean,
variance, kurtosis, skewness, percentage of energy corresponding to approximation and
detailed coefficient were used as the wavelet statistical features.

The experimental results exhibited that the CART model trained on only GLCM and
Haar wavelet statistic features separately achieved accuracies of approximately 80% and
84%, respectively. Moreover, KNN trained on combined features of GLCM and Haar
wavelet statistics achieved an accuracy of approximately 86%. In addition, the performance
accuracy of the multi SVM classification trained on deep features obtained from layers
of pretrained ResNet-50 and VGG-16 was between 96% and 97%. Overall, the multi
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classification SVM model trained on features extracted from wavelet scattering emerged as
the best performing classifier with an accuracy of 100% for the thermal image dataset used.
The principal component analysis (PCA) on the wavelet scattering features proved twenty
(20) principal components achieved a similar accuracy level instead of training on the
whole feature set to reduce the execution time. This paper also compared the end-to-end
performance of VGG-16 and ResNet-50 transfer learning architectures for thermal imagery
dataset on occupancy detection. The ResNet-50 transfer learning architecture outperformed
the VGG-16 transfer learning framework with a validation accuracy of 98.08%. Furthermore,
ResNet-50 transfer learning framework trained faster than the VGG-16 transfer framework
by about 31% on the thermal imagery dataset for occupancy detection.

This study facilitates effective comparisons between different feature extraction tech-
niques and their effects on occupancy estimation machine learning models. The occupancy
detection models can be integrated into HVAC control systems for energy efficiency, and
will also aid in the distribution of resources to people in an area. Future studies will include
extracting deep features from other deep learning architectures such as the EfficientNet to
investigate how the model behaves. This research is being done in phases and authors will
incorporate human behaviors in the next phase as well to understand which temperatures
are acceptable to improve thermal comfort.
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HVAC Heating, Ventilation and Air-conditioning
CNN Convolutional Neural Network
ANN Artificial Neural Network
FNN Feedforward Neural Network
PSO Particle Swarm Optimization
HMM Hidden Markov Model
ResNet Residual Neural Network
VGG Visual Geometry Group
CO2 Carbon Dioxide
PIR Passive Infrared
CART Classification and Regression Trees
KNN K-Nearest Neighbors
GLCM Gray-Level Co-Occurrence Matrix
SVM Support Vector Machine
LDA Linear Discriminant Analysis
PCA Principal Component Analysis
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AUC Area Under the Curve
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DWT Discrete Wavelet Transform
CWT Continuous Wavelet Transform
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Appendix A

Figure A1. Wavelet families.
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Appendix C

Figure A2. (a) The eight angles for directions, (b) computation of co-occurrence matrix, (c) image (d)
image and grey-level co-occurrence matrix of the image.

Appendix D

Figure A3. Computation of feature vectors from co-occurrence matrix.
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