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Abstract: Remote sensing satellite images in the optical domain often contain missing or misleading
data due to overcast conditions or sensor malfunctioning, concealing potentially important informa-
tion. In this paper, we apply expectation maximization (EM) Tucker to NDVI satellite data from the
Iberian Peninsula in order to gap-fill missing information. EM Tucker belongs to a family of tensor
decomposition methods that are known to offer a number of interesting properties, including the
ability to directly analyze data stored in multidimensional arrays and to explicitly exploit their multi-
way structure, which is lost when traditional spatial-, temporal- and spectral-based methods are used.
In order to evaluate the gap-filling accuracy of EM Tucker for NDVI images, we used three data sets
based on advanced very-high resolution radiometer (AVHRR) imagery over the Iberian Peninsula
with artificially added missing data as well as a data set originating from the Iberian Peninsula with
natural missing data. The performance of EM Tucker was compared to a simple mean imputation,
a spatio-temporal hybrid method, and an iterative method based on principal component analysis
(PCA). In comparison, imputation of the missing data using EM Tucker consistently yielded the most
accurate results across the three simulated data sets, with levels of missing data ranging from 10
to 90%.

Keywords: missing data; imputation; data completion; remote sensing; tensor decomposition; Tucker;
multiway analysis; machine learning

1. Introduction

The presence of missing data caused by clouds or artifacts in optical satellite data is
something that needs to be dealt with in order to obtain a complete time series describing
land–surface dynamics.

State of the art algorithms to complete missing information in remote sensing data can
be divided into four main categories: Spatial-based, temporal-based, spectral-based, and
hybrid methods [1]. Spatial-based methods make use of spatial information to estimate
missing data, for example spatial interpolation [2,3], which uses the weighted average
of pixels surrounding the missing region [1]. Despite generally being computationally
efficient and easy to implement, these methods tend to not perform well when the missing
areas cover large heterogeneous regions [4]. Temporal methods utilize data from the same
region at different time points. Different temporal replacement methods exist, which can
be implemented on a pixel-by-pixel basis [5,6], patch-by-patch [7,8], or on a whole missing
region [9–11]: Temporal filter methods include sliding window filter methods, which are
commonly used to reconstruct normalized difference vegetation index (NDVI) time-series
data [12–16] according to some criteria; function-based curve-fitting methods [17–20]; frequency
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domain methods [21,22]; and temporal learning based methods [23,24]. Temporal methods
tend to perform poorly when the landscape or vegetation changes substantially through
dynamical effects due to cloudy conditions or when clouds persist in time and space.

Spectral-based methods are typically multivariate, making up for missing data in
one channel by gathering information from the same spatio-temporal unit by using all of the
available channels. However, for the optical and thermal range of 400–12,000 nanometers,
any missing data in a single channel will result in missing data in all of the channels because
clouds are not transparent to radiation at these wavelengths. Wang et al. [25] applied poly-
nomial regression to predict the reflectance of channel 6 of the aqua moderate resolution
imaging spectroradiometer (MODIS) sensor, where 15 of the 20 detectors are nonfunctional
or noisy channels. This can be useful where one of the channels is malfunctioning due to
technical reasons. However, this method cannot be applied to gap-fill for cloudy conditions
because clouds are opaque in the optical thermal range, meaning that missing information
in one channel will be missing in other channels as well.

Lastly, hybrid methods blend two or more of the above-mentioned categories, com-
bining the strengths of each method with existing examples of implementations including
joint spatio-temporal [26,27] and joint spatio-spectral methods [28]. The simplest form of
a joint method is to implement two or more of the above-mentioned methods successively,
feeding the results of one method into the next algorithm. Sarafanov et al. demonstrate
a successful implementation of a successive spatio-temporal method using a machine
learning approach [29].

Successive utilization methods do not, however, exploit the existing correlation be-
tween different dimensions of the data. Attempts to remedy this include a novel method
proposed by Cheng et al. [27] that merges concepts from the spatial and temporal cate-
gories, imputing missing data from different spatial locations at different times, assuming
that similar groups of neighboring pixels in a given image will have similar dynamics in
multitemporal images. Further exploiting the multiway structure of the data by including
all modes (dimensions of a tensor, meaning spatial, temporal, and spectral) is however
possible with tensor decomposition, a widely used group of algorithms in data mining that
is rapidly becoming more relevant and useful with the increasing computational power
and storage capabilities of modern computers [30]. A major advantage of tensor decom-
position methods is the ability to explicitly take into account the multiway structure of
data [30], thereby taking advantage of relationships between pixels in the spatial, spectral,
and temporal dimensions. It is well documented that tensor decomposition methods can
be used to fill in missing data accurately, even when a large proportion of the data is
missing [31–33]. The amount of missing data that can be handled while still obtaining
accurate results will depend on the tensor decomposition method that is used as well as the
structure of the tensor that is decomposed. It has been shown that applications of Tucker
decomposition, one of the most widely used methods for gap-filling data in domains other
than remote sensing, such as chemometrics [34] or big data for traffic applications [35], can
successfully reconstruct noisy tensors with up to 95% missing data [36], but they have not,
to our knowledge, been applied to gap-fill time series data from remote sensing data sets
at present.

The Iberian Peninsula is a perfect natural laboratory to test gap-filling methods for the
remote sensing indices of vegetation greenness due to its large bioclimatic gradients and
high seasonal and interannual climatic variations that create dynamic patterns. In addition,
land use changes [2,37,38] such as afforestation [39], intensification, aridification, and more
frequent forest fires [3,40,41] are prevalent. Given the uncertainty in projected climate
change for future decades [42,43], it is crucial to monitor also monitor vegetation changes
at a regional scale. These can be accomplished in a cost-effective way by using satellite
data. NDVI is a good indicator of changes in vegetation growth and senescence associated
with climate and human impacts [44–47]. The NDVI high-resolution data set from the
Iberian Peninsula from Vicente-Serrano et al. [48], which spans 34 years, has been used to
assess drought impacts or forest resilience using biweekly composites [49–51]. Increasing
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the temporal resolution to daily time scale can improve biological forecasting by detecting
early warning signals of abrupt transitions or ecological thresholds [52,53].

The goal in this study is to assess the performance of expectation maximization (EM)
Tucker, a Tucker implementation that iteratively imputes missing data to fill in gaps caused
by clouds or low viewing angles in NDVI images from the AVHRR sensor. We used
both simulated and real data sets and benchmark the results through comparisons with
state-of-the-art methods for gap-filling NDVI time series.

The paper is structured as follows: First, two study regions are introduced followed
by an introduction of different gap-filling methods and the performance metrics that we
used to compare those methods. Three data sets based on the first study region were
established, and missing data were added artificially in order to benchmark the methods.
A fourth data set was established based on the second, larger study region. This data set
contained natural missing data. We applied all of the methods discussed in an earlier
section to this fourth data set in order to demonstrate the application’s performance in
a comparative fashion in a real-world situation.

2. Study Region and Data Set
2.1. Study Region

We investigated two separate regions on the peninsula, both of which are within
the borders of Spain. The first region (study region 1) is bound by 39◦10′N–38◦51′N and
−2◦58′E–2◦36′E and primarily consists of forested land, pastures, and cropland. There are
no large bodies of water within the region. The second region (study region 2) is located
further south and is bound by 36◦56′N and 36◦45′N and −3◦58′E and −2◦37′N. This is
a larger and more diverse region and includes the greenhouse covered region in the plains
of Campo de Dalías in the south-east, the Sierra Nevada mountain range, a few bodies
of water as well as shrublands, small forests, and croplands to the north and west. The
two study regions were identified by selecting spatial subsets from the Iberian Peninsula
after a screening process looking for sites with enough spatial variability driven by different
land cover types. An additional criterion for study region 1 was that it needed to contain
as little missing data as possible. Observations of the Iberian Peninsula over the course of
the chosen time frame are shown in Figure 1. Study regions 1 and 2 are indicated by black
rectangles. In addition, Figure 2 shows enlarged plots of the two rectangles.

2.2. Data Sets and Pre-Processing

The Iberian data set consists of daily AVHRR images taken between 1981 and 2015
and encompasses Portugal, Spain, Gibraltar, Andorra, and a small part of Southern France.

The data were acquired from the satellites NOAA-7, -9, -11, -14, -16, -18, and -19
at a spatial resolution of 1.2 km. Daily images were subject to processing that included
calibration and cross-calibration, geographical matching, cloud cover removal, top-of-the-
atmosphere reflectance calculation, and topographical correction. Details of the processing
procedure can be found in [48]. Daily red and infrared reflectance were used to calculate
the NDVI index.

Daily NDVI data are available for the entire time period between 1989 and 2015.
However, we only used data from a single year (2008), as we assumed that the temporal
patterns would be redundant across several years and because we wanted to demonstrate
that the method is also applicable to real-world scenarios where less data are available.

The reduced data set (2008) consists of 366 images, each of which contains 1115× 834 pixels.
A large part of the frames is empty, and the remaining ones indicate some degree of missing
data. The missing data are the result of prior artifact removal, which was applied to cope
with heavy cloud cover, high view angles, or because the images were damaged in some
way. Overall, missing data constitute 90% of the data set. There are 215 time frames that
contain no data at all. Disregarding these empty frames as well as the ocean (see the
estimated shoreline in Figure 1f), the amount of missing data drops to 56%. After removing
frames that contain very little or no data, 66 frames remained, resulting in a multiway
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array of 1115 horizontal × 834 vertical × 66 temporal pixels. Examples of five chosen time
frames with various levels of missing data can be seen in Figure 1.

To quantitatively assess the performance of the gap-filling methods, it was necessary
to have ground truth values. This is not possible when data are missing due to clouds
unless ground sensors are available. To overcome this, we used study region 1, which
contained little missing data in order to create three different data sets, namely SIM1, SIM2,
and SPAIN1. These were used for model evaluation. Study region 2 contained natural
missing data and was used to create a fourth data set, namely SPAIN2, which was used
to demonstrate how the gap-filling methods function when applied to a larger area. An
overview of all of the data sets is shown in Table 1.

Figure 1. Seasonal NDVI differences on the Iberian Peninsula in 2008: 23 January (a), 2 April (b),
18 June (c), 24 August (d), and 15 November (e). The smaller black rectangle near the middle of the
peninsula shows study region 1, and the larger black rectangle in the south shows study region 2.
The last subfigure (f) depicts a mask, which was used to separate ocean from land, with white
representing land, and black representing ocean.
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Figure 2. Enlarged study regions as indicated by the black rectangles in Figure 1 referring to
23 January. (a) shows study region 1, and (b) shows study region 2. Note that the latter is three times
larger than the former. Study region 2 contains natural missing data (white), unlike study region 1.

Table 1. An overview of all data sets used in this study. The resulting data sets will be referred to by
the corresponding aliases.

Alias Description Dimension

SIM1
Constructed by repeating a single time frame from

study region 1 with no missing data. Missing data were
added artificially. Used for model evaluation.

30 × 30 × 30

SIM2 Constructed by adding noise to SIM1. Missing data
were added artificially. Used for model evaluation. 30 × 30 × 30

SPAIN1
All time frames from study region 1 with no missing
data. Missing data were added artificially. Used for

model evaluation.
30 × 30 × 54

SPAIN2
Study region 2 with natural missing data. No ground

truth data available. Used to demonstrate the
performance of the models visually.

90 × 90 × 66

The purpose of the simulated time series data sets (SIM1-2) was to conduct a proof-of-
concept study under well controlled conditions. The real time series data sets (SPAIN1-2),
on the other hand, were used to demonstrate performance with real imagery. SIM1, SIM2,
and SPAIN1 were used to evaluate the algorithms with different levels of artificially added
missing data. The fourth data set, SPAIN2, was used to demonstrate the application of the
algorithms to a larger area (11,660 km2) of the Iberian Peninsula. Thus, for SPAIN2, the
actual ground truth values were not known.

The simulated data sets were constructed using the methods described as follows: For
SIM1, a single time frame (23 January) was selected from study region 1, as indicated by
the small black rectangle in Figure 1. This time frame was replicated 30 times, as shown in
Figure 3. All 30 frames in SIM1 were completely identical. To construct the data set, SIM2
gaussian noise with a mean µ = 0 and standard deviation σ = 0.02 was added to all of the
SIM1 pixels.

For SPAIN1, study region 1, which contained an overall low amount of missing data,
was selected (upper rectangle in Figure 1). All of the time frames indicating missing data
were removed. The dimensions for all of the aforementioned data sets are shown in Table 1.
A selected number of time frames from SPAIN1 are shown in Figure 4.
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Figure 3. A single time frame from study region 1 corresponding to 23 January is shown in (a). This
particular day was selected because it contained no missing data. The chosen frame was replicated
30 times (b) to form a 30× 30× 30 data set (SIM1). Subsequently, missing data were added artificially.

Figure 4. Selected time frames in the SPAIN1 subsection from the Iberian data set (study region 1),
which contained no missing data. The important thing to notice here is that the frames change
over time.

Missing data were added to SIM1, SIM2, and SPAIN1 in two different ways. First, pix-
els were removed completely at random (MCAR) until the missing data reached a desired
percentage of elements. Secondly, pixels were randomly removed in 5 × 5 blocks at a time,
resulting in data that were missing at random (MAR). The levels of missing data that were
analyzed were 0%, 1%, 2.5%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, and
99%. Examples of three levels of missing data are shown in Figure 5.

In the Iberian data set, the distribution of the missing data appears to be MAR due to
the fact that clouds would typically cover patches of land, leading to block-wise missing
data. The addition of missing data was conducted a number of times in order to generate
data sets that could indicate different levels of missing data in order to evaluate how this
aspect would affect the gap-filling performance of the algorithms.
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The geographic area of the SPAIN2 data set is shown in Figure 1 and is indicated by
the lower rectangle (study region 2). The SPAIN2 dimensions were 90 × 90 × 66 pixels.
As the ground truth values were not known, SPAIN2 was solely used to demonstrate the
application of EM Tucker for the gap-filling of a larger area. Results are presented and
compared to four reference methods by visual means only.

Figure 5. Three different levels of missing data for one frame in SIM1 are displayed as examples.
Upper row indicates data missing completely at random (MCAR). Lower row indicates data missing
at random (MAR).

3. Methods

Throughout this paper, tensors will be denoted using upper-case calligraphic letters,
matrices and vectors will be denoted using bold, scalars will be denoted using lower-case
letters, and matrix or tensor dimensions will be denoted using upper-case letters.

3.1. Tucker Decomposition

Tensors, or multiway arrays, are higher-order generalizations of vectors and matrices.
Each dimension of a tensor is called a mode. A matrix is a second order (or two-way)
tensor indicating two modes, referring to rows and columns. A third order tensor has
three modes, referring to rows, columns, and so-called tubes. As a consequence, matrices
store data in “tables”, while third order tensors store data in “boxes”. We will denote third
order tensors as X I×J×K, where I corresponds to the number of rows or horizontal pixels, J
corresponds to the number of columns or vertical pixels, and K corresponds to the number
of tubes or frames. Using this notation, the data sets that were previously introduced
can be denoted as X 30×30×30

SIM1 for SIM1, X 30×30×30
SIM2 for SIM2, X 30×30×54

SPAIN1 for SPAIN1, and
X 90×90×66

SPAIN2 for SPAIN2 in tensor form.
Formally, Tucker decomposes a three-way tensor X I×J×K into the three loading matri-

ces AI×P, BJ×Q, CK×R and a core tensor GP×Q×R, where P, Q, and R denote the ranks in the
respective modes (see Figure 6) [54,55]. The rank of a given mode can be understood as the
number of independent loading vectors that are necessary in that mode to reconstruct the
systematic variation in X . The decomposition is described element-wise in Equation (1).
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Figure 6. A visual representation of the Tucker decomposition (a). The third order tensor X is
decomposed into a core tensor G and the loading matrices A, B, and C. The residuals are represented
with E , a tensor that is the same size as X . The Tucker decomposition allows for different ranks
along the tensor modes, which are denoted as P, Q, and R. The imputation process of EM Tucker is
described in (b).

xijk = ∑P
p=1 ∑Q

q=1 ∑R
r=1 aipbjqckrgpqr + eijk (1)

where xijk represents a pixel at the i-th row, the j-th column, and the k-th tube of the tensor
X . Alternatively, the Tucker decomposition can be formulated using matrix notation, as
shown in Equation (2):

X(1) = AG(1)(C⊗ B)T + E(1) (2)

where ⊗ denotes the Kronecker product, and X(1) is the matricized tensor X across the
first mode, as defined by Equation (3).

X I×J×K → XI×JK
(1) (3)

The objective of the Tucker model is to minimize the reconstruction error determined
via the following loss function equation, Equation (4), where ‖ · ‖2

F represents the squared
Frobenius norm.

L(A, B, C) = ‖X(1) −AG(1)(C⊗ B)T‖2
F = ‖E(1)‖

2
F (4)

Here, E(1) represents the residual tensor matricized across its first mode. The objective
is most commonly achieved through the use of the alternating least squares algorithm
(ALS), which updates the estimates of the loading matrices A, B, and C and the core tensor
G in an iterative fashion, as shown in Equations (5)–(8).

A← X(1)

(
G(1)(C⊗ B)T

)†
(5)

B← X(2)

(
G(2)(C⊗A)T

)†
(6)

C← X(3)

(
G(3)(B⊗A)T

)†
(7)

G ← X ×1 A† ×2 B† ×3 C† (8)

where (·)† denotes the Moore–Penrose inverse, and ×n is the so-called n-mode product
indicating the following property, see Equation (9):

X ×1 A = Z such that Z(1) = AX(1) (9)



Remote Sens. 2021, 13, 4007 9 of 22

In the present context, the intuition behind the Tucker decomposition can be under-
stood as the desire to find a linear combination of outer vector products between the spatial
loading vectors in B and C in order to form “factor landscapes”, which are then scaled by
scores in A to reconstruct the original data as accurately as possible. Because of this, the
spatial loading vectors in B and C can interact or “cross-talk”. The interaction pattern of
these loading vectors is encoded in the core tensor G. An illustrative overview of the EM
Tucker decomposition as well as a flowchart describing the imputation process is provided
in Figure 6.

3.2. EM Tucker for Imputation of Missing Values

The loading matrices A, B, and C are typically initialized using higher order singular
value decomposition (HOSVD) [30]. However, HOSVD cannot be used directly in the
presence of missing data, as the loss cannot be determined; therefore, prior imputation
or marginalization is required. In this study, the imputation approach is chosen, which
entails replacing missing data with sensible values before the Tucker decomposition can be
applied. One example of a comprehensive imputation approach includes the expectation
maximization (EM) algorithm [56], which assumes normal distribution, equal variance,
and independence of the residuals.

To gap-fill missing data, we applied EM Tucker, which can be understood as a mod-
ification of the Tucker algorithm, such that the iterative imputation of missing values is
possible during the ALS fitting procedure [31]. In particular, Equations (5)–(8) are applied
to a tensor X̃ , which is defined such that

X̃ (s) = X ∗ Y +M(s) ∗ (1−Y) (10)

where ∗ denotes the element-wise product, 1 denotes a tensor containing ones,M(s) de-
notes the so-called interim model reconstruction at iteration s, and Y is a tensor containing
elements yijk such that

yijk =

 0 i f
∣∣∣xijk missing

1 i f
∣∣∣xijk not missing

(11)

Using this procedure, the imputed values are updated at each ALS iteration by using
the interim modelM(s). This resembles the maximization step. To incorporate the updated
tensor X̃ (s), the loss function is modified with respect to Equation (10), such that

L
(

A(s), B(s), C(s)
)
= ‖X̃(s)

(1) −A(s)G(s)
(1)

(
C(s) ⊗ B(s)

)T
‖2

F (12)

The loss calculation hereby represents the expectation step of the EM algorithm.
Initial imputations for X̃ (0) are obtained via a combination of row and column means
from the matricized tensor. This is completed prior to the initialization of the EM Tucker
algorithm [57].

3.3. Model Selection

Decisions needed to be made in order to select the appropriate ranks—or number
of components—across the three different tensor modes for the Tucker decomposition.
Generally speaking, the reconstruction error will decrease as the number of components
increases. However, this will eventually lead to the overfitting of the data, which could
result in the potential loss of accuracy when gap-filling any missing data. Strategies for
choosing the correct number of components include cross validation strategies as well as
the application of so-called information criteria, such as the akaike information criterion
(AIC) or the Bayesian information criterion (BIC). Atkinson et al. use these methods
to estimate the performance of different models that were applied to NDVI time series
data [58].
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However, due to the fact that ground truth data are not available for the missing data,
AIC and BIC were deemed inadequate to select the optimal number of components across
the tensor modes. Instead, we have chosen an alternative model selection strategy that
relies on the knowledge of the land-use types of the site. In the following we support our
decision through some initial investigations.

We repeatedly decomposed SIM1 (without missing data) using EM Tucker using
different ranks across the spatial modes, P and Q, while assuming the rank across the time
mode to be one (R = 1). The model reconstructions for a single time frame obtained for the
different spatial ranks can be seen in Figure 7. It appears that the model reconstruction
was not accurate when choosing the low ranks across the spatial modes, i.e., the spatial
details were not fully recovered. It is noteworthy that the SIM1 tensor did not contain any
noise. Hence, we expected to obtain a perfect reconstruction given that our model should
capture the systematic variation in the data. We could further see that the reconstruction
improved when increasing the spatial ranks. We concluded that the maximal rank was
necessary across the spatial modes to obtain accurate data reconstructions. Therefore, P
and Q were set to 30 for all Tucker decompositions.

Figure 7. Tucker model reconstructions for a single time frame shown for different ranks in the
spatial modes (P, Q). The tensor that was decomposed here consisted of 30 identical 30 × 30 frames
(SIM1). The reconstruction becomes more accurate as the ranks in both spatial modes are increased.

The time mode rank (R), on the other hand, can be understood as the number of
independent temporal profiles in the spatial data. For SIM1 and SIM2, we know that all of
the time frames contained exactly the same spatial information. Therefore, we chose R = 1
to accurately reconstruct the systematic variation in these tensors. Stated in other words,
there is only one independent temporal profile, i.e., all of the pixel values change jointly
across the different frames.

However, when looking at SPAIN1, we could find two independent temporal patterns
in the data. This is because the region consists of two different land cover types that varied
from each other independently of time. We therefore applied a time mode rank R = 2
to model the systematic variations referring to the two sub-regions within the SPAIN1
data set.

In conclusion, we noted that more temporal components would be required if more
independent temporal changes were present in the data. This would be the case when
trying to gap-fill many very large areas at once using Tucker. However, this is not advisable
due to the fact that decomposing large tensors would require considerably high amounts of
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computational resources, such as computer memory. To mitigate this problem, we limited
the geographic size of the tensors and suggested that larger areas, such as SPAIN2, be
gap-filled in an iterative fashion. If subsets are chosen to be sufficiently small enough, a low
rank can be assumed in the time mode.

To demonstrate this iterative gap-filling procedure, we divided SPAIN2 into nine sub-
regions yielding nine tensors of reduced dimensionality, each indicating 10 horizontal
pixels × 10 vertical pixels × 52 time points. EM Tucker decompositions were conducted
separately for all of the nine tensors.

The selected number of time mode components, R, for the nine EM Tucker decompo-
sitions of the SPAIN2 data set were 5, 5, 2, 2, 4, 4, 5, 2, and 4 when counting from top-left to
bottom-right in a column-wise fashion. The reasoning behind choosing these ranks were
the following: For the EM Tucker decomposition of SPAIN1, we applied R = 2 because
we knew about the occurrence of two independent temporal patterns. The subsequent
reconstruction of SPAIN1 (with 15% of the missing data) using the obtained Tucker model
resulted in 75% of the explained variance among the non-missing pixels. Given the re-
sults from this real-world data set, we defined a threshold of 75%, meaning that for the
application of the method to new data sets, then number of time mode components that
are necessary to explain at least 75% of the variance among the non-missing pixels must
be selected.

3.4. Metrics

To evaluate the gap-filling accuracy, the difference between the reconstructions and the
original tensors needed to be estimated for SIM1, SIM2, and SPAIN1. This was completed
using the relative root mean square error (RRMSE), which is the root mean squared
error (RMSE) where data is missing, as shown in Equation (13), divided by the mean of
the original tensor, see Equation (14). The overall sum of the elements in the tensor X ,
∑I

i ∑J
j ∑K

k xijk, was re-written as ∑X xijk.

RMSE =

√
1

∑Y (1− yijk)
∑X (xPred

ijk − xijk

)2(
1− yijk

)
(13)

RRMSE =
RMSE

x
(14)

As a second metric, the correlation coefficient between the original tensor and the
reconstructed tensor was used. A correlation coefficient close to 1 suggests accurate
reconstructions/imputation of the missing data. Only the tensor elements where data
were missing were taken into account. The correlation coefficient r3D was calculated as
an average across all time frames, as seen in Equation (16). The average predicted value
per k-th frame, xPred

k , was calculated as described in Equation (15).

xPred
k =

1
∑i ∑j(1− yijk)

∑i ∑j xPred
ijk (1− yijk) (15)

r3D =
1
K ∑k

∑i ∑j(1− yijk)(xijk − xk)(xPred
ijk − xPred

k )√
(∑i ∑j(1− yijk)(xijk − xk)

2)( ∑i ∑j(1− yijk)(xPred
ijk − xPred

k )
2
)

(16)

The structural similarity index (SSIM) [59] is a third metric that was utilized in this
paper to better account for spatial differences between the original tensors and the recon-
structed ones. A SSIM of 1 indicates the highest and 0 represents lowest possible structural
similarity between images. Unlike previous metrics, SSIM takes into account both elements



Remote Sens. 2021, 13, 4007 12 of 22

where missing data were present and where they were not. The tensor mean x and standard
deviation σx are defined as shown in Equations (17) and (18).

x =
∑X xijk

N
(17)

σx =

√
∑X (xijk − x)

N
(18)

where N represents the number of elements in tensor X . SSIM was then calculated in the
following way:

σxxPred =
∑X (xijk − x) ∑xPred

(xPred
ijk − xPred )

N
(19)

3.5. Reference Methods

Table 2 provides an overview of all of the imputation methods that were applied to
gap-fill the four data sets. In particular, four different reference methods were chosen to
benchmark the gap-filling performance of EM Tucker, namely a simple mean imputation,
single imputation Tucker, EM PCA, and a hybrid method. Hereby, the simple mean
imputation method served as a baseline for the comparison, as it simply replaced all of the
missing elements with the tensor mean x∗. As such, the tensor mean was calculated by only
taking into account elements where data were not missing, as denoted in Equation (20).

x∗ =
1

∑Y yijk
∑X xijkyijk (20)

For single imputation Tucker (SI Tucker from here on), all missing elements were
initially replaced using the tensor mean, as seen in Equation (20). Subsequently, a Tucker
decomposition was performed on the dense tensor. In contrast to EM Tucker, the initial
imputations of the missing elements were not updated during the ALS fitting procedure.
The optimal number of components were chosen in a similar manner as the one described
for EM Tucker (Section 3.3).

EM PCA is a two-way matrix decomposition. To facilitate the decomposition, the
tensor was matricized, and PCA was applied to the resulting I × JK matrix using an EM
algorithm [60]. The optimal number of PCA components varied between one and two com-
ponents for SIM1, SIM2, and SPAIN1. For SPAIN2, the optimal component numbers were
determined in a similar fashion as the one described for EM Tucker (Section 3.3).

Finally, performance of EM Tucker was compared to a hybrid spatio-temporal imputa-
tion method using a sliding time window. Its components are a temporal-based method
that estimates missing pixels by calculating the average pixels in the same spatial loca-
tion from the closest time frames where that information was available. For this analysis,
a window size of six was used. When none of the six nearest time frames contained data in
the same spatial location of the missing pixel, the missing data were filled using a spatial
method, namely K Nearest Neighbors (KNN). This gradually happened more frequently,
as the percentage of missing data increased. The KNN algorithm imputed the missing data
using the corresponding value from the nearest neighbor column of the IJ x K matricized
tensor. This procedure failed when all of the pixels in a time frame were missing.

We used Matlab (version 2017b) [61] and R (version 4.0.3) [62] during this study. The
specific packages used for the imputations are stated in Table 2.
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Table 2. An overview of all imputation methods applied in this project.

Alias Description Software

Single mean imputation Tensor mean imputed for
missing values No external code used

Single imputation Tucker
(SI Tucker)

Tensor mean was imputed for
missing values prior

to decomposition

“tucker” function, N-Way
Toolbox, Matlab [54]

Hybrid method

Running-window temporal
imputation. Remaining

missing data then imputed
with KNN

“knnimpute” function,
Bioinformatics toolbox,

Matlab [63]

EM PCA
Column mean was imputed

prior to iterative
PCA decomposition

“imputeEM” function,
mvdlab package, R [55]

EM Tucker

A combination of row and
column mean was imputed

prior to iterative
decomposition

“tucker” function, N-Way
Toolbox, Matlab [54]

4. Results

Gap-filling accuracies for the SIM1 data set are shown in Figure 8, with the X-axis
showing the percentage of missing data. For this simulation, low RRMSE’s were expected
because the data simply consisted of identical frames. If a pixel was missing in one frame,
the same information was available in at least one of the other 29 frames for reasonably
low levels of missing data. The results reflect this expectation. All of the models indicated
no error when 0% of the data were missing due to the fact that only missing pixels were
considered during the RRMSE calculation. EM Tucker could reconstruct the tensor close to
perfectly in the MCAR case with up to 80% data missing. The EM PCA algorithm failed
when the missing data exceeded 70% in the MCAR case and 50% in the MAR case. This can
be explained by the fact that no column means could be determined when entire columns
of the matricized array were missing. For the EM PCA algorithm, this step was important
in order to impute missing elements before iterative imputation was conducted.

The RRMSE for the SI Tucker model appeared to grow approximately linearly as the
amount of missing data was increased and approached the level of the EM Tucker for both
conditions, MCAR and MAR, as the missing data reached high levels of around 90%. EM
PCA consistently performed worse than both EM Tucker and single imputation Tucker. All
of the models outperformed the simple mean imputation baseline method, significantly
except for EM Tucker when 95% of the or more was missing, and the hybrid method when
the level was above 70%. The performance of the hybrid method was approximately on par
with EM Tucker in the MCAR case for low levels of missing data but was outperformed
by EM Tucker for levels of missing data above 40%. In the MAR case, the hybrid method
also performed on par with EM Tucker for the same low levels of missing data, and it even
outperformed EM Tucker slightly for MAR at 1–10% and MCAR 1–20%.

In the case of SIM2, Gaussian noise was added to the homogenous tensor, and all
models performed significantly worse, except for EM PCA, which returned similar error
levels as it did prior to adding noise. This puts the EM PCA imputation performance
approximately on par with EM Tucker for the MAR case, and it outperformed EM Tucker
in the MCAR case for all levels of missing data. These results are shown in Figure 9. The
hybrid method was outperformed by single imputation Tucker at 50% levels of missing
data for both cases, and it was outperformed by the simple mean imputation method,
where the missing data exceeded 60%. Interestingly, EM Tucker was outperformed by
both the mean imputation method and single imputation Tucker for levels of missing data
higher than 80%.



Remote Sens. 2021, 13, 4007 14 of 22

Figure 8. RRMSE for different models using the homogeneous tensor, SIM1, with artificially added
MCAR (a) and MAR (b) elements. RRMSE values were calculated at positions indicated by the light
grey vertical lines.

Figure 9. RRMSE for different models using the noisy tensor, SIM2, with artificially added
MCAR (a) and MAR (b) elements.

The results for the same models applied to SPAIN1, the subsection of the Iberian
data set, are shown in Figure 10. As expected, the resulting error rate was higher for all
data completion methods in comparison to SIM1. This was expected, especially when
considering the fact that SPAIN1 had higher variability in time and space than SIM1. On
the other hand, the error rates were comparable to the ones obtained from SIM2. Notably,
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for SPAIN1, EM Tucker yielded the lowest RRMSE for all levels of missing data up to 90%
for MCAR and up to 95% for MAR. The EM PCA imputation performed significantly worse
compared to the other methods. However, it outperformed the hybrid method, where more
than 40% of the data were missing, but the algorithm broke when the missing data reached
70% and 40% for MCAR and MAR, respectively. Single imputation Tucker outperformed
the hybrid method when more than 50% of the data were missing, but it never matched
the performance of EM Tucker.

Figure 10. RRMSE for different models applied to SPAIN1. The tensor contained artificially added
MCAR (a) and MAR (b) elements.

Evidently, EM Tucker was capable of reconstructing the tensor accurately, even when
only fractions of the data remained, with a RRMSE of 12.6% (MCAR) and 16.8% (MAR) for
90% missing data.

To further investigate the performance of the methods when applied to SPAIN1, the
average correlation between the ground truth and the gap-filled data was calculated as
shown in Equation (16) at different levels of missing data. These results are displayed in
Figure 11. For the same purpose, the SSIM was calculated and is shown in Figure 12.

The SSIM and correlation analysis generally revealed the same model hierarchy as
the one that was stated previously. The SSIM scores were generally higher than the
correlation scores due to the fact that SSIM was calculated on a frame-by-frame basis,
while the correlation was calculated on a pixel-by-pixel basis, only taking missing pixels
into account. The results from the mean imputation approach had zero correlation to
the original tensor. This is a model that predicted the same value x∗, for every pixel that
was missing, and it is therefore immediately clear that the correlation is zero. The single
imputation Tucker model performed noticeably worse than EM Tucker did. EM Tucker
displayed the best performance out of all of the algorithms, especially when the missing
data exceeded 40%. Remarkably, EM Tucker maintained a high average correlation at very
high levels of missing data. The EM Tucker reconstructions maintained the highest level
of SSIM throughout all levels of missing data up to 90%, where it was outperformed by
mean imputation for both MCAR and MAR. The main difference between the correlation
analysis and the SSIM analysis is that EM PCA scored slightly higher on the SSIM metric
in relation to the other methods.
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Figure 11. Average correlation between the ground truth and the gap-filled data for SPAIN1 based
on each of the methods at different levels of artificially added missing data, both for MCAR (a) and
MAR (b). The correlation for the mean imputation method was always zero for all levels of missing
data (the black line).

Figure 12. Structural similarity indices (SSIM) for SPAIN1 for all gap-filling methods at different
levels of artificially added missing data, both for MCAR (a) and MAR (b).

Concluding with respect to SPAIN1, we found a clear model hierarchy in terms of
gap-filling performance. EM Tucker significantly outperformed all of the methods that
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were tested, especially at high levels of missing data, only being outperformed by the mean
imputation approach when the missing data reached 95% (for both MCAR and MAR).
Single imputation Tucker generally performed better than the hybrid method, which,
in turn, generally performed better than the EM PCA algorithm. The hybrid method
performed slightly better in the MCAR simulated homogenous case when the frames
were all equal (SIM1), but EM Tucker performed significantly better for all other cases.
However, it is important to note here that the real missing data in the Iberian data set are
not MCAR—they more closely resemble the MAR case.

Lastly, naturally missing data from the fourth data set, namely SPAIN2, was gap-filled
using the five methods. The results for the selected time frames are shown in Figure 13,
where the first column shows the original frames prior to imputation. Missing values are
represented in white.

The individual frames indicate a grid, which specifies the nine sub-regions, that
was used to gap-fill the data in an iterative fashion as outlined in Section 3.3. The time
frames that were chosen to be displayed contained different levels of missing data and
were sampled throughout the year to cover all seasons, with lower NDVI values in the
Sierra Nevada mountains (blue color in the lower center grid). The areas with higher
NDVI during the summer correspond to forested areas in mountain ranges, and the largest
seasonality in NDVI corresponds to agricultural crops showing low NDVI during the
summer (water limited) and winter (temperature limited). It is noteworthy that only the
values that were originally missing change in the reconstructed frames. Therefore, the
reconstructed frames may look somewhat similar between the models at first glance.

It is generally clear that the mean imputation method is heavily biased, as clear
homogeneous patches were used to gap-fill the missing data. EM PCA, on the other hand,
results in somewhat blurry reconstructions or gap-filled information. In contrast, SI Tucker,
the hybrid method, and EM Tucker lead to well-balanced imputations. Nonetheless, the
gap-filled information differs for these three algorithms. 23 July clearly indicates that
SI Tucker results in different reconstructions, i.e., when looking at the middle right sub-
region. For the purposes of interpretation, we have included the results for the previous
day, namely 22 July. Given the assumption that we would not expect regions to change
drastically from one day to another, one can conclude that SI Tucker fails to predict
higher NDVI regions in the middle-right sub-region of 23 July. EM Tucker as well as the
hybrid method results support that conclusion, as both methods predict higher NDVIs in
that region.

The computation times for all of the methods applied to SPAIN2 are shown in Table 3.
This is the combined time that it took to the impute missing data for all nine sub-tensors
within SPAIN2. EM Tucker was noticeably slower than the other methods, with a total
imputation time of just over 6 min. The analysis was conducted on an Intel(R) Core
i5-8250U with 4.00 GB RAM.
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Figure 13. Selected time frames from SPAIN2 (study region 2) are shown across rows (Sierra Nevada
mountains appear in light blue (NDVI = 0) in winter in the low-center cell). The first column shows
the SPAIN2 frames prior to imputation, where missing values are represented in white. The different
imputation methods are shown across the remaining columns. Imputing the missing values, the
SPAIN2 tensor was divided into nine equally large 30 × 30 × 66 sub-tensors, and the imputation was
conducted on each sub-tensor individually. The blue grid, drawn on top of the each of the frames,
shows this division.

Table 3. Total computation time for all methods applied to SPAIN2.

Method Total Computation Time [s]

Simple mean imputation 0.03
Single imputation Tucker 5.11

Hybrid method 1.26
EM PCA 6.06

EM Tucker 363.94

5. Discussion

Looking at the results, it appears that both the hybrid method as well as EM Tucker
are good choices for gap-filling missing NDVI image data. While the application of the
hybrid method is easily scalable to larger geographical areas due to the simple nature of
the algorithm, i.e., each pixel can be processed individually, the major advantage of EM
Tucker becomes evident when large fractions of the data are missing. Our results show
that EM Tucker can beat the performance of the hybrid method in such cases. This can
be explained by the fact that EM Tucker utilizes temporal as well as spatial information
simultaneously, while the algorithm of the hybrid method uses either one or the other to
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gap-fill the missing elements. In addition, we showed that EM Tucker performs better than
the SI Tucker algorithm due to the fact that the former updates the imputed values during
the alternating least squares fitting procedure, as seen in Equation (10). This makes the EM
Tucker algorithm less prone to being negatively affected by initial incorrect imputations,
i.e., the initial replacement of missing elements with column, row, or tensor means or
combinations thereof.

The results obtained through the simulation studies were used to evaluate and com-
pare the gap-filling performance of the algorithms. Furthermore, these results were utilized
to define model selection strategies, i.e., to choose to correct number of components for
the Tucker decomposition. We have compared methods under two scenarios, namely
when data were missing completely at random (MCAR) and when data were missing
at random (MAR), i.e., block-wise. Although we stated that natural missing data would
match the MAR scenario, one must underline the fact that certain geographical regions, e.g.,
mountainous areas, might violate the randomness assumption, meaning that cloud patches
might not be randomly distributed, both with respect to temporal as well as to the spatial
domain. To avoid problems and to ensure that our results from SIM1, SIM2, and SPAIN1
generalize well to real-world applications, we suggest gap-filling larger areas iteratively
using sub-regions of sufficiently small geographical size. This will reduce model complex-
ity and will enable the method to be applied to very large areas, as the decompositions of
the individual sub-regions can be distributed across several computational workers.

Besides the imputation of missing data, tensor decompositions such as Tucker can
be used to detect anomalies if the data contain spatial or temporal indications of them.
These anomalies can be caused by sudden phenological changes from, e.g., fire, insect
attacks, deforestation, or drought. As discussed in Section 3.3, this would lead to additional
independent temporal profiles and, therefore, could only be explained by the Tucker model
if the time mode components were increased accordingly. For monitoring purposes, scores
in the loading matrix A together with the abnormal residuals in E could be used to identify
outlying behavior (see Figure 6a). However, it was not within the scope of this study to
evaluate the methods towards their ability to detect anomalies or outliers. We refer the
reader to other studies that highlight the potential of tensor decompositions for anomaly
detection in satellite data [64].

6. Conclusions

In this study, we presented a proof-of-concept that EM Tucker can be used to gap-fill
missing data in NDVI satellite images. We benchmarked the method against four reference
methods using three data sets with simulated clouds as well as one real-world data set.
While missing data were added artificially to the simulated data sets, a sub-region of the
Iberian Peninsula was used to gap-fill naturally occurring missing data. Benchmark results
indicated that EM Tucker offers superior performance in terms of reconstruction accuracy,
especially when larger fractions of up to 95% of the data were missing. This could be well
explained by the fact that the algorithm utilizes temporal as well as spatial information in
a simultaneous fitting procedure, allowing to all of the available systematic variation to be
incorporated in order to reconstruct the missing elements.

To underline the applicability of the method to real-world scenarios, we applied
EM Tucker to a larger area in the south of the Iberian Peninsula, which contained 15%
missing data overall. The results were presented visually and were compared to the
four reference methods. In order to process larger regions, we propose dividing the area
into smaller geographical sub-regions to be gap-filled individually. This approach lowers
the requirements for computational resources, while offering the ability to process sub-
regions in parallel at the same time. This can be understood as processing a given area
using a “moving box” imputation.

The results suggest that EM Tucker is a viable method to correct measuring errors and
to fill in missing data for satellite imagery. Furthermore, the high accuracy of the algorithm
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could enable improved satellite imagery pre-processing, especially when a big proportion
of the data are corrupted or missing.
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Abbreviations

AIC Akaike information criterion
ALS Alternating least squares
AVHRR Advanced very-high-resolution radiometer
BIC Bayesian information criterion
EM Expectation maximization
HOSVD Higher order singular value decomposition
KNN K-nearest neighbors
MAR Missing at random
MCAR Missing completely at random
MODIS Moderate resolution imaging spectroradiometer
NDVI Normalized difference vegetation index
PCA Principal component analysis
RMSE Root mean square error
RRMSE Relative root mean square error
SI Single imputation
SSIM Structural similarity index
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