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Abstract: The Geostationary Lightning Mapper (GLM) on the Geostationary Operational Environ-
mental Satellite 16 (GOES-16) detects total lightning continuously, with a high spatial resolution
and detection efficiency. Coincident data from the GLM and the Advanced Baseline Imager (ABI)
are used to explore the correlation between the cloud top properties and flash activity across the
continental United States (CONUS) sector from May to September 2020. A large number of collocated
infrared (IR) brightness temperature (TBB), cloud top height (CTH) and lightning data provides
robust statistics. Overall, the likelihood of lightning occurrence and high flash density is higher if
the TBB is colder than 225 K. The higher CTH is observed to be correlated with a larger flash rate, a
smaller flash size, stronger updraft, and larger optical energy. Furthermore, the cloud top updraft
velocity (w) is estimated based on the decreasing rate of TBB, but it is smaller than the updraft
velocity of the convective core. As a result, the relationship between CTH and lightning flash rate
is investigated independently of w over the continental, oceanic and coastal regimes in the tropics
and mid-latitudes. When the CTH is higher than 12 km, the flash rates of oceanic lightning are 38%
smaller than those of both coastal and continental lightning. In addition, it should be noted that
more studies are necessary to examine why the oceanic lightning with low clouds (CTH < 8 km)
has higher flash rates than lightning over land and coast. Finally, the exponents of derived power
relationship between CTH and lightning flash rate are smaller than four, which is underestimated
due to the GLM detection efficiency and the difference between IR CTH and 20 dBZ CTH. The results
from combining the ABI and GLM products suggest that merging multiple satellite datasets could
benefit both lightning activity and parameterization studies, although the parallax corrections should
be considered.

Keywords: lightning; cloud top height; vertical velocity; Geostationary Lightning Mapper

1. Introduction

Lightning occurs on the Earth with an average flash rate of between 25 and 55 s−1 [1].
The World Meteorological Organization and the Global Climate Observing System have
declared lightning as a new essential climate variable for climate science and service
applications [2–6]. Lightning is not only one of the leading causes of forest fires and weather-
related fatalities [7], but also produces 2–8 Tg nitrogen (N) per year [8]. Furthermore, ozone
(O3) production can be enhanced by the lightning-generated nitrogen oxides (LNOx) in
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the convection outflow [9–11]. As O3 is known as an absorber of ultraviolet radiation
and greenhouse gas, the contribution of LNOx to O3 has an effect on climate forcing [12].
Therefore, proper understanding of the lightning distribution and frequency is essential for
the hazard forecast and climate research.

Previous studies have investigated the relationships among cloud properties, mete-
orological fields, and lightning. Cloud top temperature is reported to have a negative
correlation with lightning when it is colder than −55 ◦C [13,14]. The updraft volume in the
charging zone with a vertical velocity exceeding 5 m s−1 has positive correlations with the
total lightning activity [15,16]. Several lightning parameterizations have been developed
for chemistry transport and climate models and have been used to predict future trends
in lightning activity due to global warming. Studies have found that the cloud top height
(CTH) and convective available potential energy times the precipitation rate P (CAPE × P)
proxy predict more tropical lightning with global warming, the convective ice flux on
the 260-K isotherm (IFluxT) proxy sees little change, while the vertical integral of the ice
and graupel densities (I × G) proxy predicts a decrease in tropical lightning [17,18]. The
mechanisms leading to different responses of these proxies are clarified in Romps [19]
who claims these differences are due to small changes of water mass fluxes, higher CAPE,
and lower cloud ice columns. However, it remains unclear which proxy is the most accurate
to forecast the lightning future changes.

While the CTH can be diagnosed in both cloud-resolving and convective schemes,
it is still the default lightning parameterization in most of the global chemistry transport
models [20,21]. The most widely used CTH proxy was developed by Price and Rind [22]
(hereafter PR92), which built on work by Vonnegut [23] and Williams [24]. As revealed by
the comparisons between simulations and satellite observations, the PR92 works well over
land but significantly underestimates the flash frequency over the ocean [25,26]. This is
caused by the assumption that the relationship between the maximum updraft and flash
frequency is independent of location. Luhar et al. [26] resolves this unrealistic oceanic proxy
by combining Boccippio [27] with PR92 and the new results agree with previous studies.
However, the CTH proxies are mostly based on the limited ground observations and few
studies utilize the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring
Mission (TRMM) satellite, which covers both land and ocean [28,29].

The geostationary (GEO) satellites can monitor convection continuously with high-
resolution imagery and extensive spatial coverage [30]. It makes the estimation of CTH and
cloud top vertical velocity (w) possible during convection [31,32]. Furthermore, several
lightning instruments (e.g., Lightning Mapping Imager (LMI), Geostationary Lightning
Mapper (GLM)) currently exist aboard these GEO satellites [33–36]. The combination of
CTH, w, and lightning data provides a unique opportunity to investigate the lightning
activity and CTH proxy directly, regardless of land or ocean.

The objective of this study is to present some initial results deriving the lightning
activity and CTH proxy by GEO satellite measurements. Section 2 describes the datasets
with the method of tracking convection and estimating w. The results are presented in
Section 3, and Section 4 summarizes the conclusions.

2. Data and Methodology
2.1. Data

The GLM is an optical instrument consisting of a 1372 × 1300 pixel charge-coupled de-
vice (CCD) array, monitoring the narrow spectral band at 777.4 nm where a prominent oxy-
gen triplet exists [35,37–39]. The ground-processing software filters out the non-lightning
events and then the Lightning Cluster Filter Algorithm (LCFA) sorts and clusters events
into groups and flashes [40,41].

An event is a single illuminated pixel that exceeds the background threshold during
a single 2-ms frame. A group consists of all adjacent events within the same 2-ms frame,
and its location is the radiance-weighted centroid from all the registered events. A flash
comprises all groups within 16.5 km and 330 ms in the weighted euclidean distance [39,42].
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These data are available in the GLM level 2 (L2) data files and are similar to the defini-
tions used in the LIS and Optical Transient Detector (OTD) instrument processing [42–44].
More details of the GLM design and data are available in Goodman et al. [39]. The GLM
onboard the Geostationary Operational Environmental Satellite 16 (GOES-16) is used in
this study because both continental United States (CONUS) land and ocean observations
are available for the CTH proxy. The GOES-16 GLM general flash detection efficiency is
over 90% [45] as evaluated by the World Wide Lightning Location Network (WWLLN) [46],
Earth Networks Total Lightning Network (ENTLN) [47], National Lightning Detection
Network (NLDN) [48], and the Vaisala’s Global Lightning Dataset (GLD360) [49]. ENTLN
is a network of ground-based sensors that continuously measure lightning stroke occur-
rence time, location, type (IC and CG), polarity, and peak current. The network consists of
over 1800 wideband sensors that detect lightning in the range of 1 Hz–12 MHz. Groups
of ENTLN pulses are clustered into a flash if they are within 700 ms and 10 km. For more
about the ENTLN see Liu et al. [47].

Because the footprint sizes of GLM ranges from 8 km at nadir to 14 km near the
limb, the GLM L2 data are processed into 5-min and 20-km gridded data following
Thiel et al. [14], using a Python package called glmtools [50]. In glmtools, the GLM grids
are produced in the GOES fixed grid coordinates, which is the standard coordinate of
the Advanced Baseline Imager (ABI) observations and other geostationary satellite obser-
vations. Then, the GLM events are stored on the fixed grid coordinates and connected
to flashes through the parent–child relationship information. The gridded data include
three products for lightning characteristics and visualization: flash extent density (FED),
minimum flash area (MFA) and total optical energy (TOE) [51]. The FED is the accumulated
flash counts passing through each grid. Because the FED relies on the fraction of defined
grid and event pixels, the values could be decimals. The MFA reports the minimum size of
any GLM flash, and TOE is the sum of all optical energy that GLM observes within each 20
km × 20 km grid cell during a 5 min time period. Previous observations have shown that
strengthening storm cores produce smaller and more frequent flashes [52–54].

Both GOES-16 ABI level 1 (L1) 2-km infrared brightness temperature (central wave-
length: 10.3 µm, TBB) and L2 10-km CTH data are resampled to 20-km, utilizing the
minimum and maximum values, respectively. The height and temperature variables for
estimating w are obtained from the hourly 0.25◦ × 0.25◦ ECMWF atmospheric reanalysis
(ERA5) data [55].

2.2. Tracking Convection

A Python library called tobac is applied to track convection continuously using the
ABI TBB data. The tracking algorithm of tobac can be found in Heikenfeld et al. [56] and is
briefly illustrated here with customized parameters.

First, a Gaussian filter is used to filter the original 10-km TBB data and the weighted
minimum TBB features are identified by multiple thresholds, decreasing from 280 to 195 K
by the step of 5 K. The multiple thresholds allow tracking of warmer cloud tops within
the initial or decaying stage of convective clouds. Next, a watershed technique [57] is
applied to associate area masks with each feature. Then, another Python library called
trackpy [58] links the features into tracks with an upper limit on velocity (≤50 m s−1). The
tracks are saved only when the featured TBB decreases for at least three steps (30 min).
Finally, the features are filtered by the other three conditions: initial TBB > 265 K, final
TBB < 240 K, and the nearest FED in 10 km > 0.

Consequently, we obtained 798,476 valid convective pixels between 1 May and 30
September 2020. Several boundaries are defined in Table 1 and Figure 1 to investigate the
regional dependency. The land and ocean are classified by the 50 m Natural Earth data [59],
where the coastal region is defined as a 500 m radius around the coastline.



Remote Sens. 2021, 13, 3866 4 of 17

Table 1. Definitions of the regions used in this study.

Area Region * Number of Tracked Pixels

Land

NW (38◦–50◦ N, 98◦–125◦ W) 27,273
NE (38◦–50◦ N, 65◦–98◦ W) 48,378
SW (25◦–38◦ N, 98◦–125◦ W) 75,156
SE (25◦–38◦ N, 65◦–98◦ W) 77,091
Tropics (<23.5◦ N) 123,409
Mid-latitudes (≥23.5◦ N) 246,765
CONUS (GOES-16 scan) 370,174

Ocean Tropics (<23.5◦ N) 96,773
Mid-latitudes (≥23.5◦ N) 132,013
CONUS (GOES-16 scan) 228,786

Coast Tropics (<23.5◦ N) 134,719
Mid-latitudes (≥23.5◦ N) 64,797
CONUS (GOES-16 scan) 199,516

* The tropics and mid-latitudes are assessed within the continental United States (CONUS) sector. Only the land
parts are considered in NW, NE, SW, and SE regions defined in Figure 1.

Figure 1. The blue background stands for the ocean, while the white and orange ones represent land
and coast, respectively. Only the land parts are considered into NW, NE, SW, and SE regions. See
also Table 1.

2.3. Estimation of Cloud Top Vertical Velocity (w)

Following Adler and Fenn [31] and Hamada and Takayabu [32], the cloud top vertical
velocity (w) is estimated as:

w =
∆TB
∆t

(
∂T
∂z

)−1, (1)

where ∆TB represents the tracked TBB differences at each time interval (∆t = 5 min), and
the lapse rate ∂T

∂z is calculated from the nearest hourly ERA5 temperature and height data.
Note that w is the averaged cloud top vertical velocity in the resampled 20-km pixels,

instead of the maximum vertical velocity (wmax) of convective cores. wmax can be estimated
by the shape, size, and velocity of updrafts [31]. However, the calculated wmax is highly
sensitive and overshooting convection can cause small w with large wmax.

The whole procedure of processing and merging ABI and GLM data is summarized in
Figure 2a with one representative case (Figure 2b).
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Figure 2. (a) The workflow of processing and merging the Advanced Baseline Imager (ABI) and Geostationary Lightning
Mapper (GLM) data. The blue squares are original data, the gray ones are algorithms, and the orange ones are the input
products for the lightning parameterizations. (b) The illustration of tracking convection at one specific timestamp. The
background is the ABI infrared brightness temperature (TBB). The colorful lines represent the convection masks and the
minimum TBB in each mask is marked by white dots. The filled squares are the flash extent densities (FEDs) detected by
GLM in the 5 min duration.

3. Results and Discussion
3.1. Regional Variations

The distributions of CTH, FED, MFA, and the number of cases are shown in Figure 3.
Coinciding with Table 1, 70% of the lightning occurs over land and coast with a higher
frequency of intense storms (Figure 3a,c). This is consistent with previous observations
that there are ten times more lightning occurring over land with intense convection [60–63].
Oceanic lightning, however, exhibits a larger MFA than continental lightning (Figure 3d).
This implies that an organized system is necessary for oceanic convection to produce
lightning with supercooled water and graupel [64,65]. There is no systematic difference
between the continental and oceanic CTH (Figure 3b). Some low CTHs exist over the
ocean near Baja California, this may be due to the limited number of cases (<5) and by
being located at the edge of the GOES-16 CONUS field-of-view. To ensure there are neither
artifacts nor reflections off low clouds from an adjacent deeper storm, Figure 4 compares
the ENTLN data with GOES observations of that storm. The low cloud with lightning (red
rectangles) was a local oceanic convection, which was captured by ENTLN regardless of
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the offsets due to the parallax effect. Thus, this special case is valid and we keep similar
convection cases in the data analysis.

Figure 3. The spatial distributions of the (a) case number, (b) cloud top height (CTH), (c) FED, and (d) minimum flash area
(MFA) in each 1◦ × 1◦ grid within the CONUS sector.

Figure 4. The ABI and GLM gridded imageries from 00:05 to 00:10 UTC on 27 August 2020 near Baja
California. (a) TBB, (b) CTH, (c) FED, and (d) MFA. The clouds annotated by the red rectangle are
weak storms and the overlaid orange dots are total lightning detected by the Earth Networks Total
Lightning Network (ENTLN).
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3.2. ABI-GLM Relationships

Figure 5 shows the 2-D histogram of CTH and TBB, with the median values of GLM
products every 200 m and 1 K. As examined in Thiel et al. [14], the higher cloud is gen-
erally accompanied by lower TBB. This inverse relationship is significant for cold clouds
(TBB < 225 K), where the infrared (IR) window is sensitive to the thickness of cloud top ice
layer [66]. It is consistent with Molinie and Jacobson [13], showing that the CG lightning
density increases with decreasing TBB only for TBB colder than 218 K. The 7 K difference
between 225 K and 218 K may be caused by the resolutions of TBB data (GOES-16 2 km vs.
GOES-8 10 km) and the extra IC lightning detected by GLM (as considered here) compared
with the CG lightning data used in Molinie and Jacobson [13], Boccippio et al. [67]. At
the same height level, the warmer cloud has smaller FED with a larger MFA (Figure 5a,b).
For high clouds (CTH > 14 km), the MFA (Figure 5b) drops to less than 200 km2 and
the FED (Figure 5a) is greater than 6.4 flashes per 5 min with TOE (Figure 5c) larger than
1200 Femtojoule (fJ). The threshold of FED is in the range of previous FED observations [14],
where the median FED values range from four to eight flashes per 5 min when the IR CTH
is between 10 and 15 km. This indicates that the deep convection (CTH > 14 km) is more
intense with a threefold increase in flash rates compared to weak or developing convection
(CTH < 14 km). Although the 2-D histogram is similar for the mid-latitudes and tropics,
the mean tropical FED is 22% larger when the TBB is smaller than 220 K and CTH is larger
than 14 km. Therefore, the CTH proxy, which will be discussed in Section 3.4, should be
calculated for mid-latitudes and tropics separately.

Figure 5. The 2-D histogram of CTH and TBB with the median values of GLM and ABI products
every 200 m and 1 K: (a) FED, (b) MFA, (c) total optical energy (TOE), and (d) cloud top updraft
velocity (w).

Yoshida et al. [68] suggested that a stronger updraft in the thunderstorms could
produce more energetic lightning due to the charge separation. However, Figure 5d implies
that w begins decreasing with larger FED and TOE when the CTH is above 12 km. This
coincides with the comparison of frequency distributions (Figure 6a–c,g–i), where the
FED increases with higher clouds while w has already reached a maximum (∼45 m s−1)
between 10–14 km. Both phenomena can be explained by the difference between w and
wmax. The estimation of w using the Moderate Resolution Imaging Spectroradiometer
(MODIS) IR temperature reveals that wmax is 1–2 km lower than the CTH and w at the
cloud top is less than 6 m s−1 when the CTH is above 12 km [69,70].
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Figure 6. (a–c) The frequency distributions of FED versus CTH every 1.5 flashes/5 min and 200 m
over the continental, oceanic, and coastal regions. (g–i) Same as (a–c) but for w versus CTH every
0.5 m/s and 200 m. (d–f) The differences of frequency distributions of FED versus CTH between
every two regions as annotated by the column names. (j–l) Same as (d–f) but for w versus CTH.

Furthermore, the frequency distributions of FED and w in different regimes are il-
lustrated in Figure 6. Interestingly, the height of 12 km is also the demarcation for the
differences of frequency distribution among land, ocean, and coast. Similar to the TRMM
LIS observations [28], the FED is generally the lowest over the ocean (38% lower than that
of land and coast) when the CTH is larger than 12 km. Forty-five percent of the continental
lightning is accompanied with a CTH lower than 12 km, while 74% (67%) of the coastal
(oceanic) lightning occurs with a CTH higher than 12 km (Figure 6d–f,j–l). Many previous
studies have pointed out the differences of lightning activity between land and ocean.
The air over land tends to have a larger Bowen ratio (sensitive heat/latent heat) and the
land-ocean updraft ratio is greater than two [71]. The stronger updraft then increases the
chance of collisions between ice and graupel [64,72,73]. Our study is partly consistent with
previous studies until the CTH is higher than 12 km where the estimated w of oceanic
convection is 25% stronger than that of continental convection (Figure 6j). This indicates
that the direct relationship between CTH and w is valid for low cloud (CTH < 12 km),
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but careful consideration of the radius of updraft is necessary for interpreting wmax based
on w [31,74].

3.3. Case Studies

Two cases are discussed below to investigate the detailed relationships between ABI
and GLM features. Both convections are tracked by tobac for more than two hours. The
features are defined following Section 2.2 and the time series of each feature are determined.

The first case on 14 June 2020 was a weak convection where the minimum TBB was
239 K at 84.9◦ W, 22.25◦ N during the tracking period (Figure 7a). The track initiates at the
height of 4.07 km with w of 0.65 m s−1 (Figure 7b). Over the proceeding 90 min, the updraft
continues to increase and reaches 3.03 m s−1 at 4.63 km, FED increases to 1.44 flashes per
5 min, TOE enhances to 1555 fJ, and MFA falls below 70 km2 (Figure 7b–e). While w and
MFA drop rapidly once reaching the summit, the decrease of FED is one time step behind.
This rapid change indicates the importance of high time resolution satellite data to observe
and track thunderstorms. The changes become more complicated for the dissipation period,
but the trend is obvious: smaller w with larger MFA coincides with decreasing FED and
smaller TOE. Finally, the track ends at 5.06 km with 0.25 flashes per 5 min.

Figure 7. (a) The TBB of weak convection occurring on 14 June 2020. The white dot corresponds to
the location of minimum TBB in the mask of tracked convection. Profiles of (b) w, (c) FED, (d) MFA,
and (e) TOE are plotted during the tracking period.



Remote Sens. 2021, 13, 3866 10 of 17

For the second case, a supercell developed around 86.39◦ W, 15.91◦ N on 25 June 2020
(Figure 8a). Because of the strong updraft, the track initiates at a higher level (6.74 km) and
w strengthens from 2.0 m s−1 to 13.9 m s−1 in 5 min. At the height of 11.59 km, FED and
TOE rise to 2.13 flashes per 5 min and 441 fJ, respectively, with an MFA of 150 km2. After
25 min, w decreases to 1.2 m s−1 with a small FED (1.06 flashes per 5 min), TOE (89 fJ),
and large MFA (300 km2). While the lightning intensifies again and the FED reaches a
plateau of 8.25 flashes per 5 min at 16.37 km with 1836 fJ and 70 km2, w still stays below
0.7 m s−1. As discussed in Section 3.2, this is consistent with the issue that the IR CTH
is higher than the 20 dBZ CTH [75,76] and thus cannot represent the updraft speed of
the convective core. Although w remains around 1.6 m s−1 between 15.35 and 15.86 km,
it declines to 0.2 m s−1 during the dissipation period as indicated by the smaller FED
(2 flashes per 5 min) and TOE (421 fJ) with almost invariant CTH.

These two case analyses reveal the variation of w and lightning activity for weak
and deep convection and demonstrate the ability to track and analyze the changeable
characteristics for the general relationship. It suggests that the higher time resolution
observations like 1-min rapid scan mode could improve the track and capture more detailed
changes of cloud structure, which influences the lightning density and optical energy.

Figure 8. Same as Figure 7 but for the severe storm on 25 June 2020. (a) The TBB field with a white
dot which corresponds to the location of minimum TBB in the mask of tracked convection. Profiles
of (b) w, (c) FED, (d) MFA, and (e) TOE are plotted during the tracking period.
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3.4. CTH Proxy

Because the estimated w at the IR cloud top could be smaller than wmax in the con-
vection core [32], the CTH proxy based on the correlation between wmax and CTH is not
suitable for our study, which relies on cloud top w. Instead, the CTH proxy is derived by
CTH and FED directly without the intermediate variable w.

Following Price and Rind [22] and Luhar et al. [26], the empirical relationship between
FED and CTH is assumed as:

F = kHα. (2)

Equation (2) is fitted directly to FED vs. CTH data, in which the FED is averaged every
1 km in CTH. The standard deviation of the bin values is smaller than 1.5 flashes/5 min for
CTH lower than 9 km and it ranges from 11 flashes/5 min to 30 flashes/
5 min when CTH increases from 10 km to 20 km. In Figure 9, a similar overall trend
is shown for the land, ocean, and coast: taller convection tends to have higher FED.

Figure 9. Relationships between FED and CTH in the (a) tropics, (b) mid-latitudes, and (c) mid-
latitude lands as defined in Table 1 and Figure 1. The solid lines in panel (b) are the best fits of this
study data, while the dashed lines are from the empirical relationships in Price and Rind [22] and
Luhar et al. [26], but compiled by the CTH data in this study. The coefficients and exponents are
annotated in the upper left corner.

Similar to Figures 5a and Ushio et al. [28], there is a turning point at the height of
12 km, where the exponent (α) is larger than 1.9. Two possible factors could explain
this phenomenon and lead to the underestimation of exponent: (1) the optical lightning
emission is blocked by dense clouds [77]; and (2) the higher IR CTH compared with
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20 dBZ CTH. The solution of missed lightning due to the first factor is to adjust the GLM
FED by the detection efficiency relative to the clustered ENTLN data [45,78] in future
work. The second factor has been studied using the TRMM data [75,76] and the results
indicate that the distance between IR CTH and 20 dBZ CTH ranges from 2.7 km to 6 km.
Here, the TRMM precipitation feature database (details in the work of Liu et al. [79]) is
applied over the CONUS (Figure 10). The difference is smaller than 1.5 km when the IR
CTH is lower than 10 km. It increases continuously with a higher IR CTH, and finally
reaches 5 km when the IR CTH is 20 km, indicating that the mean FED values in Figure 9
should be larger, especially for bins with CTH > 10 km. This can be fixed by combining
GLM observations with the Dual-frequency Precipitation Radar (DPR) onboard the Global
Precipitation Measurement (GPM) once the collection of data is large enough. Note that
both solutions need accurate parallax corrections of satellite data in future work, otherwise
the features would be mismatched [50].

Figure 10. The difference between infrared (IR) CTH and 20 dBZ CTH versus the IR CTH. Both CTH
data are from the Tropical Rainfall Measuring Mission (TRMM) precipitation feature database [79].
The dots are the mean values in every 1 km IR CTH and the error bars represent the standard deviation.

Although a polynomial regression would better fit the scatter data, we applied a linear
regression to Figure 9 for the comparison with previous studies. Figure 9a,b show that the
flash rates in the tropics are larger resulting in larger exponent values when compared with
those in the mid-latitudes. Specifically, the α is 3.68 (3.45), 2.67 (2.33), and 3.29 (2.69) over
land, ocean, and coast in the tropics (mid-latitudes), respectively. Unexpectedly, the oceanic
lightning does not consist of the smallest FED when the CTH is lower than 8 km. This has
not ever been demonstrated in previous TRMM data analysis and ground observations,
due to the lack of lightning with low cloud data over the ocean [26,28]. Figure 11 presents
the histogram of case numbers with 1 km CTH bins and indicates that the GLM can
observe enough lightning cases over ocean. Because the non-inductive charging process is
temperature sensitive, and the TBB only provides the temperature at the cloud top, it is
important to utilize more soundings and high resolution simulations to better understand
why the oceanic lightning with low cloud has a higher FED when compared with the
continental and coastal lightning. Additional research is also required to determine the
influence of instrument observing artifacts [35,80] on the oceanic FED.

Because the lightning data used in the PR92 parameterization were in the mid-latitude,
we then compare the linear regression results in Figure 9b. The exponents over land and
ocean are 3.45 and 2.33, which are smaller than 4.9 and 4.38 in PR92 and Luhar et al. [26],
respectively. While the exponents will be larger and probably close to prior studies if the
two possible factors mentioned above are fixed, the differences of coefficient will still exist
and more studies over ocean are needed. To explore the lightning properties which differ
from region to region, the mid-latitude lands are divided into four regions: NE, SE, NW,
and SW (Table 1 and Figure 1). The mean α value (3.65) of NE and SE regions is higher
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than that (3.43) of NW and SW regions (Figure 9c). In contrast, Molinie and Jacobson [13]
suggests that the NE and SE regions tend to have a lower FED compared with the NW and
SW regions. The opposite conclusion is probably due to the reduced detection efficiencies
at lower viewing angle elevations (<40◦) of NW and SW and needs to be examined by
future works [45].

Figure 11. The histograms between case numbers and CTHs every 1 km over land (orange), ocean
(blue), and coast (green).

4. Conclusions

This study used GOES-16 satellite observations to examine three specific problems:
(1) the fundamental relationships between the ABI cloud properties (CTH, TBB) and GLM
lightning products (FED, MFA, TOE); (2) the differences of these relationships over the
continental, oceanic, and coastal regions; and (3) the developments of lightning parameteri-
zation based on the geostationary satellite data. The GOES-16 ABI observations have been
used to track thunderstorms and estimate the cloud top updraft velocity (w) from 1 May to
30 September 2020. The tracks are matched with GLM L2 products as the 5-min and 20-km
merged products.

The combination of ABI and GLM data implies that the continental and coastal
lightning is more intense (larger FED) than the oceanic lightning, which is more organized
(larger MFA). Consistent with previous studies, storms with higher cloud tops are more
powerful with larger flash rates and smaller flash sizes. However, the direct relationship
between w and CTH is only valid for low clouds (CTH < 12 km), because w is the IR
cloud top ascent rate instead of wmax, which is in the convective core. These statistical
results are more closely examined using two case studies, one weak convection and another
severe storm.

Therefore, a relationship between FED and IR CTH is derived independently of w
and our results show that there is variation with location. Although the oceanic FED
with a CTH higher than 12 km is 38% smaller than both continental and coastal FED, it
contains the largest FED when the CTH is lower than 8 km. This suggests that a careful
consideration of underlying surface type is essential for better lightning parameterizations
and analysis of climate changing effects.

New satellites with improved instruments and temporal coverage will help refine the
global lightning parameterizations. Specifically, the GLM, LMI, and Meteosat Third Gener-
ation (MTG) Lightning Imager (LI) [81] will provide almost global lightning distributions
with high time resolution. These data can be combined with the GPM DPR, which detects
the vertical cloud profile, to obtain more realistic lightning parameterizations instead of
the single CTH parameter applied in this study.
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