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Abstract: With the improvement of spatial resolution of hyperspectral remote sensing images, the
influence of spectral variability is gradually appearing in hyperspectral unmixing. The shortcom-
ings of endmember extraction methods using a single spectrum to represent one type of material
are revealed. To address spectral variability for hyperspectral unmixing, a multiscale resampling
endmember bundle extraction (MSREBE) method is proposed in this paper. There are four steps
in the proposed endmember bundle extraction method: (1) boundary detection; (2) sub-images in
multiscale generation; (3) endmember extraction from each sub-image; (4) stepwise most similar
collection (SMSC) clustering. The SMSC clustering method is aimed at solving the problem in
determining which endmember bundle the extracted endmembers belong to. Experiments carried
on both a simulated dataset and real hyperspectral datasets show that the endmembers extracted
by the proposed method are superior to those extracted by the compared methods, and the optimal
results in abundance estimation are maintained.

Keywords: spectral variability; endmember bundle; spectral clustering

1. Introduction

Hyperspectral images have been widely used in various fields such as classifica-
tion [1–3], target detection [4,5], and quantitative inversion [6–8] due to the narrow contin-
uous spectral bands [9] which can provide a large amount of spectral information for each
pixel. No matter the spatial resolution, mixed pixels are always widely encountered in
remote sensing images which is always the main reason for the limitation to the accuracy
of traditional remote-sensing applications at a pixel level. To improve the precision of
remote sensing applications, the problem of mixed pixels must be solved. The main task of
unmixing is to decompose the mixed pixels into pure materials (called endmembers) and
their corresponding proportions (called abundance).

At present, the common methods for endmember extraction are based on using a
spectrum to represent one class of material. The main methods are divided into two
categories: (1) when there are pure pixels in the image, the main idea of endmember
extraction is to search some pixels that can form a convex simplex with maximum volume or
have the largest projections in some vectors. Representative algorithms include pixel purity
index (PPI) [10], N-FINDR [11], vertex component analysis (VCA) [12], orthogonal subspace
projection (OSP) [13], etc.; (2) when the image does not contain pure pixels, the relative
algorithms aim to seek a convex simplex with a minimum volume that contains all the
pixel points. Methods in this category include iterative-constrained endmembers (ICE) [14],
minimum volume-constrained nonnegative matrix factorization (MVC-NMF) [15], and
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minimum volume simplex analysis (MVSA) [16]. However, with the improvement of
spatial resolution of remote sensing images, the phenomenon of spectral variability caused
by various factors including acquisition environment [17], illumination [18] and materials
per se [19] in hyperspectral images becomes more and more severe, especially in some
scenes where various features are more concentrated, such as wetlands and forests. In this
case, a single spectrum is insufficient to represent one class of features. Therefore, most
aforementioned extraction methods above are not applicable to hyperspectral images with
high spectral variability. Previous studies [20,21] have indicated that the above methods
which ignore spectral variability can potentially lead to poor estimates of abundances.

Multiple endmember spectral mixture analysis (MESMA) [22] was proposed in order
to solve the problem of spectral variability. MESMA, however, requires not only a known
spectral library but also substantial computing costs when many spectra need to be tested.
In addition, some scholars have proposed methods to address spectral variability without
a known spectral library, including parametric endmember models [23,24], Bayesian meth-
ods [25,26], and endmember bundle extraction methods. Among them, parametric models
and the Bayesian methods require a large number of parameters to be set [27]. However,
endmember bundle extraction methods can basically make up for the above shortcomings.
The concept of “bundle” [28] means that the endmembers of each feature are represented by
a collection containing multiple spectra. Many algorithms [29–33] for endmember bundle
extraction have been proposed. Among them, many methods extract endmembers from
each subregion of the original image, and then cluster the extracted endmembers to obtain
endmember bundles. However, the above experiment processes may extract mixed pixels
as candidate endmembers when the subregion contains no pure pixels. To address these
issues, scholars adopted PPI [34] and a homogeneity index (HI) [35] to ensure the purity
of candidate endmembers. At present, endmember bundle extraction is still in its infancy,
and the development of this field still needs additional research.

Compared with endmember extraction methods, endmember bundle extraction meth-
ods require an additional step of clustering to group the extracted endmembers. Currently,
most endmember bundle extraction algorithms group extracted endmembers [30,35] using
the K-means clustering method. Then, the clustering results are compared with ground
truth as a priori knowledge to identify which material each endmember bundle belongs to.
K-means clustering has a better performance in the datasets with more interclass variability
than intraclass variability. However, due to the spectral variability, K-means clustering
struggles to accurately complete the clustering of a large number of endmembers.

To further improve the accuracy of hyperspectral unmixing, it is necessary to develop
a new method to address the above problems. The main contributions of this paper are as
follows: (1) in order to address the spectral variability of hyperspectral images, a multiscale
resampling endmember bundle extraction (MSREBE) algorithm is proposed in this paper.
Candidate endmembers are extracted from sections of each sub-image generated from the
original image at different sampling scales. Pure pixels, which are selected as candidate
endmembers at multiple sampling scales, are optioned as endmembers. Afterward, the
endmembers are clustered into endmember bundles for each material; (2) the stepwise
most similar collection (SMSC) clustering method is proposed in this paper. The extracted
endmembers are clustered with their most similar endmembers step by step according to
prior knowledge. SMSC partitions the spectral variability of all extracted endmembers at
each step, which can reduce the influence of spectral variability in the clustering.

The remainder of this paper is organized as follows: Section 2 describes four state-
of-the-art algorithms which are compared with the proposed algorithm. The proposed
algorithm is presented in Section 3. Section 4 displays four experiments with both a
simulated dataset and real hyperspectral datasets, as well as discusses the results obtained
from the experiments. Section 5 concludes this paper.
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2. Relative Research Works

In this section, four typical algorithms, namely, VCA, image-based endmember bundle
extraction (EBE), spatial and spectral feature-based EBE (SSEBE) and archetypal analysis
EBE (AAEBE), are introduced. These methods are taken for comparison when conducting
experiments on both a synthetic dataset and real datasets.

2.1. VCA

VCA is a typical endmember extraction algorithm based on convex geometry the-
ory [12]; the main idea of this method is that projection of the data cloud formed on the
hyperplane is a convex simplex whose vertices are endmembers. By projecting all pixels
onto a random vector, the first endmember is the pixel with the largest projection. Then,
the remaining endmembers are iteratively extracted by projecting the remaining pixels
onto the orthogonal direction of the subspace, which is composed of the extracted end-
members. The pixel corresponding to the limit projection is taken as the next endmember.
Suppose the collection composed by extracted endmembers is expressed as

{
ej
}k

j=1 and
the corresponding matrix is described as Ek. Then, the (k + 1)-th endmember ek+1 can be
extracted via Equation (1).

ek+1= arg max
ri,i=1,...,n

{∣∣∣w⊥k ri

∣∣∣}, (1)

where ri represents the remaining pixels, and w⊥k is one random vector of E⊥k , which is
calculated via Equation (2).

w⊥k =
E⊥k ξ

‖E⊥k ξ‖2

, (2)

where ξ is an independent identically distributed zero mean Gaussian vector, i.e., ξ ∼ N(0, Ik).
E⊥k is the orthogonal projection matrix of Ek, which is calculated via Equation (3).

E⊥k = Ik−Ek (E
T
kEk

)−1
ET

k . (3)

2.2. EBE

The principle behind EBE is to carry out an endmember extraction algorithm in every
subset [30]. The specific process is as follows: subsets are generated by sampling randomly
using the pixels from the original hyperspectral images. The main assumption for adopting
this random strategy in the selection of pixels is that a smaller proportion of image pixels
can be used to approximate the statistics of the original image. That is, if there are numerous
pure pixels for each endmember in the scene, the image subsets generated by random
sampling will also have pure pixels. Then, pure pixels in each subset can be extracted by
the endmember extraction methods. Subsequently, the spectral set will consist of spectral
signatures from different features after all subsets are analyzed. Finally, the spectral set can
be clustered into some categories corresponding to each ground component by K-means
clustering with the Euclidean distance as a similarity measure. K as prior knowledge in this
clustering method represents the number of clustering collections, which is determined on
the basis of specific experimental needs.

2.3. SSEBE

SSEBE is proposed to extract endmember bundles using both spatial and spectral
information [35]. The steps of this method are as follows: (1) to reduce the computational
complexity, the PPI algorithm is used for coarse screening of original hyperspectral images.
All pixels of hyperspectral image are projected onto multitude skewers. When the frequency
of a pixel appearing as the maximum or the minimum of projections is more than the given
threshold, the pixel is considered as a candidate endmember; (2) according to the idea that
pure pixels generally locate in spatially homogeneous areas, SSEBE calculates HI, which is
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the index to determine whether the pixels are in a homogeneous region, between each pixel
and its adjacent pixels, with spectral information divergence (SID) as a measure. A smaller
HI of the pixel denotes greater similarity to its adjacent pixel and a greater likelihood of
being in the homogeneous region; (3) the HI threshold of every subregion is determined by
adaptively adjusting according to the proportion of the selected candidate endmembers.
The principle of setting the threshold is that the percentage of candidate endmembers is no
more than 2–5% of the whole data set. Then, candidate endmembers whose HI are smaller
than threshold are selected to make up the spectral set; (4) the spectral set is clustered using
the K-means clustering method, with the initial clustering centers obtained by OSP.

2.4. AAEBE

AAEBE was firstly applied for archetypal analysis and was originally designed for
machine learning problems to endmember bundle extraction [34]. This method considers
the similarity of intra-endmembers and represents each endmember by a few typical
spectra to reduce computation for unmixing. The main process of the method is as follows:
(1) similarly to the first step in SSEBE, PPI is used to extract candidate endmembers;
(2) archetypal analysis is used to extract the first-level endmembers among the candidate
endmembers extracted from step (1); (3) the candidate endmembers are clustered into
several collections on the basis of the first-level endmembers, and then a second archetypal
analysis is used in turn in each collection to obtain pure pixels of each endmember. After
all the above steps, the endmember bundles corresponding to each material are extracted.

3. Multiscale Resampling Endmember Bundle Extraction (MSREBE)

The proposed method consists of four steps: (1) boundary detection, (2) sub-images in
multiscale generation, (3) endmember extraction from each sub-image, and (4) stepwise
most similar collection clustering. A brief illustration of the method is shown in Figure 1.
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Figure 1. General flowchart of the proposed method for endmember bundle extraction. 

3.1. Boundary Detection 
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3.1. Boundary Detection

The pixels in the hyperspectral image can be divided into pure pixels and mixed
pixels. Mixed pixels contain the spectral information of multiple materials. The boundary
pixels usually occur at the intersection of two or more features, which are more likely
to be mixed pixels. In order to reduce the probability that mixed pixels are selected as
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endmembers, boundary pixels and their four neighborhood pixels are deleted before
extracting endmembers.

The first principal component obtained from the hyperspectral image according to
principal component analysis (PCA) [36] contains the primary information of hyperspectral
images. In this paper, the boundary pixels are detected on the basis of the first principal
component of the hyperspectral image. The canny edge detector, a classical edge detection
operator [37], is used to detect the boundary. This step consists of two operations: (1) carry
out PCA of the hyperspectral image and obtain the first principal component; (2) use the
canny detector to identify boundary pixels of the first principal component and label the
location of boundary pixels and their four neighborhood pixels.

3.2. Sub-Images in Multiscale Generation

It is difficult to extract endmember bundles from a hyperspectral image with high
spectral variability. In this paper, we extracted endmembers in sub-images with relatively
low spectral variability generated by sampling original hyperspectral image. The adja-
cent pixels in the original image were assigned to different sub-images. Figure 2 shows
the generation process of sub-images at a sampling scale of 2. According to the above
operation, sub-images have similar feature distributions to the original image with lower
spectral variability.
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The spectral variability cannot be significantly reduced when the sampling scale is
small. On the contrary, there may be no pure pixels in sub-images when the scale is too
large. Therefore, the best sampling scale is difficult to determine. Under this condition, we
extracted candidate endmembers at multiple scales, ensuring that candidate endmembers
could adequately show the spectral variability of the original image. We firstly set 1, 2, 3,
and 4 as the sampling scales considering some images of a small size. Then, the maximum
sampling scale was determined via Equation (4) concluded from multiple experiments.

MAX_scale = min(M/20, N/20), (4)

where M and N represent the number of rows and columns of the original hyperspectral
image, respectively. To reduce the computational burden, we adopted the method of
exponential growth to calculate the remaining sampling scales.

3.3. Endmember Extraction from Each Sub-Image

After the above step, the spectral variability among different regions still exists because
the feature distributions of sub-images are similar to the original image. If endmembers are
extracted directly from sub-images, the final extracted endmembers will be in a gathering
state. That is, extracting endmembers in sub-images with similar spatial structures may
lead to the situation that the extracted endmembers are located in similar positions of the
sub-images. When the extracted pure pixels are mapped onto the original image, pure
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pixels of the endmember may appear in close areas to form a gathering state. To solve the
above problems, sub-images generated at the same sampling scale were alternately divided
into four sections in the horizontal and vertical directions. Then, candidate endmembers
were extracted from each section with VCA after deleting the boundary pixels detected in
step 3.1. Following the above steps, some pixels were extracted as candidate endmembers
at multiple sampling scales. When a pixel is selected as an endmember in more sub-images,
the probability of the pixel being a pure pixel as the endmember is higher. To select more
representative endmembers, a threshold T is required for screening candidate endmembers;
in this paper, one-third of the sampling scale number was adopted as the threshold T.

3.4. Stepwise Most Similar Collection (SMSC) Clustering

A spectral set is built after all endmembers are extracted via the above steps. The
next step is to cluster endmembers in the spectral set into some collections corresponding
to the various components. Automatic clustering is of great significance, as it affects
accuracy evaluation and abundance estimation. The common clustering methods are not
applicable to spectral sets with high spectral variability because the intraclass variation
in materials may be greater than the interclass variation. In this paper, we propose a new
clustering method by clustering stepwise similar endmembers to reduce the influence of
spectral variability.

The main idea of this method is to use some endmembers to help their similar end-
members cluster correctly. For example, endmember i belongs to class 1 but is incorrectly
assigned to class 2. In this case, endmember j, which is similar to endmember i and can be
assigned correctly to class 1, can be used to help endmember i be assigned to class 1. The
mathematical formula is expressed as follows:

SAD(i, A)> SAD(i, B)
SAD(j, A)< SAD(j, B)
SAD(i, j)< SAD(i, A)

, (5)

where A and B represent the typical spectral signatures of class 1 and 2, respectively. These
typical spectral signatures can be acquired through endmember extraction methods, field
acquisition, etc. The spectral angle distance (SAD) is a metric to evaluate the similarity of
two spectra, which can be calculated via Equation (6).

SAD(xa, xb)= cos−1

(
(xa)

T · xb
‖xa‖ · ‖xb‖

)
, (6)

where ‖xa‖ and ‖xb‖ represent the norms of spectra xa and xb, respectively.
The steps of SMSC clustering can be summarized as follows:
(1) Regard each endmember in the spectral set as an independent endmember collec-

tion, and take a typical spectral signature of each material as a target collection.
(2) Calculate the SAD between each spectrum in the endmember collection and all

elements in the remaining collections via Equation (7), including the other endmember
collections and all target collections. Collection j represents the collection which is the most
similar to collection i and with the minimum SAD of collection i.

Ji= arg min
j
(SAD(x p

i , xq
j )) (i = 1, 2, . . . , N1, j = 1, . . . , N1+N2, j 6= i, p = 1, 2, . . . ni, q = 1, 2, . . . , nj), (7)

where xp
i represents the p-th endmember in endmember collection i, xq

j represents the
q-th element in collection j, N1 and N2 represent the number of endmember collections and
target collections, respectively, and ni and nj represent the number of spectra in collection i
and j.

(3) Merge endmember collections, whose most similar collections are target collections,
into the corresponding target collection, and update target collections.
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(4) Repeat steps (2)–(3) until no endmember collections can be merged into target
collections.

(5) Merge each remaining endmember collection with its corresponding most similar
endmember collection, and update endmember collections. Then, repeat steps (2)–(4) until
all endmember collections are merged into the target collections.

The specific process of the SMSC clustering method is shown in Figure 3.
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The proposed SMSC clustering method gradually clusters extracted endmembers into
target collections according to steps (3) and (4) instead of directly clustering all endmembers
into some categories. At each step of clustering, the number of endmembers in the target
collection gradually increases with the enhancement of the spectral variability, which
indirectly helps the remaining endmembers cluster. According to stepwise clustering, the
spectral variability of extracted endmembers will be dispersed in each clustering.

4. Experiments and Analysis

This section describes the experiments performed on both a synthetic dataset and real
datasets. These experiments can demonstrate a comprehensive comparison between the
proposed method and other typical methods.

In this paper, we adopted the mean spectral angle distance (MSAD) to valuate ex-
tracted endmembers and root-mean-square error (RMSE) to assess the reconstructed image
and estimated abundance.

MSAD can be calculated via Equation (8),

MSAD =
1
M

M

∑
i=1

cos−1
(

xi
T · x̂i

‖xi‖ · ‖x̂i‖

)
, (8)
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where M is the number of extracted endmembers, x̂i denotes the extracted endmember,
and xi is the corresponding ground truth.

RMSE was used to evaluate the performance of various methods. It is given by
Equation (9),

RMSE(z, ẑ) =
(

1
N
‖z− ẑ‖2

2

) 1
2
, (9)

where N is the number of elements in z, z is the truth including the true abundance and
original hyperspectral image, and ẑ represents the corresponding estimated result. A
smaller RMSE corresponds to a better performance. In this paper, RMSER represents the
RMSE between reconstructed image and original image, whereas RMSEA represents the
RMSE between true abundance and estimated abundance.

4.1. Synthetic Image Dataset

The endmembers of the synthetic hyperspectral image were selected from the DIRSIG
spectral library [38] with high spectral variability. Figure 4 displays the spectral library
of the four materials used in this paper. The simulated data contained four features in-
cluding muddy water, grass, asphalt, and concrete. The corresponding spatially correlated
abundances were generated from a Gaussian random field [39]. Moreover, there was only
one pure pixel of each material according to the above abundance generation method. To
simulate the spectral variability of the synthetic image, we modified the abundance of a
material greater than 0.95 to 1 and the abundance of other materials to 0. The spectrum of
each pixel in the synthetic hyperspectral data is the sum of the spectral signature of various
materials weighted by their corresponding abundances. The synthetic hyperspectral im-
age generated by the above steps complies with the abundance non-negativity constraint
(ANC) and abundance sum-to-one constraint (ASC). The simulated hyperspectral image is
exhibited in Figure 5.
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There are some points to be noted in this experiment: (1) in the EBE method, the
number of subsets generated from the original image was set to 10; (2) in AAEBE and
SSEBE, the number of projections used to extract candidate endmembers was set to 10,000,
and the threshold was set to 0; (3) the number of endmembers in each material was
set to 3 in AAEBE. The extraction results of the five methods are presented in Figure 6.
To comprehensively compare the extraction methods, we added abundance estimation
experiments. Fully constrained least squares (FCLS) was chosen as the method to estimate
abundance in this paper, which can avoid the influence of parameter selection. The
estimation results are shown in Figure 7. Table 1 presents the results of comparison
between MSREBE and the other methods as a function of three metrics, and the best
performance is bolded.
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Table 1. Experimental results of synthetic image dataset.

Methods MSAD RMSER RMSEA

VCA 0.221 0.178 0.208
EBE 0.167 0.124 0.168

SSEBE 0.247 0.072 0.214
AAEBE 0.277 0.035 0.208

MSREBE 0.155 0.067 0.037

Figure 4 demonstrates that all four materials contained high spectral variability, espe-
cially asphalt, thus hindering the extraction of endmember bundle associated with asphalt.
Comparing the extracted results in Figure 6 with the ground truth in Figure 4, the extracted
endmembers of asphalt by VCA, EBE, and AAEBE were far from the associated ground
truth, while MSREBE and SSEBE extracted partial endmembers of asphalt. It can also be
seen from Figure 6 that the extraction result of MSREBE was better than that of SSEBE. In
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addition, the abundance maps related to MSREBE better agreed with the true abundance
maps shown in Figure 7. Table 1 indicates that MSREBE was second only to AAEBE in
terms of the RMSE of reconstruction error. Nevertheless, it was superior to other methods
in terms of the RMSE of abundance error and MSAD. Considering the above, the proposed
method performed better than other methods using the synthetic dataset.

4.2. Wetland Dataset

The original hyperspectral image was taken on 25 October 2020 in Dongying by
an unmanned aerial vehicle hyperspectral camera. The wetland dataset with a size of
263 × 271, shown in Figure 8a, was a subset of the original hyperspectral image with
126 bands, covering the wavelength range of 0.450–0.946 µm. There were main four
materials including reed, tamarix chinensis, bare land, and water in the wetland dataset. In
this paper, the corresponding ground truth of the study area was drawn on the basis of a
multispectral image with higher spatial resolution in the same area (as shown in Figure 8b).
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In Figure 9, the extraction results of VCA, EBE, SSEBE, AAEBE, and the proposed
method are shown from top to bottom. As in the simulated hyperspectral data experiment,
the abundance estimation was performed by FCLS with endmembers extracted using the
five methods, and the abundance maps are presented in Figure 10. Table 2 indicates the
comparison results between MSREBE and the other methods.

Figure 8 demonstrates that the area of water was obviously smaller than other features,
which means that it was difficult to extract the endmember bundle corresponding to water.
From Figure 9, we can find that all methods could adequately extract the endmembers of
various materials except for water. By comparing the endmembers extracted using various
methods, we can find that the water endmember bundle extracted by the proposed method
was better than that extracted by other methods. Figure 10 presents the abundance maps
of different methods; the first row is the reference abundance, followed by the results of
VCA, EBE, SSEBE, AAEBE, and MSREBE. By comparing the abundance maps associated
with various methods with the reference maps, it can be found that the results of MSREBE
were closer to the reference abundance maps than the other methods, especially for reeds
and water. Table 2 demonstrates the comparison between MSREBE and other methods as a
function of various metrics, and the best results are marked in bold. From Table 2, we can
see that the MSREBE achieved the best results in terms of all evaluation indicators, again
indicating its superiority to other methods in hyperspectral unmixing with high spectral
variability. Comparing Table 1 with Table 2, we can find that the proposed method is more
suitable for wetland data. The first reason behind this phenomenon is that the spectral
variability of the wetland dataset was so large that it was difficult to adequately express
with relatively few endmembers, for example, VCA and EBE. The second reason is that the
spectral characteristics of reed and tamarix chinensis were relatively similar, and traditional
clustering methods struggled to correctly cluster the endmembers of similar materials.
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Table 2. Experimental results of wetland dataset.

Methods MSAD RMSER RMSEA

VCA 0.279 0.067 0.382
EBE 0.224 0.178 0.321

SSEBE 0.312 0.039 0.349
AAEBE 0.291 1.107 0.479

MSREBE 0.089 0.019 0.073

4.3. Jasper Ridge Dataset

Jasper Ridge is a popular hyperspectral dataset used in unmixing. The original
image has a size of 512 × 614, with 224 channels ranging from 380 nm to 2500 nm. The
spectral resolution is up to 9.46 nm [40]. In this paper, a sub-image of 100 × 100 pixels
was used to conduct relative experiments after removing some channels susceptible to
dense water vapor and atmosphere. There were four main features in the experimental
area. Figure 11 exhibits the true color image of the experimental area and the ground truth.
Table 3 presents a comparison based on three indicators calculated using the endmembers
obtained by VCA, EBE, SSEBE, AAEBE, and MSREBE. The best performance is bolded.
Figures 12 and 13 show the extracted endmembers and the abundance maps corresponding
to various methods.
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Table 3. Experimental results of Jasper Ridge dataset.

Methods MSAD RMSER RMSEA

VCA 0.163 0.159 0.102
EBE 0.356 0.252 0.188

SSEBE 0.121 0.109 0.043
AAEBE 0.225 0.127 0.082

MSREBE 0.099 0.140 0.036

The endmembers extracted by various methods indicate that the spectral variability
was relatively lower than that of the other two datasets, which resulted in the advantages
of the proposed method not being fully shown. In addition, in Figure 11a, we can see
that the distributions of ground objects in this dataset were more complex than in other
datasets. Therefore, more boundary pixels were deleted by MSREBE, which caused the
spectral variability within endmembers extracted by MSREBE to be lower than within those
extracted by SSEBE (as shown in Figure 12), as well as led to a relatively high RMSE between
the original image and reconstructed image. However, the performances of MSREBE in
terms of RMSEA and MSAD show that MSREBE extracted effective endmembers of various
materials which were more suitable for unmixing. The corresponding abundance maps of
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various methods are compared in Figure 13. It is not difficult to find that the abundance
maps corresponding to MSREBE were more similar to the reference, again proving the
effectiveness of the proposed method.
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4.4. Washington DC Mall Dataset

In this section, we performed relative experiments using Washington DC Mall dataset,
which was collected by the Spectral Information Technology Application Center of Virginia
with the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor. Each
pixel was recorded in 210 channels ranging from 400 nm to 2400 nm. After stripping out
some bands affected by the atmosphere or with high noise, 191 bands remained in the
dataset. In this experiment, a subset of 151 × 141 was extracted from the original image.
The subscene mainly included seven types of ground objects, namely, grass, road, water,
tree, street, roof 1, and roof 2. Figure 14 shows the true color image of study area and some
pure pixels selected manually corresponding to the seven features. The spectral averages
of the pure pixels corresponding to various endmembers were calculated as the reference
endmember signatures. Due to the lack of true abundance of this dataset, only MSAD
and RMSE were used to evaluate the proposed method and other typical methods. The
result is shown in Table 4, where the best performance is bolded. Figure 15 shows the four
endmember extraction results corresponding to various methods, and Figure 16 shows the
abundance result of Washington DC Mall estimated by the proposed method.
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Table 4. Experimental results of Washington DC Mall dataset.

Methods MSAD RMSER

VCA 0.244 0.308
EBE 0.152 0.016

SSEBE 0.225 0.095
AAEBE 0.143 0.026

MSREBE 0.081 0.021

The Washington DC Mall dataset was different from the previous three datasets; it had
more types of features and a more complex feature distribution. According to Table 4, we
can find that MSREBE had the best performance in terms of MSAD among all methods and
was second only to EBE in the RMSE of the reconstruction error. From Figure 15, it is not
difficult to find that MSREBE had a better extraction effect than other methods. Although
there were no real abundance maps, we can find that the estimated abundance maps could
approximately represent the ground object distribution of the real image. According to the
above experimental results, we can conclude that the proposed method can not only be
used in scenes with fewer features, but also in complex scenes with several ground objects.
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4.5. Discussion

From the above experiments with a synthetic dataset and real datasets, we can observe
that, firstly, the proposed method had a lower mean SAD than the comparison methods, and
the abundance estimation experiments showed that the abundance maps corresponding
to MSREBE were more consistent with the references, again reflecting the superiority
of MSREBE in hyperspectral unmixing. Secondly, the proposed method is applicable
to a variety of scenarios, not only for a scene with large differences in ground feature
distribution, such as the wetland dataset, but also to a scene with complex ground feature
distribution or several features, such as the Jasper Ridge and Washington DC Mall datasets.
However, there are still some unresolved issues. Relevant parameters are difficult to
determine. The sampling scales and threshold play a significant role in MSREBE. However,
these parameters were determined through multiple tests in this paper. In our future
work, we will try different methods to determine the best sampling scales for various
datasets. So far, we have found that the sampling scales should be related to the size of the
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hyperspectral image, the degree of spectral variability, and the complexity of the ground
feature distribution. In further research, we will try to adaptively determine the sampling
scales according to the characteristics of the image. Through many experiments, we found
that it is appropriate to select candidate endmembers using one-third of the sampling scale
number as the threshold. However, the threshold may be changed as a function of the rules
governing the sampling scales.

5. Conclusions

In this paper, a novel multiscale resampling endmember bundle extraction (MSREBE)
algorithm was proposed for hyperspectral endmember bundle extraction. To address
spectral variability within hyperspectral unmixing, some strategies were employed. We
performed endmember extraction in sections of sub-images with much lower spectral
variability. Then, the pixels selected as candidate endmembers at multiple sampling scales
were taken as endmembers. A novel stepwise most similar collection (SMSC) clustering
method was proposed. The extracted endmembers were clustered stepwise on the basis
of minimum SAD. In each clustering, each endmember collection was only merged with
the corresponding most similar collection, which could weaken the influence of spectral
variability within extracted endmembers. The experiments performed in this paper proved
that the proposed method has strong practicability and can be applied to a variety of
datasets, obtaining better results than other algorithms.
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