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Abstract: A slow-moving landslide on the Huafan University campus, which is located on a dip
slope in northern Taiwan, has been observed since 1990. However, reliable monitoring data are
difficult to acquire after 2018 due to the lack of continuous maintenance of the field measurement
equipment. In this study, the multitemporal interferometry (MTI) technique is applied with Sentinel-1
SAR images to monitor the slow-moving landslide from 2014–2019. The slow-moving areas detected
by persistent scatterer (PS) pixels are consistent with the range of previous studies, which are based
on in situ monitoring data and field surveys. According to the time series of the PS pixels, a long
period gravity-induced deformation of the slow-moving landslide can be clearly observed. Moreover,
a short period seasonal surface fluctuation of the slow-moving landslide, which has seldom been
discussed before, can also be detected in this study. The seasonal surface fluctuation is in-phase
with precipitation, which is inferred to be related to the geological and hydrological conditions of
the study area. The MTI technique can compensate for the lack of surface displacement data, in
this case, the Huafan University campus, and provide information for evaluating and monitoring
slow-moving landslides for possible landslide early warning in the future.

Keywords: slow-moving landslide; seasonal surface fluctuation; gravity-induced deformation;
multitemporal interferometry (MTI); Huafan University campus

1. Introduction

Landslide hazards happen more frequently in areas where surface cracks or slow-
moving activity already exist than in other areas [1–3]. A slow-moving landslide generally
does not cause direct injury to human life, but it can cause direct damage to buildings or
facilities on the surface, which may bring about additional social and economic costs [4–6].
However, slow-moving landslides can evolve into rapid and destructive landslides, which
have caused extensive damage to buildings and threatened human lives globally in recent
decades [7–10]. According to the Emergency Event Database (EM-DAT), approximately
seventeen thousand people were killed by 349 catastrophic landslides around the world
from 2000–2017. In Taiwan, based on the database of the National Science and Technology
Center for Disaster Reduction (NCDR), over 11,000 slope failures and landslides occurred,
which caused 1033 deaths from 2000–2017. Surface displacement data can be used to
characterize the boundary and the activity of a slow-moving landslide. Therefore, efficiently
detecting and monitoring slow-moving landslides can provide better clues to identify
potential landslide sites over a large area. The monitoring results are crucial for landslide
hazard risk management and early warning.
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The location and scale of slow-moving landslides could be preliminarily determined
by features of topography based on remote sensing images and with other supporting
information such as geologic maps, slope aspects, in situ monitoring data and field sur-
veys [11–14]. However, difficulties remain for the detailed characterization of slow-moving
phenomena by in situ observations over greater spatial and temporal scales due to their
poor spatial resolution and deployment limitations. In addition, field measurements are
rather labor intensive and costly. From the viewpoint of landslide hazard assessments,
long period monitoring to provide possible early warning of unstable slopes by exploiting
affordable remote sensing data is a very significant issue. The first application of synthetic
aperture radar differential interferometry (DInSAR) to detect an unstable slope showed the
capability of InSAR-related techniques to detect and monitor slow-moving landslides [15].
The development of the multitemporal interferometry (MTI) technique overcomes the
main limitations, including coherence loss in vegetated areas and atmospheric effects,
which limit the performance of DInSAR in landslide investigations [16–18]. Several studies
have focused on applying the MTI technique for detecting slow-moving landslide areas,
monitoring slope deformation, and analyzing the time series of the displacements of a
slow-moving landslide over a long period of time [3,16,18–22]. The hydrology-driven
acceleration of a slow-moving landslide in the wet season by using low temporal revisited
SAR images, such as those from the ALOS and ENVIST satellites, has been described in
previous studies [23–25]. The capability of the MTI technique to detect and monitor slow-
moving landslides can be enhanced by increasing the revisit frequency by approximately
a few days, improving the resolution of space-borne sensors and expanding the spatial
coverage by up to hundreds or thousands of square kilometers. Thus, cost-effective and
high-precision monitoring data of the surface displacements over a large area over a long
period of time can be obtained [21,26].

In Taiwan, where hills and mountains occupy approximately 70% of the area, infras-
tructure and private properties are often constructed in mountainous regions due to the
growing population, expansion of settlements and economic requirements. The Huafan
University campus, with 3700 faculty and students, is located on a dip slope in northern
Taiwan. The dip slope has been investigated to be unstable with fractures on the ground,
roads and structures since the campus was established in 1990 [27–29]. A monitoring
system has been gradually established since 2000 to address safety concerns. However,
because the maintenance of equipment and measurement of data require considerable
money and manpower, reliable monitoring data were difficult to collect after 2018. This
study applied the MTI technique with free Sentinel-1A/B SAR images to monitor and
analyze the surface displacement of a slow-moving landslide from 2014–2019. The results
of the MTI technique not only can provide information of surface displacement in different
aspects, but also can compensate for the lack of in situ monitoring data in the study area.
The combination and calculation of the results derived from the ascending and descending
SAR images can reveal the vertical and E-W displacement velocity fields. The long period
gravity-induced deformation of a slow-moving landslide can be observed using the time se-
ries of the PS pixels. Moreover, the seasonal surface fluctuation of a slow-moving landslide
can be clearly detected from the time series in this study. A seasonal interaction model [30],
which was proposed in our previous study, can be used to interpret this phenomenon.
To test a stable monitoring point for the PSInSAR analysis in this area, a corner reflector
(CR) was designed and deployed over the northern part of the campus. The purpose of
this study is to present detailed information of surface displacement and compensate for
the lack of in situ monitoring data for a slow-moving landslide, in this case at the Huafan
University campus, by using the MTI technique with free SAR images.

2. Study Area
2.1. Geological Setting

The Huafan University campus is constructed in the upper part of the Dalun Moun-
tain area, which is located at the northern end of the Western Foothills belt in northern
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Taiwan (Figure 1). The Dalun Mountain area is a dip slope with an average dip angle
of approximately 20◦ toward the southwest. The elevation of the campus ranges from
450 to 570 m above sea level, and the area of the campus is approximately 34 hectares.
According to geological surveys [31–33], the Miocene Mushan Formation is considered
to be the dominant lithology of the study area. The bedrock is composed of sandstone
(SS) and thin alternating layers of sandstone and shale (SS-SH). The bedrock is overlain
by a 10–20 m thick cover layer, which is composed of regolith, colluvium and fill. Two
small-scale faults were determined to pass through the study area according to the 2D
resistivity data, borehole data and topographic features [32,33]. The Nanshihkeng Fault
is a northeastern striking reverse fault with a dip angle of 60◦–70◦. Another fault called
the A fault is a normal fault with a left-lateral slip component, which is truncated by the
Nanshihkeng Fault. There are two sets of joints in the bedrock with average attitudes of
NW–SE and NNE–SSW, which are considered to confine the boundaries of the sliding block
in the study area [29]. The average annual precipitation based on rain gauge records from
2003–2010 was approximately 4000 mm, which was mainly attributed to typhoons and
torrential rainfall [27]. Surface cracks have been observed and have expanded gradually
on the slope surface and in some buildings due to the slow-moving phenomenon of the
slope since the establishment of the campus. Settlement is especially clear in areas with
thicker filled material, such as the Asoka Square, the sports ground and the basketball
court [27–29].

2.2. Monitoring System and Failure Mechanism

To understand the failure mechanism and provide risk management, monitoring
systems including 32 inclinometer casings, 32 standpipes for groundwater table monitoring
and 2 rainfall gauges have been installed since 2000. There are 15 tiltmeters installed on
the building walls, 48 strainmeters installed on the reinforcing bars and 36 strainmeters
installed on the concrete of the buildings for monitoring the tilt situation of the structures. In
addition, a network of 295 ground monitoring points was established in 2001 for measuring
the sliding behavior of the dip slope using conventional traverse surveying twice a year
(Figure 1a).

According to the explicit displacement of the inclinometer casings recorded monthly
and after heavy rainfall and earthquake events, the depth of the sliding surface of approxi-
mately 10–40 m was revealed (Figure 1b) [28]. A plausible model of landslide movement
with a listric sliding surface [29] was proposed to explain the process of sliding blocks on
the campus. This model assumes that the head part of the sliding surface has a concave-
upward shape and then becomes parallel to the bedding plane of the bedrock on a certain
weak surface. After the sliding block departs downslope on the sliding surface and creates
a gap between the head and crown, unconsolidated material collapse filling the gap shows
movement toward the upslope direction from the first measurement in 2001 to the present
day. This represents the sliding blocks moving with a slow velocity over an extended time,
while several intermittent large slips appear during periods of heavy rainfall. Multiple po-
tential sliding blocks that exist within the campus are revealed by the long-term surveying
results. Based on the velocity field of the horizontal displacement of the ground monitoring
points from 2010 to 2017, the varying displacement velocities and directions indicate that
two plausible sliding blocks exist within the campus. To obtain more reliable results,
methods including in situ geological investigations, borehole data and inclinometer mea-
surements were applied and present the same range of the two sliding blocks [29]. Since
the stratigraphic sequences derived from the borehole data of the campus are different, the
two sliding blocks are in different geological settings. One sliding block in the southeastern
part of the campus is believed to be translational deformation with a slow-moving velocity
of approximately 20–30 mm/yr. This sliding surface is considered to be a listric-shaped
surface within the bedrock with a depth of approximately 30–40 m. In the northwest part of
the campus, another sliding block with multiple listric sliding surfaces at the head slowly
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moves on the interface with a velocity of approximately 12 mm/year. The sliding surface
is between the loosely consolidated colluvium and the underlying bedrock [29].

Figure 1. (a) Geological map of the Dalun Mountain area, which is located at the northern end of the
Western Foothills belt in northern Taiwan. The dominant lithology of the study area is the Miocene
Mushan Formation. Red lines indicate the areas of the two sliding blocks, while the orange dotted line
indicates the potential landslide area determined from topographic features based on LiDAR-derived
topography. The background topography is shown by shaded relief imagery processing from 20 m
and 2 m digital elevation models (DEMs). (b) The geological profile is along line AA’, which is
modified from [29]. The bedrock of this dip slope is composed of sandstone and alternations of
sandstone and shale.

3. Methodology
3.1. Multitemporal Interferometry (MTI)

Multitemporal interferometry (MTI) techniques identify stable radar targets to monitor
surface displacement by processing a long temporal series of SAR images, including
persistent scatterer SAR interferometry (PSInSAR) [34,35], small baseline subset (SBAS) [36]
and similar approaches [37]. The persistent scatter (PS) pixel is identified as the value
of a pixel dominated by a stable and strong scatter that is brighter than the background
scatterers. Under this condition, the underlying displacement signal can be extracted
because the variance in the phase of the background scatterers is relatively small and
can be ignored. The selection of the PS pixels in the conventional method [34] relies
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on thresholding pixel amplitude dispersion through time, which has a high success rate
at detecting bright PS pixels, such as human-made structures. The PSInSAR method
developed by Hooper et al. [35] proposed a new PS selection approach based on the
spatial correlation of the phase characteristics of pixels. This approach is applicable to
low-amplitude natural targets with low-phase variance in all terrains, with or without
buildings. These cannot be detected as PS pixels using the amplitude-based algorithms of
the conventional method. Moreover, not requiring a prior model of deformation velocity
is an important advantage of the PSInSAR procedure. This method relies on the spatially
correlated nature of the deformation rather than requiring a known model of the temporal
deformation [35]. The interferometric phase terms can be written as [35]:

Φint = Φde f o + Φatmos + Φorbit + Φtopo + Φnoise (1)

where Φde f o is the phase change due to deformation along the line-of-sight (LOS) direction,
Φatmos is the atmospheric delay, Φorbit is the orbit error, Φtopo is the DEM error and Φnoise
is the noise due to variability of scattering. The Φde f o, Φatmos, Φorbit and Φtopo are assumed
spatially correlated over distances. The PS pixel is defined when the noise term is small
enough.

Thus, in this study, the PSInSAR method was applied to calculate and analyze the
slow-moving phenomenon of the Huafan University campus with C-band Sentinel-1A/B
images. A set of 177 Sentinel-1A/B interferometric wide swath images (single polarization
VV) acquired in the ascending orbital geometry and 160 images acquired in the descending
orbital geometry during the period from approximately October 2014–October 2019 were
used in the PSInSAR calculation procedure. In addition, a dataset of 14 Sentinel-1A/B
images acquired in the ascending orbital geometry from 29 February 2020 to 25 May 2020
was used to verify the effectiveness of the deployment of the CR. To remove the phase
caused by the topography, the 30 m Shuttle Topography Mission (SRTM) digital elevation
model (DEM) is applied. This study used Sentinel Application Platform (SNAP) software,
which was developed by the European Space Agency (ESA), to generate interferograms
of the single look complex (SLC) images from Sentinel-1. Then, we applied the widely
used PSI software package StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-
Temporal InSAR) [38,39] for determining the PS pixels of all interferograms. A newly
developed software package, which called snap2stamps, can integrate the output of SNAP
with StaMPS to perform the PSInSAR processing [40,41]. Therefore, the displacement along
the radar line of sight (LOS) direction can be measured and calculated based on the phase
difference of the PS pixels in the SAR images over a long period of time.

3.2. Calculation of the Projected LOS Velocity and 2D Displacement Velocity Field

The most representative component of a translational landslide movement is consid-
ered to be along the direction of the maximum slope. However, a PSInSAR measurement
can only detect the displacement component parallel to the LOS direction. Thus, to facili-
tate data interpretation and compare landslide velocities with different slope aspects, we
projected the LOS velocity derived from both the ascending and descending images onto
the maximum slope direction as Vslope in the study area. The formula used to calculate the
value of Vslope was modified from previous studies [42–44]:

Vslope = VLOS/C (2)

The coefficient C is calculated from the parameter slope (S) and aspect (A) in degrees
derived from the DEM data, and the direction cosine of the LOS is represented as NLOS,
ELOS and HLOS:

C = NLOS(cos cos (S) ·sin sin (A − 90))− ELOS(cos cos (S)·cos cos (A − 90)) + HLOS(sin sin (S)) (3)
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NLOS, ELOS and HLOS also represent the percentage of the real displacement vector
registered along the LOS direction of the sensor and can be estimated using the following
equations: 

NLOS = − cos(90 − α)· cos(180 − γ)
ELOS = − cos(90 − α)· cos(270 − γ)

HLOS = cos(α)
(4)

where α indicates the incident angle of the SAR sensor and γ indicates the LOS azimuth in
degrees. Table 1 shows the average value of the direction cosine of the LOS of the ascending
and descending orbital geometries in this study area. For instance, the HLOS derived from
the calculation based on descending SAR images is 0.82, which means that approximately
82% of the possible vertical displacement can be detected by the PSInSAR analysis based
on the Sentinel-1 images.

Table 1. The percentage of possible displacement of N-S, E-W and vertical direction that can be
detected by the PSInSAR analysis based on the ascending and descending Sentinel-1 SAR images.

N–S E–W Vertical

Ascending 15% 67% 73%

Descending 12% 56% 82%

The 2D displacement velocity field, including eastward and vertical motion, can be
obtained based on two different satellite viewing geometries: ascending and descending.
To analyze the 2D displacement field, the ascending (vLOSa) and descending (vLOSd)
LOS velocities were interpolated using the inverse distance weighted (IDW) method with
15 × 15 spatial resolution in ArcGIS. Then, the equations modified from previous studies
were used for calculating the 2D displacement fields, assuming that the north component
is negligible [42–44]:

Veastward =
((vLOSd/HLOSd)− (vLOSa/HLOSa))

((ELOSd/HLOSd)− (ELOSa/HLOSa))
(5)

Vvertical =
((vLOSd/ELOSd)− (vLOSa/ELOSa))

((HLOSd/ELOSd)− (HLOSa/ELOSa))
(6)

where HLOSa, HLOSd, ELOSa and ELOSd indicate the direction cosines of the LOS vector
derived from the ascending (a) and descending (d) orbital geometries, which are calculated
by the azimuth (γa and γd) and the incidence angle (αa and αd) in degrees:{

ELOSa = − cos(90 − αa)· cos(270 − γa); ELOSd = − cos(90 − αd)· cos(270 − γd)
HLOSa = cos(αa); HLOSd = cos(αd)

(7)

3.3. Corner Reflector Design and Deployment

According to previous studies, corner reflectors have been successfully installed in
the field to increase the persistent scatterers for monitoring slope deformation using inter-
ferometric synthetic aperture radar (InSAR) techniques where natural persistent scatterers
are sparse or nonexistent [45–48]. It is possible to design a network of corner reflectors
based on geodetic requirements and cover the whole area of interest with arbitrary spatial
density. However, there are few research results of applying corner reflectors to monitor
the displacements of slow-moving landslides in Taiwan.

The most commonly used corner reflector consists of three triangular metal panels
welded perpendicularly to each other to form a trihedral shape. To obtain a bright and
stable response in SAR images, specific requirements are needed for the design of trihedral
corner reflectors [45–48]. To reach the maximum radar cross section (RCS), the orientation
of the reflectors relative to the radar should be carefully determined and measured. The
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orientation of the corner reflector needs to be perpendicular to the orbit of the satellite.
The radar LOS and the axis-of-symmetry of the corner reflector must be parallel, which is
related to the incident angle of the SAR acquisition. As a result, the corner reflectors can
effectively reflect the signal from the SAR sensor with a maximum response. In addition,
the installation of corner reflectors should be avoided in shadow and layover areas. These
requirements allow the corner reflector to be detected by the SAR sensor with sufficient
intensity.

The minimum size of a corner reflector is a function based on the wavelength of the
SAR sensor and the backscattering level of the surroundings. The RCS is a backscattering
coefficient of a target, which represents the ability of the target to reflect radar signals to
the radar receiver. The theoretical peak RCS value (σmax) of a trihedral corner reflector is
identified by the edge length of the corner reflector using the equation below [45,48,49]:

σmax = 4πα4/3λ2 (8)

where λ is the wavelength of the radar and α is the length of the leg of the right triangle.
Typical backscatter levels of flat cultivated terrain with low vegetation are approximately
within the range of −10 dB to −14 dB when considering a range of radar incidence
angles of C-band satellites [48]. To detect a corner reflector in a C-band SAR image, the
difference in the RCS between the corner reflector and the surroundings should be larger
than 30 dB [45,48]. Under the conditions of using Sentinel-1 satellites with a wavelength of
5.67 cm and setting a small corner reflector with a leg length of 1 m, the maximum RCS
value of the corner reflector is 30 dB, which is enough to identify the corner reflector against
the vegetated surroundings.

In the present case, one trihedral corner reflector was set up in a garden of the upper
part of the Huafan University campus where natural persistent scatterers are nonexistent.
Since the slope faces southwest, the ascending acquisitions can provide better sensitivity
to the downward displacement. Thus, the corner reflector was deployed according to the
acquisition geometry of the Sentinel-1 ascending orbital geometry, in which the incident
angle (θ) and the direction of the LOS are approximately 43◦N and 79.4◦E from the study
area (Figure 2). The trihedral corner reflector was manufactured by three right triangle
stainless steel panels with a leg length of 1 m and was set up from 27 February 2020 to
4 June 2020.

Figure 2. Geometry of the corner reflector designed for the ascending orbital geometry of the Sentinel-1 satellite, which
was set up at the upper part of the Huafan University campus. The elevation of the corner reflector is 12 degrees and faces
S79.4◦W, which can effectively reflect the signal from the SAR sensor with a maximum response.
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4. Results

For the purpose of monitoring and analyzing the slow-moving landslide at the Huafan
University campus, this study applied 177 ascending SAR images from 22 October 2014 to
26 October 2019 and 160 descending SAR images from 02 November 2014 to 28 October
2019, which were all derived from the Sentinel-1A/B satellites. The dates of the master
images are 28 May 2018 and 05 July 2018, which were selected according to the correlation of
the temporal interval, perpendicular spatial baseline, Doppler centroid frequency baseline
and thermal noise. The results of the PSInSAR method are described in detail as follows:

4.1. Surface Displacement Monitoring of the Slow-Moving Landslide

The slow-moving phenomena of the unstable slopes could be detected clearly using
the PS pixels derived from the ascending and descending images (Figure 3). Red indicates
that the displacement is away from the satellite, while blue indicates that the displacement
is toward to the satellite. The results from the ground monitoring points installed after
2001 [29] around Ming-Yue Building, shown in the purple square (Figure 3), are set as the
reference points during the PSInSAR analysis. These two figures both illustrate significant
displacement along the LOS direction. The slow-moving area detected by the PS pixels in
this study coincides with the two sliding block areas, which are defined by the previous
study [27,29]. The clear slow-moving phenomenon mainly occurs at the area near points
B and E in the larger sliding block, while slower movement occurs near the boundary.
The analysis of the images from both the ascending and descending orbital geometries
revealed a maximum displacement velocity of approximately 6.6 mm/yr along the LOS. A
conservative velocity threshold that defines the state of activity of a slow-moving landslide
is set by Colesabti and Wasowski [18] as ±2 mm/yr. Thus, the smallest displacement
velocities of 2 mm/yr are observed largely outside the sliding blocks denoted as green
circles and are considered to be the stable area in Figure 3.

Figure 3. PSInSAR results of (a) ascending images and (b) descending images. The maximum displacement velocity along
the LOS direction was approximately 6.6 mm/yr. A significant slow-moving phenomenon of the Huafan University campus
was detected. These figures illustrate the surface displacement along the LOS direction. The red color indicates that the
displacement was away from the satellite, while the blue color denotes that the displacement was toward to the satellite.
Green circles indicate the relative stable area. Red lines indicate the areas of the two sliding blocks, while the orange dotted
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line indicates the potential slide area determined by topographic features based on LiDAR-derived topography. The purple
square represents the area of the ground monitoring points used, which were calculated as reference points for PSInSAR
processing. The letters A-F indicate the positions of the selected PS pixels for plotting the time series. The background is an
aerial photo taken on 04 June 2020 by NCDR.

4.2. The Time Series of the Selected PS Pixels

In addition, the PS pixels at different positions of the unstable slope were chosen to
plot the time series from 2014 to 2019 (Figure 4). The mean value of the PS pixels in a radius
of 50 m of the selected PS pixels was calculated to evaluate the surface displacement over
time. The time series of PS pixels A, B and C were derived from the results based on the
ascending images, and D, E and F were derived from the results based on the descending
images. After February 2018, Sentinel-1 SAR images can be acquired every 6 days in
Taiwan, which enhances the continuity of the time series. According to the time series of PS
pixels B and E, the clear slow-moving trend in the middle of the potential landslide area can
be derived. The maximum accumulated deformation of the slope during the monitoring
period could reach approximately 20–30 mm along the LOS direction. The green dashed
line presents the long period surface displacement trend of the slow-moving phenomenon.
The positive slope of the green dashed line indicates that the displacement is toward to
the satellite in the LOS direction, and the negative slope indicates that the displacement
is away from the satellite in the LOS direction. The time series of PS pixels A, C, D and F,
which are at the edge of the potential sliding blocks, show less clear long period surface
displacement. However, regardless of whether the long period surface displacement of
the area is stable, the short period surface variation is shown clearly by the red triangles
of the selected PS pixels. The short period surface variation appears to be related to the
variation of the dry and wet seasons, where precipitation is mainly concentrated from May
to October.
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Figure 4. Time series are calculated from the average of the PS pixels within a 50 m radius of the selected PS pixel based
on the ascending images and descending images from 2014-2019. The distribution of the selected PS pixels is shown in
Figure 3. The time series of PS pixels A, B and C were derived from the results based on the ascending images. These time
series show positive slopes, which indicate the displacements are toward the satellite along the LOS direction. The time
series of PS pixels D, E and F were derived from the results based on the descending images. The negative slopes indicate
the displacements are away from the satellite along the LOS direction. These time series show evident signals of long
period surface displacement and clear short period surface variation. The total displacement amount was approximately
20–30 mm along the LOS direction. The orange triangles indicate the average of the selected PS pixels with an error bar of
one standard deviation. The light blue background indicates the wet season periods, while the white background indicates
the dry season periods. Precipitation data from 01 September 2014 to 11 September 2018 were derived from the rainfall
station on the Huafan University campus, and a precipitation measurement gap existed from 10/2015 to 01/2016.
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5. Discussion
5.1. Projected LOS Velocity and 2D Displacement Velocity Field

Figure 5 shows the results of the LOS displacement velocity projected onto the maxi-
mum slope direction. The coefficient C is strongly sensitive to small slope variations, while
the real direction of movement is most likely more uniform. Thus, a smoother topography
is required. Considering that the spatial resolution of Sentinel-1 for Taiwan is approxi-
mately 10 m, a DEM with a resolution of approximately 20 m was considered appropriate
for the calculation of coefficient C. According to the average values of coefficient C derived
from the ascending and descending orbital geometries of approximately 0.5 and 0.4, re-
spectively, the LOS direction is able to detect approximately 40%–50% displacement along
the maximum slope direction. Thus, the activity threshold of Vslope is set as 2–2.5 times
the LOS activity threshold of approximately ±2 mm/yr. The activity threshold of Vslope is
thereby set as ±5 mm/yr. Compared to the horizontal velocity field derived from the in
situ monitoring points proposed by the previous study [29], the displacement direction and
pattern of the velocity distribution are consistent with the result of Vslope in this study. The
maximum displacement velocity of Vslope is approximately 25 mm/yr and mainly occurs
at the center area of the large potential sliding block of the Huafan University campus.
The maximum horizontal velocity of the in situ monitoring point is about 27 mm/yr [29].
Because the sensitivity percentage of detecting the real surface displacement by the SAR
sensor could not be 100%, the value of Vslope would be slightly underestimated. The
displacement velocity, mostly lower than 10 mm/yr, was estimated at the western small
sliding block. Moreover, the PS pixels provide more displacement information than in situ
monitoring points in the lower area of the large sliding block.

Figure 5. The projection of both ascending and descending LOS velocities along the downslope direc-
tion. The slow-moving phenomenon was significant, and the maximum displacement velocity along
the downslope direction was approximately 25 mm/yr. The arrows indicate that the displacement
was along the downslope direction. The background topography is shown by shaded relief imagery
produced from a 2 m DEM.
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The eastward and vertical displacement fields of the slow-moving landslide derived
from the Sentinel-1 data are shown in Figure 6. According to the result of the eastward
displacement field, the displacement of the two sliding blocks is consistently toward
the westward direction. The maximum value of the westward displacement velocity
is approximately 8 mm/yr. The vertical displacement velocity shows a pattern with
maximum negative values of approximately 5 mm/yr, which means subsidence of the
ground surface in the middle and upper parts of the two sliding blocks. The uplift of
the ground surface is observed at the toe of the sliding blocks according to the vertical
displacement velocity field. The uplift is interpreted as a compressional bulge, which is
a common phenomenon of gravitational deformation [7]. A bulge of buckling material
near the toe of the slope was created while the unstable body slid along a weak interlayer
on the upper slope. This phenomenon is also consistent with the pattern of contractional
strain from the horizontal strain analysis in the previous study of the Huafan University
campus [29].

5.2. Seasonal Surface Fluctuation and Gravity-Induced Deformation

Generally, in the wet season or during heavy rainfall events, the increase in pore
pressure causes a decrease in grain-to-grain friction and effective shear strength. Water
mass loading can increase the gravitational driving force of an unstable slope. Thus,
accelerated movement of a slow-moving landslide can be observed. The hydrology-driven
seasonal acceleration of slow-moving landslides was observed by low temporal revisited
SAR satellites, such as ALOS and ENVISAT. The seasonal acceleration has been described
in previous studies [23–25].

In this study, the opposite slope value of the long period time series derived from the
ascending and descending SAR images can be found due to the geometry of the satellite
orbits. In the ascending case, the slope value of the long period time series is positive, which
indicates that the long period surface displacement is toward the LOS direction. In contrast,
the slope value of the long period time series derived from the descending SAR images is
negative, which indicates that the surface displacement is away from the LOS direction.
These results all indicate the surface displacement toward the south-southwest along the
LOS direction. However, the same seasonal surface fluctuation in both the ascending and
descending results can be detected in Figure 7 These time series show a strong correlation
with precipitation. A seasonal interaction model for interpreting the combined effects of
the pore water pressure and the water mass loading on the vertical surface displacement
was proposed in our previous study [30]. According to the seasonal interaction model,
the increased pore water pressure will cause expansion of the geological materials and
the increased water mass loading will lead to compaction of the geological materials. The
change of surface elevation reflects the overall amount of the expansion and compaction.
Under this condition, the pore water pressure plays a predominant role in determining the
vertical surface displacement, resulting in the surface displacement being in-phase with
the precipitation of this study area. Thus, the slope surface will uplift in the wet season and
subside in the dry season, which is different from the phenomenon of the hydrology-driven
seasonal acceleration. In addition, due to the geometry of the satellite, the SAR sensor is
more sensitive to the vertical displacement than to the SW-NE displacement. This study
suggests that the main displacement component of the seasonal surface fluctuation in the
study area is vertical. The uplift phenomenon in the wet season would be toward the
satellite along the LOS direction, whether in the ascending or descending orbital geometry.
Therefore, the seasonal surface fluctuation detected with the ascending and descending
SAR images would be synchronized. Figure 7 clearly shows that the surface displacement
of a slow-moving landslide involves long period gravity-induced deformation and short
period seasonal surface fluctuation.
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Figure 6. The E–W and vertical displacement fields were obtained from the PSInSAR results of two
different satellite viewing geometries. (a) The surface displacement of the slope toward the west
direction is clearly shown. Red indicates the surface displacement is toward the east, while green
indicates the surface displacement is toward the west. (b) There is significant subsidence on the
upper part of the slope and uplift on the toe of the sliding blocks. Red indicates subsidence of the
surface, while blue indicates uplift of the surface. The background topography is shown by shaded
relief imagery produced from a 2 m DEM.
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Figure 7. The comparison between time series derived from ascending and descending orbital geometries, seasonal surface
fluctuation and gravity-induced deformation are clearly shown. The seasonal surface fluctuation is in-phase with the
precipitation data. According to the two precipitation records derived from the Huafan University campus and the Shih-
Ding rainfall stations with a distance of approximately 4 km, the trend of daily precipitation from the two rainfall stations
is similar, but the amounts of daily precipitation are different. Thus, setting the precipitation threshold value of an early
warning for possible landslide hazards should take care when using the data from the nearby Shih-Ding rainfall station.

There are two precipitation records derived from the Huafan University and the Shih
Ding rainfall stations, denoted as black and gray, respectively. The Shih Ding rainfall station
is approximately 4 km from the Huafan University campus. Although the trends of daily
precipitation from these two rainfall stations are similar, the amounts of daily precipitation
are different, which indicates that the distribution of the amounts of precipitation will
change even in nearby areas. The precipitation threshold is very important for the early
warning of an unstable slope. Unfortunately, the precipitation data at the Huafan University
campus were recorded only until September 2018. The precipitation data derived from
nearby rainfall stations can provide some reference information but should not be adopted
directly for the precipitation thresholds during possible landslide movement emergency
events.

5.3. Assessment of a Corner Reflector Installed at the Huafan University Campus

The whole potential sliding area is determined by the characteristics of the topography
(area labeled by orange dashed line in Figure 1a), which is much larger than the Huafan
University campus. However, PSInSAR cannot detect the surface displacement without
persistent scatterers (such as buildings) from the Huafan University campus. Thus, a
test of a trihedral corner reflector was set up in a garden, where there are no natural
persistent scatterers. The intensity and coherence maps of SAR images, which were
without (Figure 8a–c) or with (Figure 8d–f) the corner reflector, were analyzed to confirm
that the corner reflector could be detected by the SAR sensor of the satellite. The brighter
color in the intensity map indicates the greater reflected energy of the pixel, and the
brighter color in the coherence map indicates the higher coherence value between two
SAR images of that pixel. Due to the uniform pixel spacings in the azimuth and range
of the SLC data and the projection of the data into a coordinate reference system using
resampling in the terrain correction processing, the reflected signal of the corner reflector
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presents a rectangular shape in the intensity map. The geocoding error may cause the
position of the corner reflector to not be present at the middle of the brighter rectangle
in the intensity map. According to the analysis, the intensity and coherence values were
enhanced significantly and could be detected by the SAR sensor after the corner reflector
was placed. The preliminary time series result of the corner reflector from 27 February 2020
to 4 June 2020 is shown in Figure 9. The surface displacement toward the LOS direction
of the ascending orbital geometry is clearly observable. The displacement velocity of
approximately 39 mm/yr is greater than the relatively stable long period moving velocity
on the upper part of the Huafan University campus. This is due to the time series being
derived from the very short monitoring period, which is within the seasonal fluctuation,
using the corner reflector. Few results of applying corner reflectors for potential landslide
monitoring have been published in the literature in Taiwan. Thus, this preliminary result
provides the feasibility of applying corner reflectors in potential landslide areas to increase
the stable monitoring points where the persistent scatterers are insufficient in Taiwan.

Figure 8. The intensity and coherence maps of the SAR images. The intensity and coherence values were enhanced
significantly after the corner reflector was placed. The intensity maps of the SAR images acquired before the placement
of corner reflector are (a) 05 February 2020 and (b) 17 February 2020. (c) The coherence map calculated between the SAR
images derived on 05 February 2020 and 16 February 2020. The intensity maps of the SAR images acquired after the
placement of corner reflector are (d) 29 February 2020 and (e) 12 March 2020. (f) The coherence map calculated between the
SAR images derived on 29 February 2020 and 12 March 2020. The yellow circle indicates the position of the corner reflector.

Figure 9. The time series showing the average values of the PS pixels in a 50 m radius of the corner reflector from
27 February 2020 to 4 June 2020 of the ascending orbital geometry. The surface displacement velocity detected by the corner
reflector is approximately 39 mm/yr, which indicates short period seasonal fluctuations and is higher than the long period
gravity-induced deformation. The orange triangles indicate the average of the selected PS pixels with an error bar of one
standard deviation. The green dashed line indicates the linear regression of the time series.
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6. Conclusions

The multitemporal interferometry techniques have been widely used to monitor
surface deformation in several studies. The PSInSAR method, which is one of the multi-
temporal interferometry techniques, shows the ability to monitor slow-moving landslides
effectively for a long period of time in this study. The major findings of this PSInSAR
analysis based on the Sentinel-1A/B data are listed as follows:

1. The surface displacement pattern derived from the PSInSAR in this study is consistent
with the active areas of the two sliding blocks, which were identified by field surveys
and in situ monitoring data on the Huafan University campus in northern Taiwan.
The PSInSAR method can compensate for the lack of in situ measurements of surface
displacement.

2. According to the time series from the PS pixels, the movement of the slow-moving
landslide can be divided into long period gravity-induced deformation and short pe-
riod seasonal surface fluctuation. Based on the geological and hydrological conditions
of this study area, the effect of pore water pressure predominated over the effect of
water mass loading. The seasonal surface fluctuation is in-phase with precipitation.

3. By comparing the precipitation data from the campus and a nearby rainfall station,
it was noted that the distribution of the amount of precipitation will change even in
nearby areas. Therefore, the precipitation data derived from nearby rainfall stations
should not be adopted directly as precipitation thresholds for an emergency evac-
uation due to possible landslide hazards. The installation of a rainfall gauge at the
precise location of a potential landslide should be considered for evaluating possible
landslide hazards.

4. The preliminary results of the corner reflector in this study provide the feasibility
of applying corner reflectors in potential landslide areas in Taiwan where persistent
scatterers are insufficient.
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