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Abstract: Previous studies have observed seasonal cooling effects in paddy rice as compared to
temperate forest through enhanced evapotranspiration (ET) in Northeast Asia, while rare studies
have revealed biophysical factors responsible for spatial variations of ET and its cooling effects. In this
study, we adopted a data fusion method that integrated MODIS 8-day surface reflectance products,
gridded daily climate data of ground surface, and a remote sensing pixel-based Penman-Monteith
ET model (i.e., the RS–PM model) to quantify ET patterns of paddy rice in South Korea from 2011 to
2014. Results indicated that the regional variations of the rice-growing season ET (RGS-ET, the sum
of daily ET from the season onset of rapid canopy expansion (SoS) to the end of the rice-growing
season (EGS)) were primarily influenced by phenological factors (i.e., the length of growing period-
LGP), followed by growing season mean climatic factors (i.e., vapor pressure deficit-VPD, and air
temperature). For regional variations of the paddy field ET (PF-ET, the sum of daily ET from the field
flooding and transplanting date detected by satellite observations (FFTDsat) to SoS, and to EGS), the
extents were substantially reduced, only accounting for 54% of the RGS-ET variations. The FFTDsat

and SoS were considered critical for the reduced PF-ET variations. In comparison to the temperate
forest, changes in monthly ground surface air temperature (Ts) in paddy fields showed the V-shaped
seasonal pattern with significant cooling effects found in late spring and early summer, primarily
due to a large decline in daytime Ts that exceeded the nighttime warming. Bringing FFTDsat towards
late spring and early summer was identified as vital field management practices, causing significant
declines in daytime Ts due to enhanced ET. Results highlighted climate-warming mitigation by
paddy fields due to early flooding practices.

Keywords: cooling effects; evapotranspiration; numerical simulation; paddy rice; phenology; remote
sensing; water management

1. Introduction

The FAO’s annual proceedings have reported that around 167 million hectares of
global land were plowed for paddy rice plantation in 2017, and more than 90% of global
paddy rice areas were distributed in Northeast and Southeast Asia [1]. Rice is convention-
ally grown in fields that are flooded at different depths during the land preparation period
(i.e., the first date of field flooding and transplanting detected by satellite observations-
FFTDsat, herein referred to as the FFTDsat nominated surrogate of paddy rice land prepara-
tion, as commonly seen in the remote sensing research on regional paddy rice) until the
end of the rice-growing season (EGS). Paddy rice with a water layer on the soil surface
develops a wetland environment, which increases the water availability for evapotranspi-
ration (ET). As a major component of surface energy balance, ET can facilitate the removal
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of the absorbed shortwave energy during the daytime, leading to a non-radiative surface
cooling effect [2,3]. The positive effects of paddy fields on hydrological processes and
ground surface climate changes through ET highlight the necessity for carrying out studies
to disentangle important biophysical factors responsible for ET spatial variations and
ET-related changes in the ground surface air temperature (Ts).

A large number of reports focusing on the ET in paddy rice has indicated that the daily
ET of the rice-growing season was strongly regulated by the incident solar radiation [4–14].
They found marginal contributions of air temperature to daily ET, at least not as important
as the incident solar radiation. The strong dependence of daily ET on the leaf area index
(LAI) in the dry and cool season was reported by Alberto et al. [10]. Nevertheless, the
LAI explanatory power observed in the dry and cold season was not recorded in the wet
and warm season in the same site. They found that the early flooding and transplanting
in the warm wet season resulted in constantly high ET during the land preparation and
early vegetative stages, minimizing the strong impacts of LAI on daily ET. Except for the
land preparation, substantial regulating effects of LAI on daily ET through the control of
canopy transpiration existed when LAI was still rapidly increasing [15]. Paddy rice in Asian
countries is commonly associated with small-scale subsistence production systems [16,17].
Various irrigation schedules regarding the FFTD evolve among rice land parcels in South
Korea, North China, and Japan [18–21]. The LAI seasonal effects might be concealed by
advancing the FFTD. Bringing the FFTD forward likely cause more water loss through
the paddy field total ET (PF-ET, the sum of daily ET from the FFTD to the EGS), thereby
amplifying PF-ET spatial variations due to temporal changes in the FFTD among paddy
fields. The dependence of daily ET on environmental conditions and biotic factors might be
rather complicated in broad spatial dimensions when different FFTDs are present among
rice paddy fields.

Owing to differences in surface reflectance of incident radiation (albedo–α) and ET
among different land cover types, the sign and magnitude of monthly Ts in response
to land cover and management changes greatly varied [2,3,22]. Recent studies on the
historical land expansion from forest to farmland, including paddy rice, in global low and
mid-latitude areas reported a significant warming effect by farming [2,3,23]. The forest
in mid-latitude areas served as an important cooling system to mitigate the warming
effects of farmland in the context of global warming [2,3,24]. Lobell et al. [24] used the
community atmosphere model (CAM) parameterized with a unified irrigation scheme,
reporting minimal effects of irrigation on Ts among paddy rice fields and rainfed farmlands
in Northeast Asia. Nevertheless, recent studies exploring climatic effects of the conversion
from rainfed farmland to paddy rice reported strong cooling effects in spring seasons in
Northeast Asia [25–28]. The agronomic cycle of paddy rice from the FFTD to the EGS
is featured by irrigation and fertilization management changes and crop development.
Biophysical properties of rainfed uplands would change substantially after field flooding,
which may cause obvious shifts in the proportional allocation of radiation energy and
subsequently the sign and magnitude of the Ts response.

Until now, few reports have advanced our understandings of important biophysical
factors responsible for regional variations of ET in paddy rice fields and seasonal differences
in monthly Ts between paddy fields and temperate forest in a Northeast Asian country. In
our previous study [12], the FAO-56 Penman-Monteith (FAO-56 PM) model was integrated
with the data of close-range remote sensing for the estimation of ET in paddy rice pixels in
Gwangju, South Korea (here abbreviated as the pixel-based RS-PM model). In this paper,
the pixel-based RS-PM model with MODIS datasets was applied to estimate the ET of
paddy rice fields in entire South Korea from 2011 to 2014. To guarantee the accuracy of the
RS-PM model, the comprehensive calibration was performed and model validation was
done under a wide range of climate conditions. Geographical variations of the estimated
paddy field ET together with the gridded daily meteorological data of ground surface,
the MODIS albedo product, and phenological metrics derived from MODIS reflectance
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product, were fused to quantify correlations among paddy field ET and biophysical factors,
evaluating the two hypotheses as follows:

(1) Field-to-field changes in the FFTD could become an important biophysical factor
influencing spatial and temporal variations of ET among paddy fields.

(2) Considering the temperate forest being adjacent to paddy rice planting areas, the
monthly Ts of paddy fields may not always be higher than that of the temperate
forest.

2. Materials and Methods

The pathway diagram of earth observations and numerical simulations to test the two
hypotheses through analyzing the correlations among geographical variations of the ET,
Ts, and biophysical factors of paddy field is illustrated in Figure 1. The flooding single
classification method using the Moderate Resolution Imaging Spectroradiometer 8-day
surface reflectance products (MOD09A1) was adopted to detect the extent of paddy rice
fields and quantify the FFTD of paddy field in South Korea from 2011 to 2014. Potential
paddy rice pixels, detected by the flooding single classification approach [29], were geo-
graphically overlapped by a 5m resolution land use and land cover map (Supplementary
Materials SP1 and Figure S1); such pixels with homogeneity percentage ≥90% (i.e., rice
area of an individual grid cell was ≥90%) were filtered. Daily vegetation indices (VIs) per
paddy pixel were produced using the double logistic model, which help develop daily LAI
and Kcb per paddy pixel according to field relationships among the VI of interest, LAI, and
Kcb. Geographical variations of the ET of paddy fields were obtained via fusing daily LAI,
Kcb, and meteorological variables to drive the RS-PM model that was comprehensively
calibrated and validated using eddy covariance observations. Phenological metrics of
paddy rice were extracted from the MODIS VIs data using the TIMESAT (i.e., a software
package for analysing time-series of satellite sensor data) that was validated by field obser-
vations. The detailed processes involved by earth observations and numerical simulations
are stated in the following sections.

2.1. Mapping the Extent of Paddy Rice Using MOD09A1 and National Census Datasets

The online repository of MOD09A1 product from 2011 to 2014 provides the informa-
tion about the quality assurance (QA) for each geo-reference correcting surface reflectance
imagery, indicating the presence of cloud cover and other variables. To minimize the error
associated with cloud or aerosol contamination, per-pixel data with poor QA and/or blue
reflectance of ≥0.2 were considered as outliers [29]. Such abnormal data were replaced
with the mean of the subsequent and previous reflectance datasets. Reflectance data in
blue (ρblue, 459–479 nm), red (ρred, 620–670 nm), near-infrared (ρnir, 841–876 nm) and short-
wave infrared (ρswir, 1628–1652 nm) bands were used to calculate VIs, i.e., the enhanced
vegetation index (EVI) [30], the normalized difference vegetation index (NDVI) [31], the
land surface water index (LSWI) [29], and the optimized soil-adjusted vegetation index
(OSAVI) [32]. EVI is the vegetation index sensitive to vegetation greenness, whereas LSWI
is highly sensitive to land surface moisture content.

NDVI =
(ρnir − ρred)

(ρnir + ρred)
(1)

LSWI =
(ρnir − ρswir)

(ρnir + ρswir)
(2)

EVI= 2.5
ρnir − ρred

1.0 + ρnir + 6.0ρred − 7.5ρblue
(3)

OSAVI= 1.16
ρnir − ρred

ρnir + ρred + 0.16
(4)
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Figure 1.The schematic route of earth observations and numerical simulations to evaluate two hypotheses through corre-
lation analysis among geographical variations of ET, Ts, and biophysical factors. meteo.: daily meteorological variables of 
ground surface [i.e., daily incident solar radiation (MJ m–2 day–1), daily maximum and minimum air temperatures (°C), 
relative humidity (%), and wind speed grid data (m s–1)]; VIs: vegetation indices; LAI: leaf area index (m2 m–2); Kcb: tran-
spiration coefficient; ET: evapotranspiration (mm m–2 day–1); EC: eddy covariance system; obs.: field observations. 
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Figure 1. The schematic route of earth observations and numerical simulations to evaluate two hypotheses through
correlation analysis among geographical variations of ET, Ts, and biophysical factors. meteo.: daily meteorological variables
of ground surface [i.e., daily incident solar radiation (MJ m−2 day−1), daily maximum and minimum air temperatures
(◦C), relative humidity (%), and wind speed grid data (m s−1)]; VIs: vegetation indices; LAI: leaf area index (m2 m−2); Kcb:
transpiration coefficient; ET: evapotranspiration (mm m−2 day−1); EC: eddy covariance system; obs.: field observations.

It is required to distinguish permanent water bodies from seasonally flooded rice fields.
We defined a pixel covered by a water body when the year-round VIs value of that pixel
had both the NDVI < 0.10 and LSWI [29]. Rice cropping systems are practiced primarily on
great flat plains in the western part of South Korea. There are considerable changes in the
elevation of the forested lands surrounding rice plains. A digital elevation map (GTOPO30,
Global 30-Arc Second Elevation Dataset, https://rda.ucar.edu/datasets/ds758.0/, accessed
date: 21 October 2020) was used to retrieve the slope of each pixel by the ArcGIS 10.2
(Environmental Systems Research Institute, Redlands, CA, USA). Areas with a slope of
over 10% were considered as non-paddy rice zones.

In a previous study, Xiao et al. [29] proposed a flooding single classification method
(LSWI + T ≥ EVI, T is a threshold parameter) with a constant T of 0.05 to identify paddy rice
areas and evaluate the FFTDsat [33]. They designated the first date of the EVI 8-day period
meeting the flooding single classification approach at a paddy pixel as the FFTDsat of the
paddy pixel. Paddy pixels, obtained by the flooding single classification method, were
denoted as potential paddy pixels, as they may still contain numerous small landholdings
of subpixels. We assumed that the land cover and land use type (agriculture, forest, and
grassland) throughout South Korea were relatively stable from 2011 to 2014 (Figure S2). A
spatial information system embedded in the ArcGIS 10.2 software was used to stack the

https://rda.ucar.edu/datasets/ds758.0/
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5-m land cover map and the map of potential paddy pixels, aiming to count the number
of paddy rice fields within each potential paddy pixel. The 5m spatial resolution land
cover map of the raster form was developed by the Ministry of the Environment Republic
of Korea through the comprehensive county field census and remote sensing retrieval
by visual interpretation (For detailed information, please refer to Jeong et al., 2012 [18]
and Figure S1). The Figure S3 in Supplementary Materials SP1 shows an example of the
selection of homogenous paddy pixels in the Charyeong rice plain. Potential paddy pixels
with homogeneity of ≥90% throughout South Korea were regarded as pure paddy pixels.
Meanwhile, we assumed that the influences of other land-use types that were less than 10%
in each pure paddy pixel would be randomly detrended. The same method for selecting
pure paddy pixels was used to identify pure forest pixels. The filling ratio of ≥90% was set
as a filter to single out the pixels in which rice paddies were almost completely covered.

2.2. Estimations of Phenological Metrics and Daily LAI Time Series in Paddy Fields

TIMESAT is a program that uses sophisticated statistical techniques to smooth satellite
time-series data and retrieve key phenological parameters (http://www.nateko.lu.se/
TIMESAT/timesat.asp, access date: 15 September 2021) [34,35], which has been integrated
in the processing of MODIS data into a phenology product (MOD09PHN and MOD15PHN)
by the North American Carbon Program [36]. Boschetti et al. [37] compared the LGP and
SoS derived from the TIMESAT and field census, respectively, by rice farmers, indicating
a good correlation (R2 = 0.92). Meanwhile, Son et al. [38] proved that rice sowing and
harvesting dates could be exactly retrieved from MODIS VIs using the double logistic-based
method. In line with these studies, the built-in noise reduction techniques in the TIMESAT
program were used in this study to process time series of MODIS VIs, i.e., the spike method
of median filtering, envelope iterations, minimum of 0.25, 0.1, and 0.05 in NDVI, EVI, and
OSAVI, respectively, the fitting method based on the double logistic-based model, and the
start of season method (i.e., STL trend). The study of forest ecosystems with remote sensing
by Wu et al. [39] suggests that a better estimation of LGP and SoS was achieved by taking
multiple VIs rather than one into account. Hence, NDVI, EVI and OSAVI were used to
estimate seasonality parameters of paddy pixels. We defined the LGP per pixel, exceeding
160 days and less than 96 days, as outliers, because the modern semi-dwarf rice varieties
in South Korea do not have LGP outside of the time range. Each seasonality index was
determined using the average of three VIs estimates to lessen the impacts of random factors.
In general, the changes in the LGP derived from the TIMESAT along with the growing
season mean air temperature (gsTmean) matched well with the regression line fitting the
in-situ LGP-gsTmean data (Figure S4a in Supplementary Materials SP2). The paired in-situ
LGP and gsTmean datasets were collected from paddy rice fields [40]. A full agreement
between the TIMESAT LGP and field observations suggests that the phenological metrics
estimations of paddy rice using the TIMESAT were acceptable.

The daily LAI per-paddy pixel was generated according to the statistical relationships
between VIs and LAI in paddy rice fields. Four-year measurements of ground surface
LAI and VIs in three paddy sites in South Korea enabled us to perform a robust statistical
correlation between the LAI and VI of interest. Three VIs (i.e., NDVI, EVI, and OSAVI),
commonly used to retrieve LAI, were selected for comparison with field LAI observations.
Results revealed the best fitting curve for the ln(LAI)-ln(OSAVI) correlation (R2 = 0.72),
followed by the ln(LAI)-ln(EVI) correlation (R2 = 0.68), and the ln(LAI)-ln(NDVI) correlation
(R2 = 0.61) (Figure S5 in Supplementary Materials SP3). Importantly, the variations of
LAI > 1.0 m2 m−2 (i.e., log(LAI) = 0) could be better explained by OSAVI. The same
phenomenon for the raw data of LAI and OSAVI was also evident (The intent of Figure S5c).
Therefore, seasonal courses of daily LAI for each paddy pixel in each year were estimated
through the OSAVI time series. Beck et al. [41] demonstrated that the double logistic
function can more accurately show seasonal changes of VIs by effectively removing outliers.
Gonsamo et al. [42] and Wu et al. [39] examined a useful application of the double logistic
model for noise reduction using remote sensing time series data. In our analysis, the double

http://www.nateko.lu.se/TIMESAT/timesat.asp
http://www.nateko.lu.se/TIMESAT/timesat.asp
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logistic model was fitted to time series of MODIS VIs data for each rice paddy and year,
thereby yielding daily VIs as followings:

f (t, x1, x2, x3, x4) =
1

1 + exp
(

x1−t
x2

) − 1

1 + exp
(

x3−t
x4

) (5)

where x1 and x3 are the locations of the left (the increasing phase) and right (the decreasing
phase) inflection points respectively, and x2 and x4 determine the rates of changes at these
points. Daily VIs values for each paddy field and year were then converted to LAI values
based on the correlation between OSAVI and LAI.

2.3. Evaluation and Application of the Pixel-Based RS-PM Model for the ET Estimation in
Paddy Fields

Daily ET in each paddy pixel was estimated by the pixel-based RS-PM model. The
core principle for ET estimation in the pixel-based RS-PM model is the Penman-Monteith-
type ET model modified by the FAO (i.e., FAO-56 PM model) [43]. It estimates ET based
on a reference crop evapotranspiration (ETo) multiplied by the sum of the transpiration
coefficient (Kcb) and the evaporation coefficient (Ke) of the crop of interest. Our previous
study proposed the pixel-based RS-PM model that integrated the FAO-56 PM model and
the close-range unmanned aerial vehicle (UAV) based multispectral remote sensing for
paddy rice grown at four fertilizer application rates in Gwangju, South Korea [12], thereby
developing parameter retrieval formulas for Kcb and Ke. Detailed descriptions of the
pixel-based RS-PM model structure with Kcb and Ke retrieval formulas can be found in the
Supplementary Materials SP3.

To extract the spatial information on rice field ET over a large space with high simu-
lation accuracy, the optimum configuration of key parameters for the FAO-56 PM model
was necessary. As suggested by Allen et al. [43], the FAO-56 PM model could be per-
formed well at the point and regional scales with the reasonable parameterization of
independent weather and physiological variables. Sensitivity analyses of three important
physiological parameters (i.e., aerodynamic resistance-ra, bulk surface resistance-rs, and
Kcb) to estimate the daily ET estimate were performed in theory before field evaluations
(Table 1). The ra and rs describe the resistance of evaporating and transpiring surfaces to
water vapor transport through the reference heights. The variation of ra from 20 s m−1 to
120 s m−2 caused a slight decline of daily ET by 10.02% (ranging from 4.09 mm m−2 day−1

to 3.68 mm m−2 day−1) under high-level radiation and the daily mean air temperature of
17.5 ◦C. The extents of ET constraint by escalating ra were 9.04%, 8.39% and 7.71% under
varying daily air temperatures of 22.5 ◦C, 27.5 ◦C, and 32.5 ◦C, respectively. Results implied
that configuring ra according to field conditions would not yield large errors for daily ET
estimates. The varying rs values that affect ET through canopy transpiration caused a
decline in daily ET at the same extent as increasing the ra. Significant impacts on daily ET
estimates were evident in scenario 3 of Table 1, wherein varying Kcb values, ranging from
0.58 to 0.30 caused a large decline in ET by almost 50%.

For the determination of the robust rs that is reliable for paddy rice ET estimation
throughout South Korea, rs values increased from 20, 50, and 80 to 120 s m−1, and the
varying rs values fell within the ranges reported for paddy rice. Varying ra values were
calculated on the basis of the seasonal crop height, according to the FAO-56 PM model
instruction. The height of the rice crop was calculated using a relationship between LAI
and plant height reported by Confalonieri et al. [44]. Field assessments of the FAO-56
PM model with varying rs and ra values based on ET observations using eddy covariance
(EC) systems are shown in Figure 2. An archived dataset of daily lateral heat fluxes and
meteorological factors, including global incident radiation (MJ m−2 day−1), air temperature
(◦C), wind speed (m s−1), and relative humidity (%), recorded at a time interval of 30 min
in paddy rice fields using the EC systems, was collected from the Haean in 2010, Mase
in 2002, 2003, and 2005, and El Saler-Sueca in 2007 and 2008 (for more information about
site descriptions, please refer to Table S2 in Supplementary Materials SP4). A time series
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of NDVI from 2002 to 2010 was obtained from gridded L3G (level3) composite data at
250 m spatial resolution (MODIS Terra Surface Reflectance products, MOD13Q1). The daily
NDVI of each site was estimated through Equation (5) and used to evaluate seasonal Kcb
and Ke. Comparisons between ET predictions and observations showed that the greater
the rs, the smaller the root mean square error (RMSE). The FAO-56 PM model with a
constant rs value of 120 s m−1 and the constant ra (called as FAO-56 PMrs = 120) had the
best accuracy, with R2 = 0.91 and RMSE = 0.50 mm m−2 day−1 in the Haean, R2 = 0.71 and
RMSE = 0.60 mm m−2 day−1 in the Mase, and R2 = 0.64 and RMSE = 0.60 mm m−2 day−1

in the El Saler-Sueca. Relatively poor performances were observed when considering the
variable ra and constant rs (120 s m−1) (termed FAO-56 PM120,ra). The RMSE of the FAO-
56 PMrs = 120 model was 0.56 mm m−2 day−1, accounting for around 17.5% of the mean
daily ET (~3.2 mm m−2day−1). As demonstrated in Table 1, we found that rs estimates
would cause ET simulation errors of less than 10%. We found that estimation errors due to
uncertainties in other model variables including ra would be lower than 10% as well; this
is in agreement with sensitivity analyses of model parameters reported by our previous
study [12]. Daily ET estimates in the Haean, Mase, and El Saler-Sueca over six years were
compared favorably with EC observations (a in Supplementary Materials SP5). It was
reasonable to infer that the pixel-based RS-PM model with optimization of parameter,
including rs and ra enabled the efficient capture of the overall variation of rice field ET
across South Korea.

Table 1. The sensitivity analysis indicated the effects of parameterization themes of different models
on daily ET estimates (mm m−2 day−1). The background environment in scenario 1 included incident
solar radiation (Rs↓) of 19.0 MJ m−2 day−1, daily relative humidity (RH) of 70% and the flooded
bare land. Other model parameters were set at optimal levels except for the one used for the specific
scenario analysis. In scenario 2, to evaluate the effects of canopy resistance (rs, s m−1), Rs↓ was set
at 19.0 MJ m−2 day−1, with daily RH of 70%, surface albedo of 0.18, and leaf area index (LAI) of
4.0 m2 m−2. In scenario 3, there were the same climate variables as in scenario 1 but with variying
Kcb values.

Scenario 1: ra Scenario 2: rs Scenario 3: Kcb
20 60 120 50 120 240 0.58 0.30

Tdaytime = 20 ◦C
Tnight = 15 ◦C 4.09 3.92 3.68 4.01 3.82 3.67 3.82 1.91

Tdaytime = 25 ◦C
Tnight = 20 ◦C 4.20 4.03 3.82 4.42 4.22 4.05 4.22 2.23

Tdaytime = 30 ◦C
Tnight = 25 ◦C 4.17 4.02 3.82 4.80 4.59 4.40 4.59 2.29

Tdaytime = 35 ◦C
Tnight = 30 ◦C 4.02 3.88 3.71 5.15 4.94 4.73 4.94 2.47

Daily Rs↓ (MJ m−2 day−1) was estimated with data on weighted slopes, surface, and
atmospheric moisture data by using multispectral imagery from the MI (Meteorological
Imager) on COMS (Communication, Ocean and Meteorological Satellite), along with
VEGETATION sensor data from SPOT (Système Pour l’Observation de la Terre) based on
the Kawamura physical model [45]. The estimated daily Rs↓was validated by observations
made from 37 ground pyranometers, and the results showed a high correspondence
between predictions and observations under all sky conditions [45,46]. Daily maximum
and minimum air temperatures (Tmax, Tmin, respectively, ◦C) and the relative humidity
(RH, %) obtained from the Korea Local Analysis and Prediction System (KLAPS) were
used. The KLAPS, which constitutes the data collection and analysis modules, is designed
to predict the weather conditions of the Korea Peninsula with a spatial resolution of 5.0 km
at fine timescales. Weather products at high-resolution (1.5 km) from reanalysis data at 2.0
m height were generated by the KLAPS based on its analysis scheme using 470 automated
weather systems throughout the Korea Peninsula [46,47]. Daily Ts at 2.0 m height was the



Remote Sens. 2021, 13, 3992 8 of 22

mean of daily Tmax and Tmin. Daily vapor pressure deficit (VPD, kPa) is a product of Ts and
RH. The same climate data as in our study were used for the estimation of ET and yield in
paddy rice in South Korea by Yeom et al. [45] and Jeong et al. [46]. Wind speed grid data (m
s−1) at a spatial resolution of 0.25◦ and 1-day time intervals in South Korea were accessed
from the Global Land Data Assimilation System Version 2 (GLDAS-2.0, Li et al., 2018) and
downscaled with high-resolution covariates of advanced spaceborne thermal emission
and reflection radiometer (ASTER) global digital elevation model (GDEM), slope, and
aspect attributes through comprehensive statistical analyses using the thin plate smoothing
splines and machine learning assembling (MACHISPLIN package in R software). The
MACHISPLIN statistical technique was used to downscale the temperature and relative
humidity products to match them spatially with MODIS VI products. Methods for daily
Rn estimation in this study were aligned with the FAO-56PM model.
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Figure 2. Multi-site evaluations of the FAO-56PM model of the pixel-based RS-PM model with
the constant aerodynamic resistance (ra) of 208.0/WS for varying bulk surface resistances values
(rs), ranging from 20, 50, and 80 to 120 s m−1 and varying ra values with a constant rs value of
120 s m−1 in the Haean in South Korea in 2010, Mase in Japan from 2002 to 2005, and El Saler-Sueca
in Spain from 2007 to 2008. R2: the determination coefficient; RMSE: the root mean square error
(mm m−2 day−1); WS: wind speed (m s−1).

2.4. The Monthly Estimation of ∆Ts between Paddy Field and Temperate Forest

α is an important component of surface energy balance, explaining the warming and
cooling effects of paddy field. Daily values of α in paddy rice and temperate forest in
South Korea were retrieved from MODIS MCD43A3 products. Daily Ts and α values were
aggregated into a value for the month (mean). In line with methods reported by Li et al. [3],
the impacts of varying FFTDsat values of paddy field on monthly Ts were expressed as the
monthly Ts difference of paddy rice minus that of the temperate forest.

∆Ts = Ts,rice − Ts, f orest (6)

Positive or negative ∆Ts indicates a warming or cooling effect of paddy rice, respec-
tively. Intensive paddy rice cultivation is primarily done in flat plains of the western part
of South Korea (e.g., the Charyeong rice plain in Figure S1) as well as in mountainous areas.
Therefore, we chose the Charyeong rice plain and surrounding forest ecosystems as two
comparative groups (the rectangle extent: LL 35◦8′ N, 126◦2′ E, UR 37◦3′ N, 127◦7′ E;area:
1.8 × 106 ha−1; elevation range: 1 to 543 m; 337 forest pixels and 210 rice pixels in ). The
average value of monthly ∆Ts over four years is presented. Paddy rice is commonly raised
on flat plains and forests at a wide range of elevations and slopes. Topography-induced
differences in daily Ts may enlarge or narrow ∆Ts between paddy field and temperate
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forest. To correct the topography-induced biases in ∆Ts estimation, we performed an
elevation-aspect-slope adjustment by subtracting the elevation/aspect/slope-induced ∆Ts
from the original value, which was in line with the topography correction method proposed
by Li et al. [3]. ∆α was the product of paddy field α minus that of the temperate forest.
Spatial analysis indicated that cooling or warming effects on paddy rice were independent
of the spatial extent selected for comparisons in South Korea.

Structural equation modeling (SEM) is a label for a diverse set of methods used
in experimental and observational research, implying a structure for the covariances
between the observed variables [48]. It was applied here for assessing relative importance
of biophysical factors to regional variations of paddy field ET. All statistical analyses
including SEM and coefficient of variation (CV) were analyzed by the R software (R Core
Team, 2020) [49]. Spatial data processing was made by the ENVI-IDL 5.3 software (Exelis
Visual Information Solutions Inc., Boulder, CO, USA).

3. Results
3.1. Spatial Variations of ET in Paddy Fields, South Korea

The contribution of various biophysical factors to spatial variations of PF-ET and
the rice-growing season total ET (RGS-ET, the sum of daily ET from the SoS to the EGS)
is disentangled in this and the next paragraphs. The SEM was applied to evaluate the
magnitude and importance of the causal connection between the RF-ET and nine biophys-
ical factors (Figure 3), including RGS-ET, biomass production (estimation methods for
biomass production referred to Supplementary Materials SP3), daily mean net radiation
from the FFTDsat to the EGS, FFTDsat, daily mean and minimum air temperatures of the
same period as the net radiation, SoS, LGP, the maximum LAI of the rice-growing season,
and daily mean vapor pressure deficit during the same period. Explanatory power by
the error item (PF-ET variations that could not be explained by the nine variables) was
0.024, suggesting that almost all spatial variations of PF-ET, reaching up to 98%, had been
explained by these nine variables. The determination coefficient (DC), a product of the
squared path coefficient, is a powerful indicator of the relative strength of an independent
variable in determining the target variable. The DC value of ≥0.1 conventionally indicates
a stronger correlation [48]. The DCs for the RGS-ET, SoS, and FFTDsat were 0.61, 0.12,
and 0.18, respectively, remarkably greater than other values. A negative path coefficient
between the PF-ET and FFTDsat was found, indicating that advancing the FFTDsat resulted
in a greater PF-ET value. Positive signs for PF-ET and RGS-ET and for PF-ET and SoS
suggested that the reductions in values of the two variables led to lower PF-ET value.
The RGS-ET, FFTDsat, and SoS variables were critical (listed in order of importance) for
measuring spatial variations of PF-ET, which was in agreement with the H1.

Spatial variations of RGS-ET could be well explained by eight biophysical factors (i.e.,
biomass production, daily mean net radiation during the rice-growing seasons-gsRn, daily
mean minimum air temperature during the rice growing seasons-gsTmin, SoS, daily mean
air temperature during the rice growing seasons-gsTmean, LGP, growing season LAImax–
gsLAImax, and growing season mean VPD–gsVPD), with an explanatory power up to 0.97.
The DCs for the LGP, gsVPD, gsTmean, gsTmin, and gsLAImax were 0.25, 0.13, 0.10, 0.11 and
0.10, respectively (Figure 3), suggesting that the LGP, gsVPD, gsTmean, gsTmin and gsLAImax
were the critical biophysical factors responsible for regional variations of RGS-ET.

The spatial CVs of PF-ET and RGS-ET and main biophysical factors causing differences
in the CV between PF-ET and RGS-ET were quantified and explained in this paragraph.
Figure 4 shows the regional variations of PF-ET and RGS-ET from 2011 to 2014. Clearly, the
annual CVs of PF-ET tended to be conservative and constant at 0.09 throughout the four
years. The annual CV of RGS-ET fluctuated from 0.11 to 0.19. Greater spatial variations
of RGS-ET by 54.28% than those of PF-ET were observed. PF-ET was the summation of
the rice-growing season total ET (i.e., RGS-ET) and the non-growing season ET (i.e., the
period from the FFTDsat to the SoS). Results suggest that the field-to-field differences in
the FFTDsat did not contribute to spatial variations of PF-ET. Nevertheless, the observed



Remote Sens. 2021, 13, 3992 10 of 22

site-to-site differences in FFTDsat indeed lessen the expanding effects of RGS-ET spatial
variations on PF-ET, as the spatial variations of RGS-ET were amplified by climatic and
phenological factors, while the main regulating factors for PF-ET were FFTDsat and SoS.
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the sum of daily ET from the FFTDsat to the EGS, mm m−2), and the rice-growing season total ET (RGS-ET, the sum of daily
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No significant effects of spatial changes in FFTDsat on the LGP were observed (Figure S4b),
implying that the initial flooding activities would not bring about positive effects on RGS-ET
through their impacts on LGP.

3.2. Seasonal Variations of ET in Paddy Rice Fields, South Korea

The contribution of various biophysical factors to seasonal variations of ET in regional
paddy rice fields was disentangled in this paragraph. The analysis of the SEM model for
daily ET during the rice-growing seasons indicated that seasonal variations were primarily
related to dLAI, dVPD, dTmin and dRn (Figure 3), with the relative importance scores in
the following order: dRn > dVPD > dTmin > dLAI. To take account of the potential effects
of other meteorological factors such as soil temperature and daily rainfall that were not
available for the gridded ET products, ground-surface measurements in the Haean, Mase,
and El Saler-Sueca were supplemented. New SEM analysis based on in-situ observations
showed that the daily ET was mainly controlled by dVPD and dRn, followed by dTmin and
dLAI. The latter two parameters made smaller contributions to daily ET from the FFTD
to the EGS. Results derived from the RS-PM model were comparable to those of SEM
analysis based on EC observations. Additionally, the significantly negative and positive
signs for the dVPD-dRH and dRH-dTmin relationships, respectively, were found. The causal
coefficient for the dTmin-dVPD relationship was much smaller (data are not presented).
Hence, the positive effects of dTmin on daily ET resulted by its influences on dRH thereby
dVPD. We speculate that the significant effects of air temperature on spatial variations of
RGS-ET were produced through their controls on dVPD.
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In this and the following paragraphs, daily ET time series from the FFTDsat to the EGS
in paddy field with two kinds of FFTDsat and biophysical mechanisms causing differences
in ET variation between the rice-growing and the non-growing seasons were quantified.
The seasonal pattern of daily ET was generated by taking the average of seasonal ET
value in all rice paddies across South Korea. Temporal changes of daily ET in 145 DOY-
first flooding paddies (145 FFTDsat) were compared with those in 121 DOY-first flooding
paddies (121 FFTDsat) (Figure 5). The maximum daily ET of ~6.0 mm m−2 day−1 was
recorded in the mid-season. Daily ET in two types of flooding fields fluctuated greatly
from the FFTDsat to the EGS and throughout the four years. LAI rapidly increases after rice
transplanting, arrived at the maximum values around mid-July (200 DOY), and decline
thererafter. Seasonal daily ET change in 2012 and 2013 did not matched well with LAI
development. Decoupling between daily ET and LAI in Figure 5d was consistent with EC
observations in the Haean and Mase sites (Figure S6a–d).
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Figure 5. Seasonal courses of daily ET (mm m−2 day−1) in paddy fields in which the first dates of field flooding and
transplanting (FFTDsat) were 121 DOY and 145 DOY in 2011 (a), 2012 (b), 2013 (c), and 2014 (d). DOY: the day of year.

SoS, as an indication of the rapid development of canopy leaf area, was intensively
distributed between 160 DOY and 180 DOY (Figure S8 in Supplementary Materials SP6).
Hence, we chose SoS at the leftmost boundary of 160 DOY as a criterion to separate the rice-
growing season from the non-growing season. The non-growing season from the FFTDsat
to 160 DOY was characterized by low LAI value, and thereby a large proportion of land
surface was directly exposed to air. For seasonal variations of daily ET in the 121 FFTDsat
paddies, the CV of ET during the non-growing season was 0.28 that was substantially lower
(by 28.2%) than that during the rice-growing season ET (CV = 0.39) (the rice-growing season
was from 160 DOY to the EGS) in 2011. The CVs of ET during the non-growing season in
2012, 2013, and 2014 were 0.23, 0.29, and 0.21, respectively, significantly lower than the
corresponding CV of ET during the rice-growing season. Greater seasonal variations of
ET during the rice-growing season compared to that during the non-growing season ET
were repeatedly observed for the 145 FFTDsat paddies in the same years. The extending
effects of greater spatial and seasonal variations of ET during the rice-growing season on
the PF-ET were significantly minimized by advancing the FFTDsat.

3.3. Spatial Distribution Attributes of Paddy Field FFTDsat in South Korea

Spatial distribution of the FFTDsat over paddy rice fields of South Korea was mapped
in Figure 6. Each 8-day increment was marked with a different color, with color gradients
marking from the beginning of May (113 DOY) to the beginning of June (161 DOY). In the
case of the field irrigation management in 2011, red, blue, and cyan dots were dominant
color types and the other three were interspersed with wide space. Intensive rice paddy
systems were found on the midwestern plains where the elevation was lower than 100 m.
Some rice paddies had the FFTDsat scheduled on 129 DOY on midwestern plains in 2011,
while the FFTDsat for most rice paddies in 2012 shifted to 113 DOY and 137 DOY, as
the surface areas of red and cyan dots were greater in the same area. Apparently, red,
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blue, and cyan dots co-existed on the mid-west plains in 2013 and 2014, indicating the
range of FFTDsat from late April to the end of May; this was in agreement with our
previous research reports for the same area and year (please refer to Jeong et al., 2018) [46].
Meanwhile, FFTDsat frequency distribution in Figure 6 indicated that 90% of sampling
paddy fields had the FFTDsat values ranged from 110 DOY to 140 DOY, suggesting that
field flooding and transplanting campaigns were intensively initiated from the end of April
to the end of May in most paddy fields in South Korea.
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3.4. Seasonal Characteristics of ∆Ts Between Paddy Rice and Temperate Forest

α, Ts, and ET are three key attributes of the land surface energy balance. α values of
113 FFTDsat paddies were 0.104 in May and 0.130 for the temperate forest (Figure S9 in
Supplementary Materials SP7), causing the negative sign of ∆α between them (Figure 7a).
The 145 FFTDsat paddies had a higher α value (28.8%) than 113 FFTDsat fields in May,
implying that advancing the FFTDsat could result in a low surface reflectance and more
solar energy absorption. In June, the α value of the temperate forest increased to 0.143,
while it remained at a lower level (37.1%) in the 113 FFTDsat fields, with a negative ∆α
(Figure 7a). The α value of 145 FFTDsat fields experienced a dramatic decline (16.4%)
from May to June, as the 145 FFTDsat fields were barren/fallow in May and changed to
flooding paddies thereafter in June. Large differences in α value between 113 FFTDsat and
145 FFTDsat fields in May narrowed in June without a statistical significance at 0.05 level
(p-value = 0.10). From July to September, α value reached its peak (0.168), while it did
not show significant differences between 113 FFTDsat and 145 FFTDsat fields thereafter
(p-value > 0.05).
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Intra-annual changes in the maximum/minimum air temperature difference (∆Tmax,
∆Tmin, respectively) between paddy rice and the temperate forest are presented in Figure 7b,c.
The monthly ∆Tmax had a bottom-down bowl curve or V-shaped pattern with positive val-
ues at the start and end of the year and negative values from April to July. The lowest
negative value (−1.25 ◦C) was recorded in May when flooding had started or finished in
most paddy rice fields. The time node when the negative sign of ∆Tmax shifted to positive
was August. Although positive signs were found in August and September, the ∆Tmax
values in the two months were relatively lower than 0.25 ◦C. The ∆Tmin value remained
positive from January to the end of the year, with the highest values recorded in April and
October (Figure 7c). Except for the winter, ∆Tmin values were greater than 0.5 ◦C in the other
three seasons. Taking the mean of ∆Tmax and ∆Tmin into consideration, seasonal changes
in profiles of ∆Ts were observed (Figure 7d), showing a shallow bottom-down bowl shape
similar to that for the ∆Tmax. However, negative ∆Ts values were found in May and June,
and a positive value slightly lower than 0.25 ◦C was observed in July, wherein ∆Tmax was
negative. It was obvious that the nighttime warming amplitudes in April and July outpaced
the daytime cooling, resulting in the positive ∆Ts values in two months.

This paragraph compared the ET values in paddy rice and the temperate forest. We
cut outthe MOD16A2grid ET data for the 3× 3 pixels surrounding the EC tower of each site.
Seasonal changing profiles of 8-day ET (the sum of daily ET for every eight days) derived
from three data sources (EC tower, MOD16A2 aET-actual ET, and RS-PM estimations)
are shown in Figure S10 in Supplementary Materials SP7. A close correspondence in
8-day ET between EC observations and RS-PM simulations was observed. However,
MOD16A2 aET products could not accurately regenerate 8-day ET of paddy rice in three
sites, especially during the land preparation process and early growth stages of rice with
distinct underestimations by two to three times (the shaded area in Figure S10). The daily
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mean ET values of the forest land derived from the MOD16A2 products were 1.85 mm m−2

day−1 in May and 3.10 mm m−2day−1 in rice paddies according to the RS-PM model and
EC observations. The daily mean ET value of the temperate forest in August and September
was 2.1 mm m−2 day−1 according to the MOD16A2 aET, which was higher than that of
senescing rice plants, aligning with actual recognitions. Although MOD16A2 products
failed to capture daily ET values of rice paddies, we confidently believe that the daily ET
value of the temperate forest in May might be lower than that of flooded paddy fields, as
the abundant water resources were available for rice paddies which facilitate the water
loss through ET, and the forest was going through the greening stage during the spring
with small green leaf surface area in canopies featured by low canopy transpiration rates.
The partial flooding of paddy fields in April and the intensive flooding in May incur water
loss at daytime through higher ET values, dissipating excess energy absorbed during the
daytime. Relative higher ET fluxes of rice paddies in May and June caused the decline of
daytime air temperature that exceeded night-time warming amplitudes, leading to strong
cooling effects in May and June. The results of the present study support and interpret the
H2 stating that the monthly Ts value of paddy fields was not always higher than that of
the temperate forest. Increasing ET capability in August, September and October by forest
ecosystems narrowed the differences in ∆Tmax, which further increased the positive ∆Ts
value in the three months in the context of positive ∆Tmin.

4. Discussion
4.1. Field-to-Field Variations of FFTDsat Among Paddy Fields

Paddy rice plains are primarily distributed in the western part of the Korean Peninsula
with flat topography and a land slope of lower than 10%. Some small-scale paddy fields
are located in the middle and eastern parts, where the forest is the dominant land-use
type. Paddy rice areas per county quantified by the flooding single classification method
had a strong correlation with national census data with R2 of up to 0.85 (Figure S11 in
Supplementary Materials SP8). Differences in monthly surface albedo between 113 FFTDsat,
145 FFTDsat paddy fields, and the forest due to the initial flooding serve as important
evidence to support the capability of the flooding single classification method for accurate
identification of FFTDsat in paddy rice fields. Small paddy rice landholdings and their
FFTD values were characterized by the flooding single classification method in paddy
rice fields.

Small paddy rice landholdings in East and Southeast Asia commonly receive various
irrigation and fertilizer management practices. The water requirement for land preparation
is theoretically 150–200 mm, but can be as high as 650–900 mm when its duration is
prolonged to 30 days [50]. Jeong et al. [18] mapped the spatial distribution of FFTDsat in
paddy rice in South Korea but did not analyze the reasons. The land preparation process
of paddy fields represented by the FFTDsat data started from the end of April until the
beginning of June, during which the weather was moderately dry with monthly average
precipitation of less than 80 mm [51], that makes it impossible to provide enough water
for land preparation; thus, water sources except for precipitation are indispensable for rice
land preparation. The spatial analysis for rice paddies and river/stream systems showed
that approximately half of the rice paddies (52%) were located within a 3.0 km range
centered on permanent river/stream systems (Figure S12a in Supplementary Materials
SP9); however, another half is distributed far alway from the permanent river/stream
systems. The statistical analysis for FFTDsat and the linear distance from river systems
indicated no significant correlation between them (Figure S12b). Pearson’s correlations for
FFTDsat and the daily air temperature averaged over a window size of 15 days ahead of the
FFTDsat indicated the positive correlations between the two with correlation coefficients
greater than 0.7 for all time windows in 2011 and greater than 0.93 in 2013 (Table S3).
Nevertheless, significant correlations for the FFTDsat and the daily air temperature of
15-day time windows were not repeatedly presented in 2014. There was no significant
correlation between FFTDsat and the air temperature before the first flooding date. It may
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suggest that the spatial distance of rice fields from river/stream systems may not be the
main factor affecting the time of rice land preparation.

The previous study reported the effect of the observed site-to-site variations on the
transplanting date due to prior adverse weather conditions such as frost risk [19]. In
northern temperate areas, the rice land preparation usually starts when the daily air
temperature is stably higher than 12 ◦C [52]. This indicates that the first flooding of paddy
rice can be initiated at any day of daily air temperature stably >12 ◦C. As suggested by Jeong
et al. [18] and Xiao et al. [29], personal preference, the empirical knowledge of individual
farmers, was the key factor influencing the FFTD. However, our results showed that FFTD
did not have a strong and consistent relationship with the daily air temperature during
the land preparation from 2011 to 2014 (Table S3). It suggested that the air temperature
in earlier days may not be the key factor considered by farmers when taking the initial
flooding into account.

According to the annual statistical report for 2018 by OECD, the general service
support transfers, which were linked to measures setting out enabling conditions for
primary agricultural sectors through the development of water infrastructure and private
or public services, amounted to 3639 million USD; thus, ranking third among the thirty-five
OECD member countries [53]. Approximately, more than 80% of Korea’s paddy production
is supported by over 18,000 agricultural reservoirs and 70,000 other irrigation facilities [20].
The well-maintained and accessible water infrastructure in the agricultural sector could
protect cropland against water-deficit stress caused by prolonged dry periods, which might
be one reason for the weak correlations between FFTD, the linear distance of rice fields
from river/stream systems, and air temperature. Another reason might be the difference in
the ability of seedling to tolerate cold [54]. They found the pattern of latitude-dependent
variation in cold tolerance in cultivated rice. Cold-tolerant cultivars might be introduced in
early spring, which could result in weak correlations between FFTD and the air temperature
during the early days. Further investigation to explain why the first flooding time over
space spanned a long period (i.e., from the beginning of May to the beginning of June)
was useful.

4.2. Spatiotemporal Variations of ET in Paddy Fields

Several studies have been conducted on daily ET during the rice-growing season [5–
7,9,11–15]. Researchers have arrived at the consensus regarding the daily ET at the initial
stage of rice growth with the low leaf area index, mainly depending on climatic factors.
During the mid and late-season stages in a closed canopy with a high leaf area index, tran-
spiration through the rice leaf and stem is the dominant component of daily ET. The daily
variability of ET during the two stages is considered to be dependent on climatic factors,
canopy structure, and stomatal conductance. Among meteorological factors, incident solar
radiation was considered to be critical, and leaf area index had a significant regulating
effect on daily ET when it kept increasing. Our results showed that the daily ET during
the rice-growing season was strongly correlated with the net radiation and water vapor
pressure deficit; these findings were in agreement with those of other studies. Evaporation,
as the main component of ET during the early growing stage and the non-growing period
(from the FFTD to the SoS), was comparable to and even higher than the ET at mid-growth
stage when LAI reached its maximum value. Hence, there was no considerable difference
in daily ET between the non-growing period and the mid-growth stage, resulting in a
weak relationship between daily ET and LAI. Seasonal effects of LAI on daily ET during
the rice-growing season were concealed by meteorological factors due to the prolonged
non-growing period as a result of advancing the FFTD.

The spatial variation of RGS-ET was larger than that of the PF-ET by 54.28%. Site-
to-site changes in RGS-ET were primarily interpreted by the differences in LGP, gsVPD,
gsTmean, gsTmin, and gsLAImax. LGP had the greatest contribution to spatial changes of
RGS-ET, followed by VPD and air temperature. This finding was consistent with the results
of a recent study on the spatial distribution of ET during the mid-season by Han et al. [55],
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who reported the temperature as an important meteorological factor. Nevertheless, the
attribution of these factors to spatial variations of PF-ET followed the order of importance
as follows: FFTD > SoS. Delaying the SoS and advancing the FFTD increased the PF-ET.
The water loss through the evaporation from the FFTD to the SoS (i.e., the non-growing
season) was the dominant component of ET since rice canopy was relative short, and a large
proportion of land surface was directly exposed to the air during the non-growing season.
Advancing the FFTD resulted in greater PF-ET via a prolonged day length during the non-
growing season, which subsequently caused a decline in the mass proportion of RGS-ET
to PF-ET. Temporal fluctuations of daily ET during the non-growing season were much
smaller than those during the rice-growing season, as the relatively stable incident solar
radiation was the main factor controlling daily ET during the non-growing season. Greater
spatial changes in RGS-ET that were not observed for PF-ET, were alleviated by prolonging
the non-growing season via advancing the FFTD. It was reasonable to infer that human
activities (i.e., the varying FFTD) alleviated spatiotemporal changes in evapotranspiration,
which were amplified by the climatic and phenological changes in paddy rice ecosystems.

Wang et al. [19] reported that the earlier shift of the transplanting date (−2.0 ± 4.8
days/decade) alone prolonged the LGP of early rice by 1.3 ± 5.5 days/decade. They
defined LGP as the number of days from the transplanting date to the end of the growing
season, different from that reported in ours and others’ studies on the flux ecology [39]
and global change ecology [56]. We found a negative correlation between gsTmean and
LGP (Figure S4a), namely for each one-degree increase in the daily air temperature, and
a decrease in LGP by 3.4 days was observed. This was supported by the phenology
growing degree days theory that the accumulation of effective heat units accelerates the
phenological development and lessens the LGP [57]. The LGP in our research was not
correlated with FFTD, partially due to the marginal effects of FFTD on spatial variations of
the air temperature during the rice-growing season.

Bringing the FFTD towards early spring induced a great water loss via ET during
the non-growing season. The earliest flooding date reported in our analysis was around
113 DOY, almost 40 days earlier than that of paddy fields, with the first flooding dates
scheduled at the end of May (e.g., 150 DOY). Nevertheless, grain production was not
significantly influenced by the site-to-site differences in FFTDsat (Figure S13 in Supplemen-
tary Mat SP10). On average, the amount of water loss by ET was ~3.7 mm m−2 day−1,
which induced an annual unproductive water loss of 9.53 × 106 tons in South Korea. We
recommended that flooding the rice fields followed by seedling transplantation in mid or
late May might be the controllability measures to minimize the unproductive water loss in
South Korea.

4.3. Human-Induced Seasonal Perturbations of Cooling and Warming Effects in Paddy Fields

The paddy rice cropping system differs substantially from any other upland non-
irrigated or irrigated croplands. The distribution characteristics of small rice paddies
mosaic within agroforestry basins and the large-scale intensive cropping are believed to
bring about substantial influences on seasonal and annual dynamics of surface energy
budgets, thereby affecting surface climate. Non-radiative warming of annual surface
temperature by 0.5 ◦C was observed as a result of the global assessment of the forest
conversion to cropland (including paddy rice) in the mid-latitudes [2,3]. As compared
to cropland, the forest land in low and mid-latitude areas was considered to reduce the
land surface temperature more significantly than the crops. In our research, the effects
of the flooding campaign in rice paddies on intra-annual changes of the monthly Ts
were determined.

We found the difference in the monthly mean air temperatures between paddy rice
and the temperate forest of −0.02 ◦C in May, −0.07 ◦C in June, and 0.15 ◦C in July, which
were comparable to those in the temperate forest, implying a significant cooling effect
of the paddy fields within the three months. Weather station observations between the
wetland and alfalfa land in California reported seasonal oscillations of ∆Ts between 1.0 and
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−1.0 ◦C [58]. Using station observations, Christy et al. [59] found no significant changes
in time series of air temperature during the past century in the California Central Valley,
on account of a counteracting effect by an approximate 3 ◦C decrease in the maximum
near-surface temperature and a 3 ◦C increase in the minimum temperature. The maximum
daytime air temperature in rice paddies was reduced by 1.25 ◦C in May, while the minimum
night-time air temperature increased by 1.23 ◦C. The remarkable daytime cooling and night-
time warming effects of rice paddies in May were also reported by Liu et al. [25] and Yu
and Liu [26]. Significant daytime cooling effects were canceled out in summer and autumn
from August to October. Daytime warming effects in paddy fields vs. the temperate
forest in September were observed, likely due to the lower ET in senescing rice canopy
and enhanced ET in the temperate forest. As suggested by Li et al. [3], the ongoing
evapotranspiration at night-time in the temperate forest dissipated more energy that was
absorbed during the daytime, causing an annual net cooling effect as compared to the
cropland. We observed the year-round night-time warming in paddy fields compared to
the temperate forest, which might be due to the ongoing evapotranspiration at night in the
temperate forest.

The differences in land surface temperature are a result of changes in attributes of
surface energy balance, including soil heat flux, surface albedo, roughness, and the energy
partitioning between latent and sensible heat flux [22]. The soil heat flux was supposed to be
neglected when it lasted over 24 h or for a longer time [43], especially in paddy fields [9,11].
Fallow lands showed substantial declines in the surface albedo and improvement of daily
ET after field flooding in May and June. A reduction of 22% in surface albedo was observed
in early flooded paddy fields. With lower albedo in May and June, paddy fields absorbed
more shortwave radiation during the daytime, potentially leading to a warming effect.
However, this net energy gain was offset by a greater latent heat loss in the form of higher
ET in flooded paddy fields, resulting in a daytime cooling effect of up to 2.1 ◦C as compared
with the non-flooded barren fields. Paddy fields with the standing water layer and an open
water surface serve as a large-size water body with a high heat capacity. The high heat
capacity allows the puddled fields to lose heat more slowly while still staying warm at
night. If the available solar energy is more, the paddy fields receive more energy via the
lower surface reflectance during the daytime, resulting in a stronger night-time warming
effect. Finally, we concluded that the early flooding schemes in rice fields have gained
cooling benefits in the late spring and early summer, primarily due to a significant decline
in the daytime air temperature as a result of the enhanced latent heat fluxes through ET.

5. Conclusions

The spatial analysis technique based on earth observations and numerical analyses is
a relatively new approach to explore the spatiotemporal patterns of vegetation ET at large
spatial scales. In our research, a data fusion technique that integrated earth observations
(i.e., the MODIS surface reflectance, albedo and daily ground surface climate datasets)
and numerical algorithms (i.e., the flooding single paddy rice classification method and
the RS-PM model) provided us with new insights. A large number of studies have found
seasonal cooling effects of paddy rice in Northeast and Southeast China, especially in
May and June [25–28]. They reported that changes in cropland structure from the rain-fed
farmland to the paddy field could profoundly modify land-surface thermal processes.
Significant cooling effects of paddy rice in May and June were also found in South Korea
in our research. Results in our study quantified the relative importance and contributions
of biophysical factors to regional variations of ET and seasonal effects of temperature
fluctuations in paddy fields, which advances our understandings of the impacts of land
use and management change on regional climate change.

Results revealed that the spatial variations of PF-ET were substantially lower than
those of RGS-ET. SoS and FFTDsat were the most important factors responsible for the
spatial variations of PF-ET, while LGP, gsVPD, gsTmean, gsTmin, and gsLAImax were predom-
inant factors controlling spatial variations of RGS-ET. Spatial variations of PF-ET that were
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not as high as those of RGS-ET were mainly attributed to bringing the FFTDsat forward, as
it prolonged the non-growing season during which the variation of daily ET was much
lower than that during the rice-growing season. There was a significant cooling effect by
early flooding in paddy fields compared to the temperate forest, primarily due to the large
decline in maximum daytime air temperature. The magnitude of the monthly cooling
effect in paddy fields was equal to that of the temperature forest, especially from May to
June. Human activity-induced cooling effects in paddy fields showed equal importance as
compared to the temperate forest, which could largely mask the ongoing global warming
in spring. Further field studies designed to evaluate the social and biophysical factors
influencing the site-to-site differences in FFTD in paddy fields across space would be useful,
especially for deepening our understandings of spatiotemporal variations of ET in regional
paddy fields and their impacts on climate change.
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10.3390/rs13193992/s1, Figure S1: 5-m resolution raster image of main land-cover types in 2011,
South Korea; Figure S2: Annual changes of paddy rice land use in main rice plain of Western Korea;
Figure S3: Comparisons between map of MODIS potential paddy pixels and map of paddy rice
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(b) effects of the field first flooding and transplanting date detected by satellite observations (FFTDsat)
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corresponding to one flood date was the mean over 2011-2014; Figure S9: Surface albedo (α) responses
to land cover and management change; Figure S10: Comparisons of 8-day ET of paddy fields in
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ET and potential ET), and RS-PMrs=120 simulations; Figure S11: Comparison in paddy rice area per
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