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Abstract: This manuscript describes and tests a set of improvements to the cBathy algorithm, pub-
lished in 2013 by Holman et al. [hereafter HPH13], for the estimation of bathymetry based on optical
observations of propagating nearshore waves. Three versions are considered, the original HPH13
algorithm (now labeled V1.0), an intermediate version that has seen moderate use but limited testing
(V1.2), and a substantially updated version (V2.0). Important improvements from V1.0 include
a new deep-water weighting scheme, removal of a spurious variable in the nonlinear fitting, an
adaptive scheme for determining the optimum tile size based on the approximate wavelength, and
a much-improved search seed algorithm. While V1.2 was tested and results listed, the primary
interest is in comparing V1.0, the original code, with the new version V2.0. The three versions were
tested against an updated dataset of 39 ground-truth surveys collected from 2015 to 2019 at the Field
Research Facility in Duck, NC. In all, 624 cBathy collections were processed spanning a four-day
period up to and including each survey date. Both the unfiltered phase 2 and the Kalman-filtered
phase 3 bathymetry estimates were tested. For the Kalman-filtered estimates, only the estimate from
mid-afternoon on the survey date was used for statistical measures. Of those 39 Kalman products, the
bias, rms error, and 95% exceedance for V1.0 were 0.15, 0.47, and 0.96 m, respectively, while for V2.0,
they were 0.08, 0.38, and 0.78 m. The mean observed coverage, the percentage of successful estimate
locations in the map, were 99.1% for V1.0 and 99.9% for V2.0. Phase 2 (unfiltered) bathymetry
estimates were also compared to ground truth for the 624 available data runs. The mean bias, rms
error, and 95% exceedance statistics for V1.0 were 0.19, 0.64, and 1.27 m, respectively, and for V2.0
were 0.16, 0.56, and 1.19 m, an improvement in all cases. The coverage also increased from 78.8% for
V1.0 to 84.7% for V2.0, about a 27% reduction in the number of failed estimates. The largest errors
were associated with both large waves and poor imaging conditions such as fog, rain, or darkness
that greatly reduced the percentage of successful coverage. As a practical mitigation of large errors,
data runs for which the significant wave height was greater than 1.2 m or the coverage was less than
50% were omitted from the analysis, reducing the number of runs from 624 to 563. For this reduced
dataset, the bias, rms error, and 95% exceedance errors for V1.0 were 0.15, 0.58, and 1.16 m and for
V2.0 were 0.09, 0.41, and 0.85 m, respectively. Successful coverage for V1.0 was 82.8%, while for
V2.0, it was 90.0%, a roughly 42% reduction in the number of failed estimates. Performance for V2.0
individual (non-filtered) estimates is slightly better than the Kalman results in the original HPH13
paper, and it is recommended that version 2.0 becomes the new standard algorithm.

Keywords: nearshore remote sensing; bathymetry estimation; Argus

1. Introduction

Coastal bathymetry and its change over time are of paramount importance to under-
standing and modeling coastal morphology and the health of natural coastal systems. In
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particular, bathymetry acts as the critical bottom boundary condition for numerical models
of nearshore hydrodynamics and sediment transport and, hence, is vital to predictions of
coastal evolution needed by coastal communities to understand their vulnerabilities and
mitigation options and, thereby, to enable decision support and policy making [1–3]. In
terms of drivers or boundary conditions, hydrodynamics such as wave conditions or tides
are often measured frequently or can be approximated relatively accurately through wave
or tidal models. Bathymetry, on the other hand, is often unknown or outdated, such that
numerical models, that are all sensitive to bathymetry accuracy, will perform poorly and
cannot be trusted [4,5]. This is a particular problem, as the focus shifts to coastal response
of the world’s coastlines to climate change [6,7]. There are few solutions to this dilemma.
Due to their expensive nature, boat surveys are rare and are limited to calm conditions,
so bathymetry data are usually sparse and outdated and, therefore, not responsive to the
continuing bathymetric changes that occur on the time scales of events, weeks, and seasons.

The most promising solutions to these limitations are through the increasingly popular
use of remote-sensing techniques [6,8]. Different applications and problem scales are
compatible with different methodologies. For example, airborne LiDAR technology can
be quite accurate, O (cm), and can cover large zones, but remains relatively costly so is
limited in temporal update and by turbid coastal waters [9,10]. Satellite-derived coastal
bathymetry observations [11–17] or even sampling of the topo-bathy continuum [18]
can be carried out globally but with limits on repeat times due to orbital constraints,
issues of atmospheric dilution of quality, and overall lower accuracy, O (m), than in situ
methods. However, these global methods are entering a new era of increasing accuracy
and public availability [19,20]. By comparison, local bathymetry measurements using
video cameras that are either land-based or mounted on inexpensive drones or using
land-based radar observations can provide low cost, complementary, near-continuous, near
real-time, bathymetric observations, O (dm), enabling the monitoring of high-frequency
morphological changes such as storm impacts and providing information that is useful to
coastal zone managers [4,17,21–23].

Video cameras at the coast were initially used to identify the morphology and cross-
shore scales of submerged sand bars [24–26] and to track the shoreline in time to construct
the intertidal beach [27]. Around the early 2000s, bathymetry estimation using land-based
video cameras [28], airborne deployments [29,30], and X-Band radar [31] started to develop.
Since the early 2000s, methods have improved significantly: estimations became more
accurate, consistent, and more versatile, hence, accessible, enabling for example drone
applications [17,32–34]. In general, there are three distinctive approaches, ones that use
numerical models to match wave breaking patterns [35–37], others that use time-varying
signatures and stay in the spatio-temporal domain [34,38] and still others that exploit the
time signal but with analysis in the spectral domain [34,38]. The latter two approaches
are linked to a great extent and use the linear dispersion relation for free surface waves
to estimate a local water depth [39]. Here, we focus on the spectral approaches, and in
particular, on the cBathy algorithm ([1]; this Matlab toolbox is available as open source at
https://github.com/Coastal-Imaging-Research-Network/cBathy-Toolbox, accessed on
20 July 2021). While this manuscript is based on video imagery, it is recognized that this
method and improvements are equally applicable to X-band radar e.g., [40,41]. cBathy has
been incorporated into operational numerical modeling systems [42] and has been applied
in mixed wave-current domains of a tidal estuary [43]. The growth of this community
of practice has led to the formation of the Coastal Imaging Research Network (CIRN), a
web-based group that shares skills and developments among worldwide researchers.

Since the original 2013 publication [1], cBathy has gone through a number of revisions
but typically without extensive testing and documentation. The original form of the
algorithm is now called version 1.0 and has been followed by versions 1.1, 1.2, and now
a composite update, which we choose to call version 2.0. The goal of this paper is to
document these revisions and test the different versions of the algorithm against a new
testbed dataset consisting of 39 surveys spanning from 2015 to 2019 from the Field Research
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Facility at Duck, NC, USA. Below, we will start by summarizing the elements of the
original 1.0 algorithm plus the various significant updates. We, then, introduce the test
bed dataset, which can be used to test both cBathy and any other algorithm in nearshore
remote sensing. Finally, we will describe and execute a testing protocol that was used to
document performance changes with each algorithm update.

2. cBathy Versions—Version 1.0

Version 1.0 is fully described in HPH13, but is summarized herein. For more detail,
the reader is referred to the original manuscript. The algorithm is based on the linear
dispersion relationship

σ2 = gk tan h(kh) (1)

that relates the wavenumber, k, and frequency, σ, of ocean waves to the water depth, h (k
is 2π divided by the wavelength, L, while σ is 2π divided by the wave period, T).

The input data for cBathy are usually derived from cameras and consists of time series
of image intensity, I (xp, yp, t), at a set of discrete pixel locations, xp, yp that span the domain
of interest and adequately sample the typical ocean wave scales, while not oversampling
them (across-shore and alongshore spacing is commonly 5 and 10 m, respectively, see
blue dots in Figure 1). The analysis is carried out at a map array of model locations, xm,
ym, (example red dot in Figure 1) and at each map location is based on the observed
wave phases in a tile of observations within some user-specified cross-shore and longshore
length scales, Lx and Ly, of the model location (green dots in Figure 1; see Figure 2 for an
example phase map). At a set of dominant radial frequencies, σ, the two components of
wavenumber, kx and ky, are derived from the phase ramp slopes in the x (cross-shore) and
y (alongshore) directions and are combined to yield the magnitude of k.

Figure 1. cBathy pixel array used for the analyses in this paper, overlain on a merged snapshot
from 17 May 2015. For clarity, only 1

4 of the pixels are shown (decimated by two in both x and y
directions). The wavenumber for each analysis point, for example, xm = 250; ym = 750 shown above
by the red asterisk, is found using phase map data from a surrounding region, shown by green dots
above. Imagery is derived from six oblique-viewing cameras and merged into rectified images such
as this [44,45].
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Figure 2. Phase map for the example tile shown in Figure 1 for the dominant frequency, f = 0.0956
Hz. Observed phase is on the left, best-fit modeled (Equation (2)) phase on the right. The x and y
components of wavenumber are derived from the components of slope of the phase ramps (colors
from seaward to landward going from blue through green, yellow then red with 360◦ phase jumps as
blue–red transitions).

Thus, the goal is to estimate the dominant wave frequencies and wavenumbers
at each model location and merge that information into a spatially smooth estimated
bathymetry using the dispersion relationship. The algorithm is divided into three phases:
(1) estimation of frequency–wavenumber pairs, (2) estimation of bathymetry, ĥ, from suites
of those estimates, and (3) Kalman smoothing of separate hourly estimates to create a
running average bathymetry product, h, that is robust to noise and error. In the following,
we sometimes use the terms f-combined and f-averaged to refer to phase 2 and 3 results,
respectively. The updates since 2013 have all addressed improvements to phases 1 and 2, so
the algorithm review below will omit phase 3 Kalman filtering. Note that the performance
tests in HPH13 only considered phase 3 results, since phase 2 output was noisy.

The algorithm must adapt to incident waves with periods from almost 20 s to about
4 s (shorter waves than this are insensitive to depth in other than very shallow water so
are not helpful) without knowing a priori what conditions will be. Because the analysis is
performed in frequency space, the first step is to Fourier transform each pixel time series
and normalize the Fourier magnitudes, allowing focus on Fourier phase only. Cross-spectra
are computed between all pixels in a tile for a suite of candidate frequencies that are usually
spaced to allow about 40 degrees of freedom (for a typical run length of 1024 s, frequencies
are spaced by 0.02 Hz). The (usually four) dominant frequencies are those with the largest
total coherence in the resulting cross-spectral matrix and a wavenumber is, then, estimated
for each of these frequencies.

Wavenumbers are found from maps of Fourier phase for each tile (Figure 2). To guard
against cases of waves from multiple directions within a single frequency band, as a first
step, the cross-spectral matrix is decomposed into complex eigenvectors, v(xp, yp), and only
the one with the largest eigenvalue is retained. This normalized eigenvector is modelled as
a single dominant plane wave form

v = exp
(
i
[
kcos(α)xp + ksin(α)yp + ϕ

])
(2)

where α is the wave angle, and φ is a scalar phase angle. In version 1.0, the three parameters
k, α, and φ were found using a weighted nonlinear least-squares fit between the observed
and modeled eigenvector phase maps. Details of the weighting are included in the original
paper [1].

The goal of phase 2 of the algorithm is to use a suite of σ-k phase 1 estimates to
estimate the depth at each individual model location. Each model point can yield up to
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four frequencies and phase 2 incorporates estimates from adjacent xm, ym locations from
within the tile, weighted by the inverse distance from the current estimation point. In
version 1.0, the weighting was taken to depend on the normalized eigenvalue and skill of
the model fit, both from phase 1, as well as the inverse distance from the current estimate
location in phase 2. The final phase 2 result is the single depth that is the nonlinear best fit to
predicted depth using the input suite of frequency–wavenumber pairs and the dispersion
relationship. Error estimates, herr, are produced for each depth (see [1], error estimation is
unchanged in recent upgrades).

2.1. Version 1.1 Update

Versions 1.1 and 1.2 were consecutive steps in cBathy improvement but were never
fully tested or used separately. Thus, we will describe each, then combine them into a single
upgrade to cBathy version 1.2 for testing. We now describe the algorithm improvements.

As waves are measured in increasingly deep water, they become decreasingly sensitive
to depth. Thus, small errors in the measured wavenumber become associated with large
errors in estimated depth. To guard against this excessive sensitivity in version 1.0, values
deeper than a user-specified maximum depth were neglected. However, this maximum
depth should instead be wave-frequency dependent, and biases are introduced in deeper
water results by simply truncating estimated values. Version 1.1 corrected this problem by
accounting better for the dispersion relation sensitivity in phase 2 weighting. Equation (1)
can be rewritten

h =
1
k

tanh−1
(

σ2

gk

)
=

1
k

tanh−1
(

k0

k

)
(3)

where k0 is the wavenumber in deep water. We can define k0/k = L/L0 = Γ, where Γ is a
non-dimensional wavelength (or wavenumber), going from small in shallow water to a
maximum value of 1.0 in deep water. We can define sensitivity to wavenumber error by
the equation

∆h
h

= µ(Γ)
∆k
k

(4)

where µ is the sensitivity, a function only of Γ, which can be found numerically and
represents the fractional sensitivity of bathymetry estimates to fractional errors in estimated
wavenumber. Figure 3 shows the sensitivity of wavenumber inversion as a function of non-
dimensional wavelength. In shallow water, the value is 2.0 so that fractional bathymetry
errors are twice the magnitude of fractional wavenumber errors. This is the best case.
Closer to deep water (Γ approaching 1.0), the sensitivity rises rapidly, approaching 10 when
wavelengths are 0.9 of their deep-water value.

Figure 3. Sensitivity of the dispersion relationship showing the increasing sensitivity of the inversion
process as deep water is approached.
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This sensitivity provides a convenient weighting measure. If we denote the version 1.0
phase 2 weighting value as W for any σ-k pair, we can divide this weight by the sensitivity
as a simple method of preferentially weighting σ-k pairs that are in shallower water and
de-emphasizing those approaching the deep-water limit. Thus, the main change in the
version 1.1 algorithm is this modified weighting in phase 2. A side benefit is that the
user no longer needs to specify a maximum depth beyond which to no longer believe an
estimate. Note that L0 = gT2/2π is frequency dependent so this weighting puts a strong
preference on long-period waves.

2.2. Version 1.2 Update

Version 1.2 dealt mostly with a problem of poor bathymetry estimates along the seams
between cameras, an issue that only applies to image collection systems whose sampling
is distributed over multiple cameras. Camera image data that are a common input to
cBathy analysis are often collected from multiple cameras and merged into a map of data
coverage, for example, as shown in Figure 1. When these data were analyzed as a single
array, estimated bathymetries along camera seams were often anomalous.

Two causes were identified. The most obvious issue is variations in camera geometry
used to map from image to world coordinates [45]. The sampling pixel array is usually
designed as a regular world grid, mapped to pixels for each camera using originally
accurate camera geometries. If camera geometries shift slightly over time, the projected
world spacing of those pixels on either side of a camera seam will begin to differ from the
original spacing. Thus, waves will appear to move too quickly across a shortened sample
gap or too slowly for a stretched gap, leading to errors in estimated depth.

The second plausible cause of cross-seam anomalies can come from a loss of synchro-
nization of the cameras. Argus cameras are usually synchronized by either an electronic
trigger or by computer bus synchronization. However, there can be rare frame slips that
allow time shifts between cameras that would be interpreted as wave-speed anomalies for
tiles that span camera seams.

Initial attempts were made to mitigate both of these problems. However, it soon
became clear that the simple solution was to never mix pixels from multiple cameras in any
tile [46,47]. Thus, the pixels from the camera with the most pixels in any tile are used, and
the others are simply neglected. This results in fewer degrees of freedom and increased
predicted error, but otherwise had no significant negative impact.

Version 1.2 also included a new method for finding the seed wavenumber and wave
angle for the nonlinear search, but this change has been overtaken by a much better seed
routine in version 2.0 (discussed below) and will not be discussed further here.

2.3. Version 2.0

The upgrade to version 2.0 involves three significant changes and a code reorganiza-
tion, so is considered a major revision and is given a new leading version number. In order
of importance, the changes are: (a) to change from tile sizes that are fixed by the user to
those that are chosen automatically depending on expected wavelengths, (b) to change
from solving for three variables, k, α, and φ0, at each map point to solving for only k and α,
and (c) the introduction of a much better algorithm to find seed values for k and α before
the nonlinear search for each tile. The cumulative consequence of these modifications is a
major restructuring of the code. Each component will be described in turn.

2.3.1. Automatic Tile Sizes

In all earlier versions, cross-shore and alongshore tile sizes were set by the user using
the parameters, Lx and Ly. Suggestions for best values were ad hoc with a belief that the
search would work best if the tile was typically about one wavelength long, but an implicit
faith that even mismatched tile sizes would solve well somewhere within the nonlinear
fitting routine. Thus, the same tile size was used for, e.g., 4 s and 16 s waves despite at least
a four-fold difference in their wavelengths. Although sub-optimal, this approach was still
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successful, since tiles that were poorly designed simply failed to converge and returned
nan’s rather than a poor depth.

Issues with this approach became especially clear for short-period incident waves, for
example, 4–5 s waves. These could have 4–5 wavelengths within the tile sampling region,
so convergence of the nonlinear search usually behaved very poorly, since there was not a
simple global cost function minimum unless you started with a very accurate seed. The
problem was made worse by a feature of the code that decimates the original number of
pixels in a tile down to a user-defined maximum, maxNPix, to help reduce processing time.
Commonly, a standard tile was reduced from 250 collected pixels down to 80 that would
be analyzed, enough to map the phase of a single typical wavelength but way too few to
map out five short wavelengths in a tile. The resulting sparse sampling per wavelength
often led to aliasing of the true signal.

Version 2.0 fixes these problems by defining the phase 1 tile sizes to be kL times
the expected wavelength, where kL is an empirical scalar taken to be approximately 1.0.
However, the expected wavelength depends of the frequency and depth, neither of which
is known a priori. Thus, there is strong motivation to develop a seed-finding algorithm
(see below) that can provide good initial estimates of k under all wave conditions. Thus,
given an initial tile based on generic user input, version 2.0 feeds all of the available pixels
to the routine to find the seed k and α, then crops the original tile size to kL times this
wavelength, a size that varies considerably. The number of pixels in this truncated tile
is, then, reduced, if necessary, to maxNPix to speed up processing. Because all tiles are
roughly one wavelength no matter what the frequency, it is likely that fewer pixels are
needed for search convergence, again speeding up processing.

2.3.2. Reduction in the Number of Search Variables

In all earlier versions, the model for wave phase, Equation (2), had three parameters,
each of which was found using a standard Levenburg–Marquardt solver. However, only
two of the parameters, k and α, are expected to be well behaved in a nonlinear gradient-
descent search. The third variable, φ0, is a scalar offset between the measured and modeled
phase maps and can jump around a great deal, in ways that are inconsistent with a search
for a global cost function minimum. Thus, this variable is not well estimated and likely
just confuses the search.

In a very early version of this algorithm known as Beach Wizard [35], the solution was
sought not in x-y space phase maps as here, but in cross-spectral lag space. This had the
advantage that a phase offset was not required (phase differences just increased with lag
from zero), but it meant that if you had N pixels in your tile you were searching in an N2

space (each pixel compared to every other pixel). In addition, visualization of measured
and modeled results (e.g., Figure 2) was not as clear in lag space. Thus, we wish to retain
the simplicity of working in x-y space maps but using a method for estimating φ0 for each
search iteration that will allow a sensible search for k and α. The solution is to force the
measured and modeled phase to be the same at the tile center (the pixel closest to xm, ym).
This is done by finding dφ, the difference in phase at the middle pixel, and multiplying
all modeled complex values of the eigenvector, v, by eidφ. The nonlinear search is, then,
reduced to two dimensions.

2.3.3. Improved Seed Algorithm

Both the success of adaptive tile sizes and of the nonlinear search depend on the
accuracy of the initial seed search values for k and α. The search is complicated by the fact
that Fourier phase has 2π jumps whose slight mispositioning adds to cost functions out of
proportion to the error. It also rapidly became clear that the full resolution of the tile was
needed during the seed search, i.e., decimation down to maxNPix could only occur after
the search seeds were found and the full tile was sub-sampled to the adaptive tile size.

The solution for finding more robust seed values makes use of the Radon transform.
First, the observed phases from the eigenvector were interpolated onto a regular grid, a
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somewhat noisy process due to the phase jumps. Next, the Radon transform was found
to estimate the phase variance when projected along a suite of candidate wave directions
(−45 to +45◦ in 2◦ increments; Figure 4). The angle that corresponded to the maximum
variance was selected as the seed wave angle, α. Finally, the phase map was interpolated
onto a new grid that is oriented in the direction of wave propagation, and the median
of the phase gradient in that direction was used as the seed value of k. This search also
returned the location of the pixel that lay closest to the center of the tile (xm, ym), to be used
in finding dφ.

Figure 4. Radon transform results for the example tile and model point shown in Figures 1 and 2. Left panel shows the
actual Radon transform versus candidate wave angle (x-axis) and projected distance (y-axis). The right panel shows the
variance of the Radon transform as a function of wave angle. The angle with maximum variance is chosen as the wave
angle seed, in this case 10.8◦.

2.4. Algorithm Organization Changes

The changes in version 2.0 have forced a major restructuring of the program logic
flow. Figures 5 and 6 show flow charts for versions 1.2 (also representing version 1.0) and
2.0, respectively. The reorganization only impacts phase 1 of the algorithm, shown in red
boxes, with the partitioning into tiles happening early in version 1.2 (in subBathyProcess)
but later in version 2.0 (in csmInvertKAlpha).
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Instead of reducing the number of pixels prior to any analysis steps, it was clear that
full pixel resolution was required for finding the k-α seeds and for establishing the required
size of the tile. Thus, the full tile of size Lx, Ly is initially passed into the main analysis
routine, csmInvertKAlpha, where the routine prepareTiles is called to (a) find the dominant
frequencies, (b) for each frequency, find the dominant eigenvector and the k-α seeds, then
c) reduce the tile to an adaptive size and to a maximum number of pixels. These outputs
are, then, passed back to csmInvertKAlpha to carry out the nonlinear search for best-fit
values and their errors and, then, to build the results structures and find the depths from
the σ-k results.

Several new fields have also been added to the bathy output MATLAB structure.
These provide a set of traditional Argus image proxies, computed from the input time
stack data over the region of interest at the array of desired xm, ym points. These include
time exposure, brightest and darkest images, all at the coarse resolution of the analysis
array but adequate to determine, for example, the locations of wave breaking. Within the
phase 1 fDependent sub-field, there are now maps that are included for diagnostic and
performance improvement purposes. These include maps of the seed values of k and α

used for the nonlinear search as well as maps of the number of pixels used in each tile and
of the number of model calls during the nonlinear fitting routine, a key to algorithm speed.
In addition, there is a map of which camera is used for each tile. Within the fCombined
sub-field, there is now a map of the effective mean frequency, fBar, used in the phase 2
bathymetry calculation, found as the weighted mean of each frequency that contributed to
the phase 2 final bathymetry estimate. Finally, the elapsed CPU time for each analysis is
saved.

3. Bathymetry Test Bed Datasets

HPH13 tested the cBathy version 1.0 against a collection of 16 bathymetry surveys
collected at the Field Research Facility (FRF) between 2009 and 2011 as well as one survey
at Agate Beach, Oregon, on the US West Coast. In 2015, the Argus station at the FRF was
upgraded with improved cameras and computer hardware, so it was decided to base the
updated tests in this paper on more recent surveys.

The new dataset includes 39 FRF surveys collected from 20 May 2015 to 17 April 2019.
The full dataset is described in the document “The2019cBathyDataTestBed”, which is lo-
cated on the CIRN (Coastal Imaging Research Network) GitHub site (https://github.com/

https://github.com/Coastal-Imaging-Research-Network
https://github.com/Coastal-Imaging-Research-Network
https://github.com/Coastal-Imaging-Research-Network
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Coastal-Imaging-Research-Network, accessed on 21 July 2021) in the cBathy toolbox and at
the date of publication is located in the version 2.0 branch in a folder called cBathyTestBed
(this branch should become the master branch in the near future). The MATLAB data
structure, bathyTestDataSet, includes the full set of actual survey data, the list of related
cBathy stack files, which can be loaded directly from the Coastal Imaging Lab, and the
environmental data on waves and tides. These are accompanied by a testbed description
document and instructions on how to download cBathy time stacks. To be consistent with
HPH13, the cBathy files for each survey include all collections for the day of the survey
plus for each of the three preceding days, a total of 96 time stacks for each survey.

In HPH13, cBathy results were computed for each time stack and, then, smoothed into
the phase 3 Kalman-filtered estimate—only the Kalman results were compared to ground
truth, since the individual phase 2 results were viewed as too noisy. In this paper, we will
examine Kalman results as did HPH13, but we will also compare individual phase 2 results
from a large subset of runs within each four-day cBathy sampling window. Analysis runs
were selected at 1200, 1400, 1600, and 1800, local standard time, for each of the four days,
avoiding morning sun glare problems. This yielded a total of 624 phase 2 bathymetry map
estimates in addition to the 39 Kalman smoothed results. Survey data, while only collected
on the fourth day, are assumed to be representative for the full four-day sample periods.

Figure 7 shows a plot of the heights, periods, and directions of waves measured at both
the 26 m depth waverider and the 8 m array seaward of the FRF property. Wave heights
were typically fairly low, compatible with the safety needs of in situ surveying, although
some of the surveys followed major storm events so include larger wave conditions in the
collections from the three prior days. Tidal data are taken from the pier-end NOAA tide
station and span a full range of almost 2 m.

Figure 7. Time series of wave height, Hs, wave period, Tm, peak wave direction, and tide elevation
for each of the 624 cBathy estimates collected over almost four years. Blue dots for the upper three
panels correspond to estimates from the 26 m depth waverider buoy. These are overplotted with red
dots from the 8 m array. Shore normal wave direction is 72◦, indicated by the blue horizontal line in
the wave direction panel.

4. cBathy Phase 2 Version Performance Statistics

Figure 8 compares cBathy results from the different versions for an example day,
19 November 2017, 1959 GMT, chosen as representative because the rms error (0.41 m)

https://github.com/Coastal-Imaging-Research-Network
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was nearly equal to the median of all 624 examples (0.46 m) and because there was some
breaking over the offshore sand bar (wave breaking has been found to affect performance).
The 26 m waverider wave height was 0.72 m and the period was 6.0 s, the wave direction at
the 8 m array was 78◦ (shore normal is 72◦, so this is from 6◦ south of normal), and the tide
elevation was 0.05 m. Bathymetry estimates for each cBathy version (left three panels) are
thresholded to only show those for which the predicted error is less than or equal to 0.5 m.
For comparison, the right-hand panel shows the ground-truth survey, taken two days later.
Ground-truth values are only used if the loess interpolation error in the gridded data is
less than 0.15, omitting some larger interpolation errors where there were occasional gaps
in survey coverage. Similarly, ground-truth values are only used if the true water depth
(survey depth plus tide) was greater than zero, i.e., we only consider locations that are wet.
Consistent with HPH13, performance statistics excluded the region of the FRF pier, i.e., the
region between y = 400 and 600 m (not inclusive), which interferes with both the camera
views and the waves.

Figure 8. Comparison of bathymetry from the three versions of cBathy, V1.0, V1.2, and V2.0 (left three
panels) for 19 November 2017, 1959 GMT, with the ground-truth survey from two days following
(right panel). All cBathy results have been filtered to remove any values with an estimated error
greater than 0.5 m (dark red color).

Similar to HPH13, we characterize the performance of the three algorithms in terms
of the bias, the rms error (rmse), the 95th percentile absolute error exceedance value (∆h95),
and the percentage of successful coverage (estimated error <0.5 m) for estimation locations
with survey depths greater than 0 m, including tide (called coverage). The results from this
example run show a steady improvement in all statistics for versions 1.0 to 1.2 to 2.0 of:
bias = [−0.36, −0.05, −0.04] m, rmse = [0.90, 0.59, 0.41] m, ∆h95 = [2.58, 1.30, 0.86] m, and
coverage = [55%, 77%, 91%].

Previous papers have observed that cBathy estimates are worst in the surf zone and
particularly at the onset of breaking [21]. The onset of breaking can be detected based on
coarse-resolution time exposure image (one of the new fields in version 2.0), by defining
the breaking onset as any region whose intensity gradient, averaged over 20 m in the
cross-shore, is less than −2.0 intensity units per cross-shore meter. Neither V1.0 nor V1.2
had any successful estimates in the breaker region (dark red regions landward of roughly
x = 200 m). For V2.0, bias and rms errors were 1.20 m and 1.24 m, respectively, reinforcing
the poor cBathy performance statistics in this region (for this example run).

HPH13 also found that performance varied with true depth. cBathy estimates were
partitioned by depth as 0–1 m, 1–2 m, . . . , 7–8 m and performance estimates found for
each depth bin (Figure 9). As expected, performance degrades in the shallowest two bins
in the surf zone (note that for the shallowest bin, no estimation points succeeded for V1.0,
and only 3 and 15 points were successfully estimated for V1.2 and V2.0, respectively). Both
the bias and rmse are good for depths greater than 2 m (outside the surf zone) for versions
1.2 and 2.0 and are similar to those from Kalman-filtered estimates found by HPH13 for
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version 1.0. Version 2.0 performs best for all statistics, but particularly for the percentage of
successful coverage.

Figure 9. cBathy performance statistics for 19 November 2017, partitioned by depth. Values are
plotted at the mean depth for each bin. No survey depths greater than 6 m were observed for this
run.

Several new fields in version 2.0 can be explored. Most interesting is fBar, the weighted
mean frequency of waves that contributes to the phase 2 f-Combined depth estimate.
Figure 10 shows these results for the example day, showing that map areas to the north
(large y-values) are more dominated by shorter northeast waves (f = 0.21 Hz, α ~ 30◦,
north of normal), while views looking offshore and south from the cameras in the center
region saw longer period waves from the southeast (f = 0.17 Hz, α ~ −15 to −20◦, south
of normal). In general, fBar favors lower frequencies in a broad spectrum. This result is
consistent with predictions by Walker [48] and observations by Holman et al. [32] that the
strongest optical signals occur when viewing directly into oncoming waves.

Finally, we can compare the seed values of k and α versus final nonlinear fit values
as a test of the effectiveness of the new seed algorithm (Figure 11). Eighty-four percent of
wave angle fit values are within 10◦ of the seed, while k seeds are less accurate with only
60% of best-fit values being with 50% of the k seeds (which seems to be good enough for
successful nonlinear searches, given good seed angles).
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Figure 10. Map of fBar, the weighted mean frequency that contributed to phase 2 depth estimates in
version 2.0.

Figure 11. Comparison of seed wave angle and wavenumber to the final values from the nonlinear
fitting routine. Example shows only values for the dominant frequency.

4.1. Bulk Analysis of cBathy Version Statistics

In all, 624 cBathy analyses were considered including 39 surveys and 16 cBathy
collections for each survey (a subset of the full set of collections). Because each of the three
cBathy versions returned results over different regions (i.e., had different coverages), it is
harder to directly compare statistics such as bias and rms error. Thus, we will first discuss
the performances of the algorithms in terms of coverage, then we will discuss other error
statistics considering both the full comparison as well as comparisons based on coverage
regions that were in common between algorithms.
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Figure 12 shows histograms of the bulk coverage statistics for each cBathy version.
It is apparent that V2.0 does much better than earlier versions; for example, the median
coverage values are 86, 87, and 95%, for V1.0, V1.2, and V2.0, respectively. All algorithms
provide decent coverage with only about 41 of the 624 runs having less the 50% success.
There were several reasons for low successful coverage. Figure 13 shows the dependence of
coverage on the significant wave height at the 8-meter array. Performance clearly declines
with wave height with a rough rule of thumb that for Hs > 1.2 m, expected performance will
become poor (consistent with Brodie et al. [21]). Snapshots from the 41 cases of coverage
worse than 50% were examined manually and showed that poor performance was also
caused by foggy or rainy days (although many rainy days were also successful) as well as
low evening light.

Figure 12. Histograms of the bulk coverage statistics of each of the three cBathy versions.

Figure 13. Percentage of successful coverage for sub-aqueous pixels versus significant wave height at
the 8 m array for each of the three versions. Versions were plotted in order from versions 1.0 through
2.0 so the results from version 2.0 (blue dots) overplot earlier results.

We next wish to compare the basic performance statistics between the three versions.
Figure 14 shows histograms of each statistic for each version. Surprisingly, the first three
statistics, bias, rmse, and ∆h95, look almost indistinguishable between versions, despite
what we had hoped were significant improvements in the algorithm as shown in the
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example run above. This result is a consequence of the fact that for each version, results
with estimated errors, herr > 0.5 m were rejected from the analysis. Thus, the statistics are
computed for different regions of coverage. To make a more direct comparison (apples
versus apples), the map of successful coverage for V2.0 was saved for each collection and
used as the basis for computing performance statistics for V1.0 and V1.2. This usually
larger region, thus, includes poorer performing regions from the earlier algorithm versions.
This is confirmed by Figure 15, which shows the same histograms of statistics but is now
based on a common area of sampling defined by the V2.0 error estimates. For all three
statistics, bias, rmse, and ∆h95, the performance of V2.0 is superior. The fact that statistics
are roughly the same when herr is determined by each individual version is a testament
to the robustness of that error estimate. In the following, all statistics will be based on the
common area of coverage determined for V2.0.

Figure 14. Histograms of the four basic performance statistics for each of the three algorithm versions
(colors).

Figure 15. Histograms of the same statistics as Figure 14, but now based on common regions of
sampling determined by the regions of successful estimates from the V2.0 version of cBathy.

The bias statistics are seen themselves to be slightly positively biased (estimates too
deep), with mean biases for the three versions of 0.19, 0.14, and 0.16 m, respectively.
There appear to be two causes for larger biases: performance issues with large waves
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and breaking and cases of low coverage, so poor imaging conditions or noisy statistics.
Removing cases for which Hs is greater than 1.2 m reduces the mean bias to 0.15, 0.11,
and 0.12 m, respectively. Removal of estimates for which coverage was less than 50%
reduced the original mean bias to 0.15, 0.1, and 0.1, respectively, while removal of both
issues (consider only cases with Hs ≤ 1.2 m and coverage ≥ 50%, reducing the dataset
from 624 to 563 runs) led to mean biases for the three algorithm versions of 0.15, 0.09, and
0.09 m, respectively.

Ninety-five percent of the bias statistics had magnitudes less than 0.61, 0.58, and 0.59
m for the three cBathy versions when the full dataset was considered. When large waves
(>1.2 m) and low coverage (<50%) data were removed, the 95% exceedance of bias was
reduced to 0.46, 0.43, and 0.34 m, respectively. As a further step, the most extreme cases of
error were examined visually. Most cases were associated with fog or rain (low coverage),
storms (large waves), or an apparent absence of longer period (>4 s) waves.

Figure 15 shows that the rms and 95% exceedance errors also improved with later
versions of the cBathy algorithm. Table 1 summarizes the mean values for the four basic
performance statistics for each of the three cBathy versions. These statistics are shown for
the full dataset (top of Table) as well as for the reduced dataset (bottom of Table). It is clear
that version 2.0 is superior in all categories of performance measurement.

Table 1. Means of the four basic performance statistics (rows) comparing across the three versions
of the cBathy algorithm (columns). Statistics are computed for the full dataset of 624 runs (upper
section) as well as for the reduced dataset of 563 runs for which successful coverage was greater than
50% (based on V2.0 coverage) and significant wave height was less than 1.2 m (lower section).

Full Dataset

Statistic V1.0 V1.2 V2.0

Bias (m) 0.19 0.14 0.16

rmse (m) 0.64 0.82 0.56

∆h95 (m) 1.27 1.25 1.19

Coverage (%) 78.7 78.0 84.7

Reduced Dataset

Bias (m) 0.15 0.09 0.09

rmse (m) 0.58 0.66 0.41

∆h95 (m) 1.16 1.01 0.85

Coverage (%) 82.8 82.3 90.0

Figure 16 shows the four bulk statistics against significant wave height, plotted by
color for each cBathy version, for all 624 data runs. Points are plotted in order of V1.0 (red),
V1.2 (green), then V2.0 (blue), so later values hide earlier ones. That said, it is clear that
V2.0 values are better than those of V1.0 and V1.2. This is particularly apparent for rmse
statistics where there are fewer cases of large error for V2.0 (fewer blue dots at large values).
For comparison, Figure 17 shows the same statistics for the reduced dataset of 563 points
for which wave height is less than or equal to 1.2 m, and successful coverage is greater than
50%. The y-scales are the same as for Figure 16 to ease comparison, although the range of
wave heights (x-axis) is reduced.



Remote Sens. 2021, 13, 3996 17 of 25

Figure 16. Scatter plots of the four performance statistics for each of the three algorithm versions (see
legend at top right) for the full dataset of 624 runs. Points are plotted in order, so blue points (V2.0)
overplot earlier versions.

Figure 17. Comparison scatter plots of the four performance statistics for each of the three algorithm
versions (see legend at top right) for the reduced dataset of 563 runs. Points are plotted in order, so
blue points (V2.0) overplot earlier versions.
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As was shown by the example run in the previous section, statistics vary with true
depth. The full dataset was partitioned by depth (0–1 m, 1–2 m, . . . , 7–8 m) and the mean of
each of the core statistics computed for each depth bin. The results are shown in Figure 18.
It is apparent that the improvement in V2.0 performance is concentrated in the shallow
(<2 m) and deep (>6 m) regions with much smaller differences in intermediate depths.
It is unclear why the performance differences are greater in deeper water. However, in
shallow water, the worsening performance is likely linked to wave breaking in the surf
zone. To test this hypothesis, we partitioned the dataset into breaking and non-breaking
regions for each data run, based on the mean intensity brightness from the time exposure
image (calculated from the time stack in version 2.0 but applicable to all versions). Time
exposure intensities greater than 150 were considered to be surf zone, while values less
than 150 were considered non-breaking. Figure 19 shows the bias and rms statistics for the
breaking (dashed line) and non-breaking (solid line) partitions, reinforcing the increased
errors when waves break, which always occurs preferentially in shallow depths. Note that
while errors are largest in shallow depths for all versions of the algorithm (Figure 18), they
are significantly better for version 2.0.

Figure 18. Error bulk statistics binned by depth. Bin depths are plotted at the mean bin depth.
Algorithm versions are indicated in the legend. Coverage is omitted, since all versions have been
forced to use the V2.0 coverage.

Figure 19. Histograms of the bias (left) and rmse (right) statistics for each of the three version of the cBathy algorithm (see
legend). The data have been partitioned into non-breaking regions (solid lines) and surf zone regions (dashed lines; legend
has “SZ” appended).
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Finally, the quality of the new k-α seed algorithm was tested for version 2.0 (seeds
are not saved for earlier versions). Over the 624 data runs, the standard deviation of the
residual between the seed and the best fit value of wave angle, α, was typically between 5
and 10 degrees with a mean value of 6.2 degrees. The errors of the k seeds are relatively
larger with a mean of 0.05 m−1, but with improved wave angle seeds, this was sufficiently
close to yield greater success in the nonlinear search.

4.2. Kalman-Filtered Results

In the first paper describing cBathy (HPH13), only Kalman-filtered results were pre-
sented because individual results from version 1.0 were felt to be too noisy or to have too
many analysis gaps. Kalman filtering allowed these gappy areas to be merged with data
from other runs based on the estimated error, herr, using a Kalman filter. Thus, regions
with bad results due to, for example, wave breaking, can be filled with results from runs in
which there was no breaking at that location. Kalman results accumulate over a series of
prior data collections, with each new run improving the estimate until the results stabilize
after roughly one or two days. In this case, we have included four cBathy bathymetry
estimates per day for four days, the three days prior to each survey plus the actual survey
day. The Kalman result from approximately 3:00 pm on the day of the survey is used to
compare with the survey ground truth. Figure 20 shows the Kalman-filtered results for the
example survey used in Figure 8, 21 November 2017. Results from the three versions are
similar but with slight differences in coverage and depth estimates, for example, the region
around x = 200, y = 830, which appears anomalous in version V1.0 but not in later versions.
All statistics are better after Kalman filtering compared to the individual cBathy estimates.
Bias for the three versions (in order V1.0, V1.2, V2.0) was 0.006, −0.07, and −0.03 m, while
the rmse was 0.41, 0.37, and 0.35 m, and the 95% exceedance was 0.85, 0.83, and 0.77 m,
respectively. Coverage of locations that were immersed at the final time were all 100%, a
credit to averaging over the varying tide elevations.

Figure 20. Comparison of Kalman-filtered bathymetry from the three version of cBathy, V1.0, V1.2, and V2.0 (left three
panels) for 21 November 2017, with the ground-truth survey from that day (right panel). This is the same survey used in
Figure 8. All cBathy results have been filtered to remove any values with an estimated error greater than 0.5 m.

Continuing the comparison to the non-filtered results in the previous section, Figure 21
shows the four basic statistics plotted by depth. The advantages of Kalman filtering become
apparent. While there are still some anomalies in the shallowest depth bin, they are largely
absent for depths greater than 1 m. Moreover, coverage is now 100% for all versions.
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Figure 21. The four basic performance statistics plotted versus surveyed depth for the example
survey date of 19 November 2017. Note that each plot includes three lines, one for each algorithm,
with the third (blue) often overplotting the others.

These results are consistent with the bulk statistics for the 39 surveys, shown in
Figure 22 and plotted versus wave height for the survey date data run. Bias, rmse, and
∆h95 are all very good with V2.0 results outperforming earlier versions. Note that the
coverage (of submerged depths) is now always greater than 95% due to the Kalman filtering,
with V2.0 performing the best (the lowest V2.0 coverage was 99.3%). Again, performance
is best for lower waves, although the Kalman filtering averages over multiple prior runs.
Mean statistics for the three algorithms averaged over the 39 surveys are shown in Table 2.
Again, version 2.0 outperforms earlier versions.

Figure 22. The four performance statistics describing the results from the 39 Kalman results. Version
colors are shown in the legend.
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Table 2. Means for Kalman-filtered bathymetries of the four basic performance statistics (rows)
comparing across the three versions of the cBathy algorithm (columns). Statistics are computed for
the full dataset of 39 surveys, comparing the mid-afternoon Kalman bathymetry for each survey date
to ground truth.

Full Dataset

Statistic V1.0 V1.2 V2.0

Bias (m) 0.15 0.08 0.08

rmse (m) 0.47 0.66 0.38

∆h95 (m) 0.96 0.86 0.78

Coverage (%) 99.1 99.2 99.9

Finally, the effectiveness of predicted errors from V2.0 was compared to errors that
were measured in comparison to ground truth. For each selected Kalman dataset (3:00 pm
on the survey date for each of the 39 surveys), the ratio (labelled Rerr) of the measured
absolute error to both the Kalman and non-Kalman (phase 2) predicted error was taken,
averaged over the domain for which Kalman and non-Kalman predicted errors were less
than or equal to 1.0 and 0.5 m, respectively (this removes the influence of extreme predicted
errors). In HPH13, this value was only tested for Kalman results and was found to be
approximately 7. For this more extensive dataset and the version 2.0 algorithm, the values
are smaller, as shown in Figure 23. The mean of the Kalman-filtered results is 4.47, smaller
than the value of 7.0 noted by HPH13. The mean of the non-Kalman-filtered results was
2.0. During this comparison, it was also noted that the process of Kalman filtering reduced
the actual error of the Kalman estimates by an average factor of 4.6 compared to the non-
Kalman single run estimates. The same analysis, carried out for version 1.0 results, showed
that the mean of the predicted to measured errors for Kalman- and non-Kalman-filtered
results were 5.22 and 2.29, with the Kalman ratio being a bit smaller than the factor of 7.0
found by HPH13 for their dataset. The reduction in the algorithm error for Kalman- and
non-Kalman-filtered predictions was 5.3, slightly larger than with V2.0, likely due to the
improvements in the non-Kalman estimates.

Figure 23. Histograms of the mean ratio of observed to estimated version 2.0 errors, averaged over
each of the 39 surveys. Red and blue lines indicate Kalman and non-Kalman results, respectively.
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5. Discussion

Improvements to the cBathy algorithm contained in versions 1.2 and, then, 2.0 have
led to significant improvements in cBathy performance. One of the main improvements is
the larger region of successful coverage, defined as the fraction of the domain that yielded
bathymetry estimated with a predicted error ≤0.5 m. The typical improvement in coverage
of around 5–10% may seem small, but when viewed in terms of the fraction of locations
for which estimates fail, the improvement is considerable, with a mean reduction in failed
estimates of 28% for the phase 2 full dataset (42% for the reduced dataset) and 89% for the
Kalman result (although failed estimates are rare with Kalman filtering).

Interestingly, the other performance statistics were not greatly changed by the im-
provement in the algorithm. However, this observation is only true when comparing
dissimilar populations, i.e., the reduced dataset that is acceptable for V1.0 and V1.2 com-
pared to the successful region for V2.0. When the comparison is made over similar regions
(that which was acceptable to V2.0), the bias, rmse, and ∆h95 all showed improvements
with V2.0. In some ways, it is reassuring that the quality measurements (predicted herr) are
performing sensibly.

With all of the algorithms, it was found that performance degraded when the waves
were large or when the data were of poor quality for one or more reasons such as fog, rain,
or sun glitter. The latter issues can be hard to objectively identify but can be represented by
a simple test that if coverage is less than 50%, there are likely to be problems with the data
collection, and it should be ignored completely. To remove issues of large wave breaking in
the surf zone, we follow the recommendations of Brodie et al. [21] that data runs for which
the wave height was greater than 1.2 m should be omitted from subsequent analysis.

This yields a potential concept of operations that could apply to a beach that is
similar to Duck, NC. Analysis can be automated for all data collections, but for those with
either a wave height greater than 1.2 m or an estimated data coverage less than 50%, the
results should be excluded from subsequent Kalman filtering or from further analysis
consideration. For other beaches that have no wave height measurements, it may be
possible to introduce a quality filter that uses the coarse time exposure image (estimated in
V2.0) to detect wave breaking and exclude those regions. For the tests above, a threshold of
image intensity >150 was used to detect breaking, but this was ad hoc, and image intensity
is affected by automated gain control so is not a fundamental variable. Additionally, there
are beaches such as on the northwest coast of the US where waves are always large and
surf zones are usually wide. Waiting for small waves at such sites may not be practical and
further investigation is needed on a useful concept of operations. For beaches with wide
surf zones, it may be necessary to use either a more complete numerical model approach
to address finite-amplitude increases in the dispersion relation, or to use an approximate
compensation that might be based on detected breaking in the time exposure image. Either
is beyond the scope of this paper.

The data used in this study are excellent for cBathy testing in that the cameras are
fixed to a tower (image geometry is fixed), the data runs are all 1024 s, a standard length
for incident wave analysis, and many consecutive runs are available for Kalman filtering.
However, there is increasing interest in less structured sampling methods, particularly
using small commercial drones (e.g., [32,33]). For these applications, Kalman filtering is
likely not available, so the improvements in phase 1 and 2 components of the algorithm
that are embodied in V2.0 are important.

Finally, the CPU time was found to be influenced by the algorithm changes. All
analyses were done on a modest Linux desktop machine with an Intel i7 CPU using
MATLAB R2016b running four parallel threads. The three versions took an average of 92,
91, and 118 s to compute for each data run. The improved seed algorithm for k and α is
likely responsible for the increased CPU time in V2.0.

It is recommended that V2.0 should supersede previous versions for all practical uses.
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6. Conclusions

In 2013, Holman et al. ([1]; HPH13) published the new cBathy algorithm for the esti-
mation of bathymetry from optical observations of wave celerity. The current manuscript
describes a set of algorithm improvements that have been made since that time, labeling
the original version as V1.0 and comparing it to an intermediate version, V1.2, that has
seen considerable use but limited testing, and a current version, V2.0, that is significantly
changed compared to the original. Tests of the performance improvements associated with
each version were made using an updated dataset of 39 bathymetric surveys collected
from 2015 to 2019 at the Field Research Facility in Duck, NC, each spanning a region of
500 and 1000 m in the cross-shore and alongshore, respectively. cBathy returns products
of two types, a non-filtered, phase 2 bathymetry and a Kalman-filtered, phase 3 product
that averages intelligently over a suite of phase 2 results that have variable quality. Since
phase 2 results were viewed by HPH13 as too noisy or having too many gaps, they only
presented Kalman results. For the 39 bathymetries of the new dataset, the performance
of Kalman stage results improved between V1.0 and V2.0 with bias, rms error, and 95%
exceedance error improving from 0.15, 0.47, and 0.96 m, respectively, for V1.0, to 0.08, 0.38,
and 078 m for V2.0. The percentage of successful returns (predicted error ≤0.5 m) was 99.1
for V1.0 and 99.9% for V2.0.

With the increasing use of cBathy for isolated data collections, for example from
drones or cameras of opportunity for which Kalman filtering is not possible, there has
been increasing interest in the quality of individual phase 2 results. Phase 2 performance
statistics were not published by HPH13 but have been computed for this new dataset
including 624 phase 2 bathymetry estimate maps. For this full dataset, the bias, rms error,
and 95% exceedance errors for V1.0 were 0.19, 0.64, and 1.27 m, respectively, and for V2.0,
they were 0.16, 0.56, and 1.19 m. The average successful coverage was 78.8% for V1.0
and 84.7% for V2.0 (about a 28% reduction in the number of failed estimates). Thus, V2.0
performs almost as well as the Kalman predictions of V1.0

Larger errors were associated with both large waves (a wide surf zone) as well as a
variety of poor imaging conditions such as fog, rain, or darkness. As a practical mitigation,
it is recommended that at this site, conditions for which the significant wave height is
greater than 1.2 m or for which successful coverage is less than 50% (a proxy for image
quality problems) should be excluded from consideration. With this reduced dataset of 563
runs, the bias, rms error, and 95% exceedance errors for V1.0 were 0.15, 0.58, and 1.16 m
and for V2.0 were 0.09, 0.41, and 0.85 m, respectively. Successful coverage for V1.0 was
82.8%, while for V2.0, it was 90.0%, an approximately 42% reduction in failed estimate
locations. It is noted that this concept of operations for removing poor estimates is specific
to Duck, NC. Finally, predicted errors for Kalman and non-Kalman results are found to be
too small by a factor of 5.22 and 2.29, respectively, for V1.0 and 4.47 and 2.0 for V2.0.

It is recommended that V2.0 becomes the new standard for cBathy bathymetry
estimation.

Author Contributions: The development and improvement of cBathy has occurred over decades.
R.H. has done much of the work while E.W.J.B. was particularly involved with development and
testing of the seam problem solution and the updated seed algorithm. Writing was led by R.H. with
E.W.J.B. contributing particularly to the introduction material and in helpful proofreading. Both
authors have read and agreed to the published version of the manuscript.

Funding: RAH would like to thank the Office of Naval Research, Coastal Geoscience Program, the
Naval Research Lab, as well as the US Geological Survey for support over those many years. Over the
years, EWJB was funded through the Quality Research/Research Excellence Framework CarePlan of
the University of Plymouth, IRD and CNES post-doc funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Remote Sens. 2021, 13, 3996 24 of 25

Data Availability Statement: The full dataset is described in the document “The2019cBathyData-
TestBed”, which is located on the CIRN (Coastal Imaging Research Network) GitHub site (https://
github.com/Coastal-Imaging-Research-Network) in the cBathy toolbox and at the date of publication
is located in the version 2.0 branch in a folder called cBathyTestBed (this branch should become the
master branch in the near future).

Acknowledgments: The development of cBathy from its roots has spanned decades and multiple
research grants. RAH would like to thank the Office of Naval Research, Coastal Geoscience Program,
the Naval Research Lab, as well as the US Geological Survey for support over those many years.
Over the years, EWJB was funded through the Quality Research/Research Excellence Framework
CarePlan of the University of Plymouth, IRD and CNES post-doc funding. cBathy is also a result of a
community of researchers around the world. As always, we are grateful to the US Army Corps of
Engineers for providing survey and wave data and for their continuing collaborations over many
decades. Thanks to all.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Holman, R.A.; Plant, N.G.; Holland, K.T. cBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. 2013,

118, 1–15. [CrossRef]
2. Davidson, M.A.; Van Koningsveld, M.; de Kruif, A.; Rawson, J.; Holman, R.; Lamberti, A.; Medina, R.; Kroon, A.; Aarninkhof,

S.G.J. The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coast.
Eng. 2007, 54, 463–475. [CrossRef]

3. Kroon, A.; Davidson, M.A.; Aarninkhof, S.G.J.; Archetti, R.; Armaroli, C.; Gonzales, M.; Medri, S.; Osorio, A.; Aagaard, T.;
Holman, R.; et al. Application of remote sensing video systems to coastline management problems. Coast. Eng. 2007, 54, 493–505.
[CrossRef]

4. Radermacher, M.A.; De Schipper, M.A.; Reniers, A. Sensitivity of rip current forecasts to errors in remotely-sensed bathymetry.
Coast. Eng. 2018, 135, 66–76. [CrossRef]

5. Sembiring, L.; van Dongeren, A.; WInter, G.; Ormondt, V.; Briere, C.; Roelvink, D. Nearshore bathymetry from video the
application to rip current predictions for the Dutch Coast. J. Coast. Res. 2014, 70, 354–359. [CrossRef]

6. Benveniste, J.; Cazenave, A.; Vignudelli, S.; Fenoglio-Marc, L.; Shah, R.; Almar, R.; Andersen, O.; Birol, F.; Bonnefond, P.; Bouffard,
J.; et al. Requirements of a coastal hazard observing system. Front. Mar. Sci. 2019, 6, 348. [CrossRef]

7. Melet, A.; Teatini, P.; Le Cozannet, G.; Jamet, C. Earth observations for monitoring marine coastal hazards and their drivers. Surv.
Geophys. 2020, 41, 1489–1534. [CrossRef]

8. Caballero, I.; Stumpf, R.P. On the use of Sentinel-2 satellites and lidar surveys for the change detection of shallow bathymetry:
The case study of North Carolina inlets. Coast. Eng. 2021, 169, 103936. [CrossRef]

9. Johnson, S.Y.; Cochrane, G.R.; Golden, N.A.; Dartnell, P.; Hartwell, S.; Chochran, S. The California Seafloor and Coastal Mapping
Program—Providing science and geospatial data for California’s State Waters. Ocean Coast. Manag. 2017, 140, 88–104. [CrossRef]

10. Lyzenga, D.R. Passive remote-sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383.
[CrossRef] [PubMed]

11. Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom
types. Limnol. Oceanogr. 2003, 48, 547–556. [CrossRef]

12. Poupardin, A.; Heinrich, P.; Hebert, H.; Schindele, F.; Jamelot, A.; Reymond, D.; Sugioka, H. On the role of frequency dispersion
on the transw-Pacific tsunamis: Study of the 2010 and 2015 Chilean tsunamis. In Proceedings of the Oceans 2016 MTS/IEEE
Monterey, Monterey, CA, USA, 19–23 September 2016.

13. Poursanidis, D.; Traganos, D.; Chrysoulakis, N.; Reinartz, P. Cubesats allow high spatiotemporal estimates of satellite-derived
bathymetry. Remote Sens. 2019, 11, 1299. [CrossRef]

14. Caballero, I.; Stumpf, R.P.; Meredith, A. Preliminary Assessment of Turbidity and Chlorophyll Impact on Bathymetry Derived
from Sentinel-2A and Sentinel-3A Satellites in South Florida. Remote Sens. 2019, 11, 645. [CrossRef]

15. Pike, S.; Traganos, D.; Poursanidis, D.; Williams, J.; Medcalf, K.; Reinartz, P.; Chrysoulakis, N. Leveraging Commercial High-
Resolution Multispectral Satellite and Multibeam Sonar Data to Estimate Bathymetry: The Case Study of the Caribbean Sea.
Remote Sens. 2019, 11, 1830. [CrossRef]

16. Bergsma, E.W.; Almar, R.; Maisongrande, P. Radon-Augmented Sentinel-2 Satellite Imagery to Derive Wave-Patterns and Regional
Bathymetry. Remote Sens. 2019, 11, 1918. [CrossRef]

17. Bergsma, E.W.; Almar, R.; Rolland, A.; Binet, R.; Brodie, K.L.; Bak, A.S. Coastal morpholgy from space: A showcase of monitoring
the topography-bathymetry continuum. Remote Sens. Environ. 2021, 261, 112469. [CrossRef]

18. Turner, I.L.; Harley, M.D.; Almar, R.; Bergsma, E.W. Satellite optical imagery in Coastal Engineering. Coast. Eng. 2021, 167, 103919.
[CrossRef]

19. Bergsma, E.W.; Almar, R. Coastal coverage of ESA’ Sentinel 2 mission. Adv. Space Res. 2020, 65, 2636–2644. [CrossRef]

https://github.com/Coastal-Imaging-Research-Network
https://github.com/Coastal-Imaging-Research-Network
http://doi.org/10.1002/jgrc.20199
http://doi.org/10.1016/j.coastaleng.2007.01.007
http://doi.org/10.1016/j.coastaleng.2007.01.004
http://doi.org/10.1016/j.coastaleng.2018.01.007
http://doi.org/10.2112/SI70-060.1
http://doi.org/10.3389/fmars.2019.00348
http://doi.org/10.1007/s10712-020-09594-5
http://doi.org/10.1016/j.coastaleng.2021.103936
http://doi.org/10.1016/j.ocecoaman.2017.02.004
http://doi.org/10.1364/AO.17.000379
http://www.ncbi.nlm.nih.gov/pubmed/20174418
http://doi.org/10.4319/lo.2003.48.1_part_2.0547
http://doi.org/10.3390/rs11111299
http://doi.org/10.3390/rs11060645
http://doi.org/10.3390/rs11151830
http://doi.org/10.3390/rs11161918
http://doi.org/10.1016/j.rse.2021.112469
http://doi.org/10.1016/j.coastaleng.2021.103919
http://doi.org/10.1016/j.asr.2020.03.001


Remote Sens. 2021, 13, 3996 25 of 25

20. Brodie, K.L.; Palmsten, M.L.; Hesser, T.J.; Dickhudt, P.J.; Raubenheimer, B.; Ladner, H.; Elgar, S. Evaluation of video-based linear
depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental
conditions. Coast. Eng. 2018, 136, 147–160. [CrossRef]

21. Gawehn, M.; van Dongeren, A.; de Vries, S.; Swinkels, C.; Hoekstra, R.; Aarninkhof, S.G.J.; Friedman, J.I. The application of a
radar-based depth inversion method to monitor near-shore nourishments on an open sandy coast and an ebb-tidal delta. Coast.
Eng. 2020, 159, 103716. [CrossRef]

22. Bouvier, C.; Balouin, Y.; Castelle, B. Video monitoring of sandbar-shoreline response to an offshore submerged structure at a
microtidal beach. Geomorphology 2017, 295, 297–305. [CrossRef]

23. Lippmann, T.C.; Holman, R.A. Quantification of sand bar morphology: A video technique based on wave dissipation. J. Geophys.
Res. 1989, 94, 995–1011. [CrossRef]

24. van Enckevort, I.M.J.; Ruessink, B.G. Video observations of nearshore bar behaviour. Part 1: Alongshore uniform variability. Cont.
Shelf Res. 2003, 23, 501–512. [CrossRef]

25. Van Enckevort, I.M.J.; Ruessink, B.G. Video observations of nearshore bar behaviour. Part 2: Alongshore uniform variability.
Cont. Shelf Res. 2003, 23, 513–532. [CrossRef]

26. Plant, N.G.; Holman, R.A. Intertidal beach profile estimation using video images. Mar. Geol. 1997, 140, 1–24. [CrossRef]
27. Stockdon, H.F.; Holman, R.A. Estimation of wave phase speed and nearshore bathymetry from video imagery. J. Geophys. Res.

2000, 105, 22015–22033. [CrossRef]
28. Piotrowski, C.C.; Dugan, J.P. Accuracy of bathymetry and current retrievals from airborne optical time-series imaging of shoaling

waves. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2602–2612. [CrossRef]
29. Dugan, J.P.; Piotrowski, C.C.; Williams, J.Z. Water depth and surface current retrievals from airborne optical measurements of

surface gravity wave dispersion. J. Geophys. Res. 2001, 106, 16903–16915. [CrossRef]
30. Trizna, D.B. Errors in bathymetric retrievals using linear dispersion in 3-D FFT analysis of marine radar ocean wave imagery.

IEEE Trans. Geosci. Remote Sens. 2001, 39, 2465–2469. [CrossRef]
31. Holman, R.A.; Brodie, K.L.; Spore, N.J. Surf zone characterization using a small quadcopter: Technical issues and procedures.

IEEE Trans. Geosci. Remote Sens. 2017, 55, 2017–2027. [CrossRef]
32. Brodie, K.L.; Bruder, B.L.; Slocum, R.K.; Spore, N.J. Simultaneous Mapping of Coastal Topography and Bathymetry from a

Lightweight Multicamera UAS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6844–6864. [CrossRef]
33. Hashimoto, K.; Shimozono, T.; Matsuba, Y.; Okabe, T. Unmanned Aerial Vehicle depth inversion to monitor river-mouth bar

dynamics. Remote Sens. 2021, 13, 412. [CrossRef]
34. Van Dongeren, A.; Plant, N.; Cohen, A.; Roelvink, D.; Haller, M.; Catalan, P. Beach Wizard: Nearshore bathymetry estimation

through assimilation of model computations and remote observations. Coast. Eng. 2008, 55, 1016–1027. [CrossRef]
35. Aarninkhof, S.G.J.; Turner, I.L.; Dronkers, T.D.T.; Caljouw, M.; Nipius, L. A video technique for mapping intertidal beach

bathymetry. Coast. Eng. 2003, 49, 275–289. [CrossRef]
36. Soto, F.; Catalan, P. Bathymetry inversion in the surf zone via assimilation of remotely-sensed wave breaking energy dissipation.

Coast. Eng. Proc. 2020, 26. [CrossRef]
37. Almar, R.; Bonneton, P.; Senechal, N.; Roelvink, D. Wave celerity from video imaging. In Proceedings of the 31st Conference on

Coastal Engineering, Hamburg, Germany, 31 August–5 September 2008; pp. 661–673.
38. Plant, N.G.; Holland, K.T.; Haller, M. Ocean wavenumber estimation from wave-resolving time series imagery. IEEE Trans. Geosci.

Remote Sens. 2008, 46, 2644–2658. [CrossRef]
39. Simarro, G.; Calvete, D.; Luque, P.; Orfila, A.; Ribas, F. UBathy: A new approach for bathymetry inversion from video imagery.

Remote Sens. 2019, 11, 2722. [CrossRef]
40. Bergsma, E.W.; Almar, R. Video-based depth inversion techniques, a method comparison with synthetic cases. Coast. Eng. 2018,

138, 199–209. [CrossRef]
41. Rutten, J.; de Jong, D.; Ruessink, B.G. Accuracy of nearshore bathymetry inverted from X-band radar and optical video data.

IEEE Trans. Geosci. Remote Sens. 2017, 55, 1106–1116. [CrossRef]
42. Honegger, D.; Haller, M.; Holman, R. High-resolution bathymetry estimates via X-band marine radar: 1. beaches. Coast. Eng.

2019, 149, 39–48. [CrossRef]
43. Bak, A.S.; Brodie, K.L.; Hesser, T.J.; Smith, J.M. Applying dynamically updated nearshore bathymetry estimates to operational

nearshore wave modeling. Coast. Eng. 2019, 145, 53–64. [CrossRef]
44. Holman, R.A.; Stanley, J. cBathy Bathymetry Estimation in the Mixed Wave-Current Domain of a Tidal Estuary. J. Coast. Res. 2013,

65, 1391–1396. [CrossRef]
45. Holland, K.T.; Holman, R.A.; Lippmann, T.C.; Stanley, J.; Plant, N. Practical use of video imagery in nearshore oceanographic

field studies. IEEE J. Ocean Eng. 1997, 22, 81–92. [CrossRef]
46. Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [CrossRef]
47. Bergsma, E.W.; Conley, D.C.; Davidson, M.; O’Hare, T.J. Video-based nearshore bathymetry estimation in macro-tidal environ-

ments. Mar. Geol. 2016, 374, 31–41. [CrossRef]
48. Walker, R.E. Marine Light Field Statistics; John Wiley and Sons, Inc.: New York, NY, USA, 1994; p. 675.

http://doi.org/10.1016/j.coastaleng.2018.01.003
http://doi.org/10.1016/j.coastaleng.2020.103716
http://doi.org/10.1016/j.geomorph.2017.07.017
http://doi.org/10.1029/JC094iC01p00995
http://doi.org/10.1016/S0278-4343(02)00234-0
http://doi.org/10.1016/S0278-4343(02)00235-2
http://doi.org/10.1016/S0025-3227(97)00019-4
http://doi.org/10.1029/1999JC000124
http://doi.org/10.1109/TGRS.2002.807578
http://doi.org/10.1029/2000JC000369
http://doi.org/10.1109/36.964983
http://doi.org/10.1109/TGRS.2016.2635120
http://doi.org/10.1109/TGRS.2019.2909026
http://doi.org/10.3390/rs13030412
http://doi.org/10.1016/j.coastaleng.2008.04.011
http://doi.org/10.1016/S0378-3839(03)00064-4
http://doi.org/10.9753/icce.v36v.waves.26
http://doi.org/10.1109/TGRS.2008.919821
http://doi.org/10.3390/rs11232722
http://doi.org/10.1016/j.coastaleng.2018.04.025
http://doi.org/10.1109/TGRS.2016.2619481
http://doi.org/10.1016/j.coastaleng.2019.03.003
http://doi.org/10.1016/j.coastaleng.2018.12.005
http://doi.org/10.2112/SI65-235.1
http://doi.org/10.1109/48.557542
http://doi.org/10.1016/j.coastaleng.2007.01.003
http://doi.org/10.1016/j.margeo.2016.02.001

	Introduction 
	cBathy Versions—Version 1.0 
	Version 1.1 Update 
	Version 1.2 Update 
	Version 2.0 
	Automatic Tile Sizes 
	Reduction in the Number of Search Variables 
	Improved Seed Algorithm 

	Algorithm Organization Changes 

	Bathymetry Test Bed Datasets 
	cBathy Phase 2 Version Performance Statistics 
	Bulk Analysis of cBathy Version Statistics 
	Kalman-Filtered Results 

	Discussion 
	Conclusions 
	References

