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Abstract: Turbidity is an important indicator of riverine conditions, especially in a fragile environ-
ment such as the Tibetan Plateau. Remote sensing, with the advantages of large-scale observations,
has been widely applied to monitor turbidity change in lakes and rivers; however, few studies
have focused on turbidity change of rivers on the Tibetan Plateau. We investigated the pattern of
turbidity change in the middle reaches of the Yarlung Zangbo River, southern Tibetan Plateau, based
on multispectral satellite imagery and in situ measurements. We developed empirical models from
in situ measured water leaving reflectance and turbidity, and applied the best performed s-curve
models on satellite imagery from Sentinel-2, Landsat 8, and Landsat 5 to derive turbidity change in
2007–2017. Our results revealed an overall decreasing spatial trend from the upper to lower streams.
Seasonal variations were observed with high turbidity from July to September and low turbidity
from October to May. Annual turbidity showed a temporally slightly declining trend from 2007 to
2017. The pattern of turbidity change is affected by the confluence of tributaries and the changes
in precipitation and vegetation along the river. These findings provide important insights into the
responses of riverine turbidity to climate and environmental changes on the Tibetan Plateau.

Keywords: multispectral remote sensing; turbidity; Yarlung Zangbo River; S-curve model; spatial
and temporal variations

1. Introduction

Climate change has had significant impacts on the high-altitude and fragile envi-
ronment of the Tibetan Plateau in recent decades [1]. Permafrost degradation [2], glacier
melting, and desertification [3] have been accelerated, affecting the water environment of
the plateau [4]. As one of the main water resources, rivers are facing severe challenges on
the Tibetan Plateau due to climate and environmental changes, as well as the increasing
demand of qualified water for human lives and socioeconomic development [5].

Turbidity is an important indicator of water quality and hydrological conditions of
rivers. As a measure of water transparency, turbidity is associated with the concentration of
total suspended sediments and other impurities in the water [6]. It is commonly monitored
by field measurement and hydrological station observations, which are usually time-
consuming and only limited to discrete sites. With the advantage of broad coverage and
low costs, remote sensing provides an alternative way to monitor turbidity at various
spatial and temporal scales [7]. The integration of in situ measurements and remote
sensing data allows for a coherent quantification of turbidity changes, especially in remote
alpine regions.
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Remote sensing imagery has been used to derive turbidity based on a variety of empir-
ical, semiempirical, and analytical models [8,9]. The common strategy of these models is to
establish the relationships between turbidity and image reflectance based on the calibration
of in situ measurement of water samples [10]. Simple linear models have been found to be
effective and robust for turbidity estimation [11]. However, when suspended sediments
increase to high concentrations (>50 mg/L), the relationship between turbidity and image
reflectance becomes nonlinear and the sensitive wavelength shifted from visible (VIS)
bands to longer wavelength near-infrared bands (NIR) [12,13]. Exponential relationships
have been used to derive the turbidity of water with high concentrations (>50 mg/L) of
suspended sediments [14,15]. Studies suggested that the red band reflectance has the best
performance in terms of retrieving turbidity from multispectral satellite imagery, including
Medium Resolution Imaging Spectrometer (MERIS), Thematic Mapper (TM), Enhanced
Thematic Mapper Plus (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS),
High-resolution Visible and medium InfraRed (HRVIR), and Advanced Visible and Near
Infrared Radiometer (AVNIR) [16–18]. Laboratory experiments also demonstrated that
suspended particulate matter (SPM) has the highest sensitivity to the reflectance of 550–
650 nm [19,20]. Based on established models, satellite imagery has been applied to monitor
seasonal and long-term turbidity changes [21,22]. Turbidity has been found as a robust
indicator for several water quality components, including total suspended sediments,
Chlorophyll-a (Chi-a), Total Phosphate (TP), and Total Nitrogen (TN) [23]. The distribution
pattern of turbidity is affected by rainfall, runoff, and spring tides [22]. These studies,
however, are mostly site-specific and it is hard to extend the relationships established from
these studies to different water bodies.

The Yarlung Zangbo River (YZR) is the largest river on the Tibetan Plateau [24]. It
provides a freshwater supply to Tibetan people [25] and acts as an important corridor
to transfer moisture from the Indian Ocean to the Tibetan Plateau [26]. As the upper
reaches of an international river (Brahmaputra River) flowing from China to India and
Bangladesh, the YZR plays an essential role in water consumption and environment
conservation in this region [27,28]. The YZR basin is the economic and cultural center of the
Tibetan Autonomous Region, China, occupied by over half of the Tibetan population [29].
However, the water environment in the YZR is fragile and vulnerable to climate change
and human interventions [27,30]. It is important to monitor turbidity change of the YZR
because it is critical to the socioeconomic development and ecological stability in this
region. Water quality of the YZR was first reported in 1982, focusing on major ions [31].
Recent studies investigated the distributions and concentrations of mercury (Hg) [26],
total phosphorus (TP) [27], metal elements [29], major chemical compositions [32], and
suspended sediments [6,30,33]. However, most these studies only relied on the scattered
observations from gauging stations. The temporal and large-scale spatial characteristics
of turbidity change are still poorly known due to the difficulties to conduct field survey
on the remote, high altitude, and harsh environment of the YZR [4]. Given its uniqueness,
the empirical remote sensing models developed from other lakes and rivers are likely not
suitable for turbidity monitoring of the YZR. There is an urgent need to develop suitable
remote sensing-based turbidity models to support environment conservation and resource
management in this region.
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In the work reported here, we investigated the spatial and temporal pattern of turbidity
change in the YZR based on Landsat and Sentinel-2 imagery and examined the impacts of
climate and environmental factors on this pattern. Specifically, we first investigated the
relationships between turbidity and spectral signatures of in situ collected water samples
to develop empirical models for turbidity monitoring. Then, we derived the spatial and
temporal patterns of turbidity changes in the middle reaches of the YZR from 2007 to
2017 based on Sentinel-2, Landsat 5, and Landsat 8 imagery. Finally, we explored the
effects of tributaries, precipitations, and vegetations on turbidity change in this area. This
work provides important insights into the responses of riverine turbidity to climate and
environmental changes on the Tibetan Plateau.

2. Materials and Methods
2.1. Study Area

The YZR is one of the highest rivers in the world, flowing from west to east along the
valleys of the southern Tibetan Plateau [6]. It originates from the Gyima Yangzo Glacier
on the southeast of Mount Kailash, northern Himalayas, with a length of about 2057 km
and a drainage area of approximately 240,480 km2 [34]. The YZR is the largest river
on the Tibetan Plateau with an average elevation of ~4600 m (ranging from 147 to over
7000 m) above sea level [35]. As elevation descends from west to east, vegetation gradually
changes from cold desert, to arid steppe, deciduous scrub, and ultimately to conifer and
rhododendron forest [36]. Fed by both snowfall and rainfall, the YZR have perennial
flow throughout the year [29]. The river transports a large amount of sediments from the
Himalayas and the Tibetan Plateau to the Indian Ocean. It is also a natural corridor for the
South Asian Monsoon, transferring airmass and moisture from the Indian Ocean to the
Tibetan Plateau [32].

Our study focuses on the middle reaches of the YZR from Lizicun in Zhongba County,
Shigatse, to Pei in Mainling County, Nyingchi (Figure 1). This area is characterized by
broad intermontane valley basins. The climate is a temperate plateau climate with rela-
tively abundant moisture from the monsoon [37]. Precipitation mainly occurs from June to
September during the wet season with an annual average of 300–600 mm [34,38,39]. The
type of precipitation is mainly rainfall from May to October and snowfall for the remaining
months [40]. The annual mean temperature is −0.44 ◦C with an annual maximum temper-
ature of 6.84 ◦C in summer and minimum temperature of −6.92 ◦C in winter. With the
continuous drop in elevation, it becomes warmer and wetter from upper to lower streams
in this YZR section [35]. Three main tributaries, Nianchu River, Lhasa River, and Nyang
River, flow into the middle reaches of YZR. Three cities of Shigatse, Lhasa, and Nyingchi
are located close to the confluences of these three tributaries, respectively. Accounting for
only 5% of the total area and 10% of the cultivated area, the YZR basin is the principal
agricultural region of the Tibetan Automatic Region, producing more than half of the total
agricultural production and feeding more than half (about 1.5 million) of the residents [41].
It is challenging to maintain a harmonious human–environment relationship in this area
due to the fragile environment and continuously increased human demands.
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Figure 1. The location of study area and the sample sites of in situ measurements. (a) Location and the elevation map of 
the Yarlung Zangbo River Basin in China; (b) sample sites near the confluence of Lhasa River; (c) sample sites near the 
confluence of Nyang River. 

2.2. Datasets 
2.2.1. In Situ Measurement 

To develop accurate turbidity models, we collected water samples and measured wa-
ter-leaving reflectance at 40 sites along the middle reaches of YZR in September 2016 (Fig-
ure 1). Although sampling was limited by inaccessible streams with high flow velocity or 
steep riverbanks, we tried to sample representative water environments, including 
streams before and after confluences of major tributaries, and streams of different widths. 
The sampling sites were distributed in four regions: mainstream near the confluence of 
Lhasa River (included the widest stream section of the YZR), mainstream near the conflu-
ence of Nyang River, and the two tributaries of Lhasa River and Nyang River (Figure 
1b,c). 

Water samples were collected away from the riverbanks and stored properly in pol-
ypropylene bottles. Water sample analysis was conducted in the State Environment Pro-
tection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese 
Research Academy of Environmental Sciences [42]. Water turbidity was measured by 
spectrophotometry (UNICO WFZ UV-2800HA) with Nephelometric Turbidity Units 
(NTUs). The measurement procedure was detailed in article [43].  

Figure 1. The location of study area and the sample sites of in situ measurements. (a) Location and the elevation map of
the Yarlung Zangbo River Basin in China; (b) sample sites near the confluence of Lhasa River; (c) sample sites near the
confluence of Nyang River.

2.2. Datasets
2.2.1. In Situ Measurement

To develop accurate turbidity models, we collected water samples and measured
water-leaving reflectance at 40 sites along the middle reaches of YZR in September 2016
(Figure 1). Although sampling was limited by inaccessible streams with high flow velocity
or steep riverbanks, we tried to sample representative water environments, including
streams before and after confluences of major tributaries, and streams of different widths.
The sampling sites were distributed in four regions: mainstream near the confluence
of Lhasa River (included the widest stream section of the YZR), mainstream near the
confluence of Nyang River, and the two tributaries of Lhasa River and Nyang River
(Figure 1b,c).

Water samples were collected away from the riverbanks and stored properly in
polypropylene bottles. Water sample analysis was conducted in the State Environment
Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chi-
nese Research Academy of Environmental Sciences [42]. Water turbidity was measured
by spectrophotometry (UNICO WFZ UV-2800HA) with Nephelometric Turbidity Units
(NTUs). The measurement procedure was detailed in article [43].
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Water-leaving reflectance was measured by the Analytical Spectral Devices (ASDs)
FieldSpec® 3 field portable spectrometer (Malvern Panalytical, Malvern, UK). This spec-
trometer has a wavelength ranging from 350 to 2500 nm with a sampling interval of 1.4 nm
for the range of 350–1000 nm and 2 nm for the range of 1001–2500 nm [44]. The ASD
spectroradiometer was calibrated for each sampling site to adjust the light conditions
before taking the measurement. We measured the spectrums from the reference board and
river water surface for each sampling site. The measurement was taken with a vertical
downward view at a 30 cm height above the surface under clear-sky conditions. The
reference board was placed on a flat surface near each measured site. Ten spectral mea-
surements were taken consecutively and averaged to minimize the random errors from the
surrounding environment. Water bodies are weak radiators with lower reflectances than
other land cover types. The mixed spectrums from turbid water, river bottom, and adjacent
land surfaces were complicated due to varied stream width, depth, and velocity [45,46].
To reduce the effects of the reflection from the river bottom and surrounding objects, in
addition to the use of reference white boards for calibration, we measured water-leaving
radiance as far away from the riverbanks as possible. We also avoided the locations with
visible river bottoms and mitigated the effects of the surrounding environments in the
field survey.

Water-leaving reflectance was calculated for each sampling site based on the paired
digital numbers recorded by ASD for the reference white board and water surface, respec-
tively. The equation for the calculation is [47]:

Refwater =
DNwater

DNreference
× Refreference (1)

where Refwater is the water-leaving reflectance; DNwater and DNreference are the ASD-
recorded digital numbers from the water surface and reference board, respectively; Refreference
is the reflectance from the reference board (0.994 in this study).

We plotted the spectral curve to examine the derived water-leaving reflectance for
each sample site. The spectral curves of four sample sites have abnormal fluctuations due
to the unstable power supply for the ASD [44]. We removed these four measurements and
used the water-leaving reflectance measurements from the remaining 36 sample sites and
their corresponding water turbidities for further analysis. The reflections become noisy
at >950 nm due to the strong absorption by water. We therefore only used the visible to
near-infrared spectrum (350–900 nm) for the analysis.

To make the reflectance derived from the in situ measurements comparable to the
reflectance recorded on satellite imagery, we integrated the equivalent spectral channels of
each sensor from the field-measured continuous water-leaving spectral curves based on
Equation (2) [48]:

ρ(λ)RS =

∫ λmax
λmin

ρ(λi)f(λi)dλ∫ λmax
λmin

f(λi)dλ
(2)

where λ is the central wavelength of a satellite sensor, [λmin, λmax] is the range of the
spectral channel, ρ(λi) is the measured water-leaving reflectance at λi, f(λi) is the spectral
response function of the sensor, and ρ(λ)RS is the derived remote sensing reflectance at the
band λ.

2.2.2. Remote Sensing Imagery

Multispectral images from Landsat and Sentinel programs were used to monitor
turbidity changes in the YZR. Landsat has collected high-quality and global coverage
imagery since the 1970s. It provides a useful collection of satellite imagery for long-term
monitoring of earth surface changes, including inland water bodies [21–23]. Landsat 5
was launched in 1984 and decommissioned in 2013. It carried two sensors—Multispectral
Scanner System (MSS) and Thematic Mapper (TM). Landsat 8 has been operating since
2013 with two sensors of the Operational Land Imager (OLI) and the Thermal Infrared
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Sensor (TIRS). Sentinel-2 was launched in 2015 with the Multispectral Instrument (MSI)
sensor on board. Compared to Landsat, it has the advantages of higher revisit time, finer
spatial resolution, and more spectral bands. Similar spectral bands between Sentinel-2 and
Landsat images enable data combination for long-term monitoring studies. The Sentinel-2
MSI also includes unique bands with narrow band widths at the red edge and near-infrared
wavelengths to refine water turbidity monitoring. Table 1 lists main technical specifications
of the bands for the Landsat and Sentinel-2 images used in this study.

Table 1. Main technical specifications of the optical satellite images used in this study.

Sensor Bands Spatial Resolution

Landsat 5, Thematic Mapper (TM)
Band 1 Blue (450–520 nm), Band 2 Green

(520–600 nm), Band 3 Red (630–690 nm), Band 4
NIR (760–900 nm)

30 m

Landsat 8, Operational Land Imager
(OLI)

Band 2 Blue (450–515 nm), Band 3 Green
(525–600 nm), Band 4 Red (630–680 nm), Band 5

NIR (845–885 nm)
30 m

Sentinel-2, Multispectral Instrument
(MSI)

Band 2 Blue (459–525 nm), Band 3 Green
(542–578 nm), Band 4 Red (649–680 nm), Band 8

NIR (779–885 nm)
10 m

Band 5 Red Edge (697–712 nm), Band 6 Red Edge
(733–748 nm), Band 7 Red Edge (773–793 nm),

Band 8a NIR (854–875 nm)
20 m

NIR: Near Infrared.

We manually selected 406 scenes of cloud-free and clear images of the study area,
including 227 Landsat 5 TM images in 2007–2011, 119 Landsat 8 OLI images in 2013–2017,
and 60 Sentinel-2 MSI images in 2016–2017. Landsat images were downloaded from Earth
Explorer [49] and Sentinel-2 images were downloaded from Copernicus Open Access
Hub [50]. No clear images were available in 2012, making it a gap year. Table 2 lists the
number of images used in this study.

Table 2. Number of selected images.

Sensors Landsat 5 TM Landsat 8 OLI Sentinel-2 MSI

Year 2007 2008 2009 2010 2011 2013 2014 2015 2016 2017 2016 2017

January 8 2 8 7 8 / 4 2 4 1 4 2
February 2 5 8 7 8 / 4 3 2 2 5 3

March 7 7 7 1 3 / 0 3 3 4 0 2
April 7 3 8 6 4 1 2 1 3 2 0 2
May 4 2 4 2 3 1 1 0 0 2 2 4
June 1 1 4 1 3 0 2 0 0 1 0 2
July 1 2 0 0 0 0 0 0 0 1 0 3

August 1 0 0 1 2 2 0 0 2 1 0 1
September 1 1 1 2 5 3 0 1 0 2 0 2

October 1 4 4 2 3 1 2 4 1 2 3 3
November 0 9 9 9 4 3 5 4 6 6 4 6
December 0 10 5 9 0 6 5 4 5 5 4 8

Total 33 46 58 47 43 17 25 22 26 29 22 38

/: No images available. 0: No clear and cloud-free images.

The downloaded images were Level-1 products, organized as tiled and radiometrically
and geometrically corrected Top-Of-Atmosphere (TOA) digital numbers. Sentinel-2 images
were processed by the Sentinel-2 toolbox on the Sentinel Application Platform (SNAP),
which is developed by European Space Agency (ESA) for visualizing, analyzing, and
processing the Sentinel-2 datasets [51]. Sen2Cor is the atmospheric correction tool provided
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in SNAP [52]. We first conducted the atmospheric correction of the Sentinel-2 images by
Sen2Cor version 2.8 and resampled all bands to the same resolution of 10 m. Atmospheric
correction of Landsat images were conducted by Quick Atmospheric Correction (QUAC)
model on ENVI image analysis software (the leading software for image processing and
analysis solutions), which works well for Landsat imagery in inland water studies [53]. All
images were then converted to Bottom-Of-Atmosphere (BOA) reflectance and water pixels
were extracted based on the Modified Normalized Difference Water Index (MNDWI) from
all corrected images [54,55]. The thresholds for water pixel extraction were determined by
visual interpretation.

Note that atmospheric radiance and radiance scattered after interacting with the
surrounding land surfaces account for a majority of signals received by satellite sensors
at water pixels. This is known as an adjacency effect, one of the major factors affecting
the quality of remotely sensed imagery [32]. We therefore used the internal parameters
and specific designed algorithms of the satellite products to correct the images before
developing turbidity models. We also applied a 3*3 filter to remove the potential noises
caused by surrounding environments.

2.2.3. Auxiliary Data

We downloaded precipitation and Normalized Difference Vegetation Index (NDVI)
data to investigate their impacts on turbidity change. The monthly precipitation data were
downloaded from National Tibetan Plateau Data Center [56]. This dataset is formatted as
NetCDF with a spatial resolution of 1 km from Jan 1901 to Dec 2017. We converted and
extracted the monthly precipitation in our study area using ArcGIS Pro 2.4. The NDVI data
were archived as annual NDVI products on Google Earth, composited using Landsat 5 and
8 images with a spatial resolution of 30 m [57,58]. We extracted the mean NDVI data for
each stream section using Google Earth Engine Code Editor.

2.3. Turbidity Models

Turbidity models were developed based on the correlations between in situ measured
turbidity and water-leaving reflectance. We evenly selected 12 out of the 36 paired in situ
measurements of water turbidity and water-leaving reflectance based on the turbidity
levels for model validation. The remaining 24 paired measurements were used for model
development. Turbidity models were developed separately for different sensors (Landsat
5 TM, Landsat 8 OLI, and Sentinel-2 MSI) to avoid the uncertainties caused by their
band differences.

We first evaluated the sensitivity of each sensor band before developing the turbidity
models. Pearson’s correlation coefficient was calculated between integrated reflectance of
each band and measured turbidity. We also used band ratios in the correlation analysis
to reduce the effects of bidirectional reflectance variations and environmental interfer-
ence [12]. The highly correlated band reflectance or band ratios were then selected to
develop the regression models for turbidity using different satellite images. We compared
eight regression models listed in Table 3 to determine the most suitable model in the YZR.
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Table 3. Regression models used for deriving turbidity.

Model Formats Equation Description

Linear Y = b + a × X Linear model grows at a constant rate.

Logarithmic Y = b + a × ln(X) Logarithmic model grows very rapidly followed by slower
growth to infinity.

Inverse Y = b + a/X Inverse function is also known as reciprocal function. Its
vertical asymptote is x = 0 and horizonal asymptote is y = b.

Quadratic Y = b + a1 × X + a2 × X2
The graph of a univariate quadratic function is a parabola

which opens upwards when a1 is positive and is symmetric
at x = −a2/(2 × a1).

Cubic Y = b + a1 × X + a2 × X2 + a3 × X3 Cubic model delineates polynomial growth at the 3rd order.

Exponential ln(Y) = ln(b) + a × X Exponential growth passes through (0, b) and keeps
increasing to infinity.

Power ln(Y) = ln(b) + a × ln(X)
Power curve passes through (0,0) and (1, b). As the power
increases, the graphs flatten somewhat near the origin and

become steeper away from the origin.

S-curve ln(Y) = b + a/X
S-curve model is a sigmoid function with an “S”-shape like

the logistic model. It first grows slowly, then moderately
and finally slowly approaches an asymptote.

a, b are parameters to be estimated.

We used the coefficient of determination (R2), root-mean-square deviation (RMS),
relative error (RE), and mean relative error (MRE) to evaluate the performance of each
model. R2 measured how well the regression model described the observed data [59]. RMS
measured the averaged difference between the predicted and observed turbidity values,
while RE and MRE measured the relative difference between the predicted and observed
turbidity values [60]. These parameters were calculated by Equations (3)–(6), respectively,

R2 = 1 − ∑n
i = 1(xobs,i − xmod,i)

2

∑n
i = 1(xobs,i − xobs)

2 (3)

RMS =

√
∑n

i = 1(xmod,i − xobs,i)
2

n
(4)

RE =

∣∣∣∣xmod,i − xobs,i

xobs,i

∣∣∣∣× 100% (5)

MRE =
1
n

∣∣∣∣xmod,i − xobs,i

xobs,i

∣∣∣∣× 100% (6)

where n is the number of samples, xobs,i is the observed turbidity of i-th sample, xobs is the
observed mean turbidity, and xmod,i is the predicted turbidity of i-th sample. We preferred
to adopt the models with high R2 values and low RMSs and MREs for further analysis. All
statistical analyses were conducted by SPSS 23 [61] and R 3.5.2 [62].

2.4. Turbidity Pattern Analysis

We divided the whole stream into 8 sections to examine the pattern of turbidity
changes (Figure 2). These sections include two upper stream sections (S1, S2), four middle
stream sections (S3, S4, S5, S6), and two lower stream sections (S7, S8). S5 is the widest
section of the river. For each satellite image, the mean turbidity was calculated by averaging
the turbidity values of all water pixels in each section. The two tributaries, Lhasa River and
Nyang River, flow into the YZR at S3–S4 and S7–S8, respectively. The turbidity values of the
two tributaries were also derived using the same models and averaged for each tributary
to investigate the effect of tributary confluence on spatial turbidity patterns. We did not
include the Nianchu River in the analysis due to the lack of in situ measurements. We
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collected in situ measurements from both Lhasa and Nyang rivers and these measurements
were also used for model development and validation (Figure 1).
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Figure 2. Division of the stream sections. The blue shaded region illustrates the middle reaches of
the Yarlung Zangbo River (YZR) in this study that were further divided into eight sections from S1 to
S8 by the blue dash lines.

A previous study showed that the influences of vegetation on water quality are
prominent within 200 me of the river channel, while the impacts are sharply decreased
where the distance is >300 m away from the river [63]. We therefore created a buffer zone
of 200 m on both sides to the YZR to extract the mean NDVI for each river section. Monthly
mean precipitation was extracted along each river section. We used Pearson correlation
coefficients to quantify the impacts of tributary confluence, precipitation, and NDVI on
turbidity changes.

3. Results
3.1. Turbidity and Spectral Signatures of the YZR

Figure 3 illustrates the turbidity values of the water samples collected in different
regions of the YZR. The results indicate that the turbidity levels of the mainstream are
higher than those of the tributaries. Along the mainstreams, the turbidity levels in the upper
section near the Lhasa River are higher than those in the lower section near the Nyang
River. The turbidity levels of Lhasa River are also higher than those in the Nyang River.
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Figure 3. Boxplots of water sample turbidity in different regions.

In situ collected water-leaving reflectance varies at different turbidity levels. Figure 4
illustrates the spectral curves of different turbidity values measured in the field. Most
of the spectral curves are bimodal from 350 to 950 nm. The water-leaving reflectances
are lower than 20%, indicating the sampled water absorbs and transmits most radiance
reaching river surface and reflects <20% back to the atmosphere. The water reflects more
visible light than infrared radiation and the highest reflectance occurs from 580 to 720 nm.
The other relatively weak and narrow reflection peak occurs near 810 nm. As turbidity
increases, the overall reflectance elevates, and the main reflectance peak becomes wider.
Distinct differences caused by turbidity occur around 550–700 nm and 800–850 nm, making
green, red, and near-infrared the suitable bands to quantify turbidity. These bands have
also been implemented to retrieve turbidity information in other studies [12,21,64].
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Figure 4. Spectral curves of water samples with different turbidity values in the YZR. The measured
turbidity values were marked for each spectral curve.

3.2. Turbidity Models

We examined the correlations between turbidity of water samples and spectral indices
of an equivalent sensor’s reflectance derived from measured water-leaving reflectance.
Spectral indices include single band reflectance, band ratios, and normalized difference
indices similar to the format of NDVI. As listed in Table 4, the correlation coefficients
between the spectral indices and measured turbidity range from −0.023 (of green band)
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to 0.761 (of red/green band ratio). The correlations between turbidity and single band
reflectance are not statistically significant. In contrast, most correlations for band ratios are
statistically significant. Normalized difference indices also provide significant correlations
but the coefficients are lower than those of band ratios. The red/green band ratio has the
highest correlation coefficient with turbidity.

Table 4. Pearson’s correlation between measured turbidity and spectral indices of visible and near-
infrared reflectance.

Landsat 5 TM Landsat 8 OLI Sentinel-2 MSI

Blue −0.145 −0.151 −0.132
Green −0.023 −0.040 −0.042
Red 0.110 0.102 0.120
NIR 0.208 0.187 0.212

NIR/Blue 0.669 ** 0.591 ** 0.667 **
NIR/Green 0.548 ** 0.459 ** 0.575 **
NIR/Red 0.413 * 0.292 0.417 *
Red/Blue 0.696 ** 0.697 ** 0.704 *

Red/Green 0.761 ** 0.759 ** 0.759 **
Green/Blue 0.733 ** 0.719 ** 0.710 **

(NIR − Blue)/(NIR + Blue) 0.650 ** 0.623 ** 0.687 **
(NIR − Green)/(NIR + Green) 0.550 ** 0.485 ** 0.571 **

(NIR − Red)/(NIR + Red) 0.445 * 0.339 * 0.335 *
(Red − Blue)/(Red + Blue) 0.690 ** 0.692 ** 0.699 **

(Red − Green)/(Red + Green) 0.727 ** 0.716 ** 0.708
(Green − Blue)/(Green + Blue) 0.708 ** 0.704 ** 0.712 **

*: Correlation is significant at the 0.05 level (2-tailed). **: Correlation is significant at the 0.01 level (2-tailed). Blue:
Band 1 for Thematic Mapper (TM), Band 2 for Operational Land Imager (OLI), and Band 2 for Multispectral
Imager (MSI). Green: Band 2 for TM, Band 3 for OLI, and Band 3 for MSI. Red: Band 3 for TM, Band 4 for OLI,
and Band 4 for MSI. NIR: Near-infrared band. Band 4 for TM, Band 5 for OLI, and Band 8 for MSI.

Table 5 lists the correlations between turbidity and spectral indices of the narrow
bands of Sentinel-2 MSI images. The ratios of the blue, green, and red bands perform better
than the single band. Correlation coefficients of red edge/green band ratios and turbidity
are relatively higher than other spectral indices. Nonetheless, the correlation coefficient be-
tween the red/green band ratio and turbidity is still the highest (Tables 4 and 5). Therefore,
the red/green band ratio was selected to develop the turbidity models.

Table 5. Pearson’s correlation between measured turbidity and spectral indices of narrow bands of
Sentinel-2 MSI imagery.

Red Edge1
(Band 5)

Red Edge2
(Band 6)

Red Edge3
(Band 7)

Near-Infrared
(Band 8a)

Single band 0.138 0.234 0.245 0.187
Band ratio with Blue band

(Band 2) 0.667 ** 0.665 ** 0.654 ** 0.460 *

Band ratio with Green band
(Band 3) 0.737 ** 0.740 ** 0.729 ** 0.569 **

Band ratio with Red band
(Band 4) 0.335 * 0.540 ** 0.539 ** 0.263

*: Correlation is significant at the 0.05 level (2-tailed); **: Correlation is significant at the 0.01 level (2-tailed).

We explored various regression models to predict turbidity using the red/green band
ratio. Table 6 lists the performances of the eight regression models for different sensors
based on 24 model development samples. We noticed that the MREs are not as good
as expected. Taking the models for Sentinel-2 MSI imagery as examples, the R2 values
range from 0.563 to 0.766, indicating these regression models can explain 56.3–76.6% of
the variances between turbidity and the red/green band ratio. Although these models



Remote Sens. 2021, 13, 182 12 of 25

could explain more than half of the observed variances, the MRE values range from 0.488
to 1.309, indicating the average errors predicted by these models vary from 48.8% to 130.9%
of the observed turbidity values. We further examined the relative errors of each sample to
investigate the model performances at different turbidity levels.

Table 6. The performances of turbidity models for different sensors.

Sensors Model Formats Equations 1 R2 RMS MRE

Sentinel-2 MSI

Linear Y = −303.725 + 409.219 × X 0.622 34.756 0.992
Logarithmic Y = 105.062 + 352.143 × ln(X) 0.596 35.920 1.134

Inverse Y = 399.117 − 295.022/X 0.563 37.349 1.309
Quadratic Y= 337.271 − 1051.336 × X + 818.009 × X2 0.661 32.920 0.679

Cubic Y = 35.391 − 385.724*X2 + 435.681*X3 0.661 32.910 0.731
Exponential ln(Y) = −5.298 + 9.814 × X 0.764 40.406 0.497

Power ln(Y) = 4.528 + 8.638 × ln(X) 0.766 36.091 0.488
S-curve ln(Y) = 11.918 − 7.4/X 0.757 34.550 0.498

Landsat 8 OLI

Linear Y = −346.292 + (445.641 × X) 0.609 35.318 1.031
Logarithmic Y = 99.470 + (391.316 × ln(X)) 0.582 36.520 1.171

Inverse Y = 434.836 + (−335.683/X) 0.549 37.933 1.338
Quadratic Y = 535.137 + (−1517.783 × X) + (1078.271 × X2) 0.661 32.890 0.630

Cubic Y = 253.884 + (−558.206 × X) + (0 × X2) + (399.496 × X3) 0.661 32.881 0.667
Exponential ln(Y) = ln(0.002) + (10.798 × X) 0.765 39.705 0.489

Power ln(Y) = ln(81.066) + (9.687 × ln(X)) 0.763 35.873 0.485
S-curve ln(Y) = 12.886 + (−8.488/X) 0.751 34.626 0.504

Landsat 5 TM

Linear Y = −379.185 + (483.082 × X) 0.610 35.281 1.024
Logarithmic Y = 103.605 + (426.526 × ln(X)) 0.587 36.296 1.145

Inverse Y = 472.612 + (−369.664/X) 0.560 37.487 1.289
Quadratic Y = 637.447 + (−1778.314 × X) + (1242.904 × X2) 0.657 33.094 0.651

Cubic Y = 114.834 + (0 × X) + (−754.652 × X2) + (741.251 × X3) 0.657 33.074 0.700
Exponential ln(Y) = ln(0.001) + (11.676 × X) 0.762 39.311 0.494

Power ln(Y) = ln(89.525 + (10.507 × ln(X)) 0.762 36.065 0.487
S-curve ln(Y) = 13.77 + (−9.28/X) 0.754 34.750 0.494

1: X is the reflectance ratio between the equivalent red and green bands. For TM, X equals to Band 3/Band 2. For OLI, X equals to Band
4/Band 3. For MSI, X equals to Band 4/Band 3. Y is the in situ measured turbidity (NTU).

Figure 5 illustrates the relative errors of each sample for different models. It seems that
high relative error occurs when turbidity is low, especially at 5 NTU. The highest relative
error at 5 NTU is caused by negative predictions from the linear, logarithmic, and inverse
model, indicating these models are not robust for predicting turbidity at a large range.
Another two peaks of relative errors occur at 15 and 25 NTU, respectively. The relative error
decreases as turbidity increases, while no obvious trend exists when turbidity is >30 NTU.
We compared the MRE values for all model development samples and samples of turbidity
>30 NTU (Table 7). The MRE value decreases from 1.3 to 0.48 for all samples and to 0.2–0.3
for the samples with turbidity of >30 NTU. The linear, logarithmic, inverse, quadratic, and
cubic models provide higher MRE values for all samples and relatively lower MREs for
higher turbidity samples, indicating that these models may be more reliable for samples
with turbidities of >30 NTU. Other models, including power, s-curve, and exponential
models, do not show large deviations of MRE for different turbidity levels.
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Figure 5. Relative errors of modeling samples.

Table 7. Mean relative error (MRE) of different turbidity groups (taking Sentinel-2 models as an example.).

Model Formats MRE (Overall) MRE (Turbidity >30 NTU)

Linear 0.992 0.221
Logarithmic 1.134 0.222

Inverse 1.309 0.221
Quadratic 0.679 0.219

Cubic 0.731 0.217
Exponential 0.497 0.28

Power 0.488 0.251
S-Curve 0.498 0.233

We prefer to adopt the turbidity model with a high R2, low RMS, and low MRE for
different turbidity levels since turbidity varies at a wide range in the YZR. The exponential,
power, and s-curve models show relatively higher R2 (>0.75) and lower overall MRE
(<0.5) values and provide small MRE deviations at different turbidity levels. The s-curve
model exhibits the lowest RMS and MRE values for higher turbidity samples of >30 NTU
(Tables 6 and 7). Therefore, we selected the s-curve model for turbidity monitoring in the
YZR based on the red/green band ratio.

We also validated the fitted s-curve models based on the 12 validation samples. The
RMS values of these validation samples are lower than those of the model development
samples and the MRE values of the samples with turbidities of > 30 NTU are lower than
0.2, suggesting that the average estimation accuracy is more than 80% for these samples.
These results validated the good performance of the fitted s-curve models, especially for
samples with turbidities of >30 NTU (Table 8). We also draw the scatter plots between
the measured and estimated turbidity values to check the performance of the s-curve
models (Figure 6). Most model-predicted and field-measured turbidity values are scattered
along the y = x line, indicating relatively good performances. Exceptions occur when the
measured turbidity values are around 10 and 150 NTU; at these values the models tend to
slightly overestimate the low turbidity values and underestimate the high turbidity values.
Given the good performances for both modelling and validation samples, we used the
three fitted s-curve models for Landsat 5 TM, Landsat 8 OLI, and Sentinel-2 MSI images to
estimate the turbidity in the YZR, respectively.
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Table 8. Validation of the s-curve models.

Sensors Sentinel-2 MSI Landsat 8 OLI Landsat 5 TM

MRE (All validation samples) 2.745 2.714 2.741
MRE (Validation samples of

turbidity > 30 NTU) 0.189 0.192 0.193

RMS 10.776 11.074 11.055
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Figure 6. Scatter plots of measured and estimated turbidity values based on the s-curve models.
Left panels (a,c,e) are for the model development (n = 24) and right panels (b,d,f) for the validation
(n = 12). (a,b) are s-curve models for Sentinel-2 MSI images, (c,d) for Landsat 8 OLI, and (e,f) for
Landsat 5 TM, respectively.

3.3. Turbidity Patterns

We calculated the red/green band ratio of the preprocessed 406 satellite images from
Landsat 5 TM, Landsat 8 OLI, and Sentinel-2 MSI, and derived turbidity values based on
the s-curve models described in Section 3.2. The turbidity values were then averaged for
each stream section to evaluate the spatial and temporal changes. The turbidity values
derived from images acquired in the same month in a year were also averaged to derive
the monthly turbidity value. We analyzed the temporal turbidity variations at all eight
sections, but just illustrated the results at S2, S4, S5, and S7 in figures due to the similar
turbidity patterns of some adjacent sections. The upper section was represented by S2. The
middle section was represented by S4. The widest section was S5. The lower section was
represented by S7.

3.3.1. Spatial Pattern of Turbidity Change in the YZR

The average turbidity shows an overall downstream decreasing trend from upper
to lower stream sections in the YZR (Figure 7). Turbidity is relatively high at S1 close to
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Shigatse where the Nianchu River joins the YZR. It decreases before the confluence of the
Lhasa River (S3) and increases after the tributary joins (S4). Relatively high turbidity occurs
at the upper stream of S1 and the widest section of S5. Turbidity decreased again from
S5 to S7 and the confluence of another tributary, Nyang River, caused a slight increase in
turbidity from S7 to S8.
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Figure 7. Spatial pattern of turbidity changes along the middle reaches of the YZR.

3.3.2. Temporal Pattern of Turbidity Change in the YZR

Our results show both seasonal and annual changes in turbidity in the middle reaches
of the YZR from 2007 to 2017. In terms of seasonal change, turbidity is much higher from
June to September than the other months (Figure 8). Turbidity stays relatively stable from
January to May, then starts to increase from June to September. It reaches the peak in July
or August and decreases from October to December. It then remains a relatively low level
similar to the months before June. This seasonal pattern was observed in all sections in the
middle reaches of the YZR.
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Figure 8. Seasonal changes of turbidity in the middle reaches of the YZR.

Considering the seasonal variations in turbidity, we evaluated the annual turbidity
changes based on the hydrological year that starts from the first day of the dry season
(1 October) and ends at the last day of the next wet season (30 September). A slightly
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declining trend in turbidity was observed from 2007 to 2017 (Figure 9). The annual turbidity
changes presented similar variations for the middle, widest, and lower sections where
turbidity reached the first peak in the hydrological years of 2007–2009 and another peak in
2011–2014. The turbidity values at the upper section were relatively higher in 2010–2011
and 2017–2018 hydrological years.
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3.4. Turbidity Change with Environmental Factors
3.4.1. Turbidity Change with Precipitation

Precipitation is an important factor affecting river turbidity. More precipitation in-
crease the amount and velocity of the runoff that erodes and transports more sediments into
the river, increasing the turbidity [65]. The impact of precipitation is especially apparent in
the dry and less-vegetated areas [66]. We compared the temporal and spatial change of
turbidity with precipitations in Figures 10 and 11. Seasonal and interannual changes of
turbidity demonstrate similar patterns to those of precipitation. High turbidity and precipi-
tation both occur during the summer from June to September (Figure 10a). The “wetter”
hydrological year with high precipitation (2007–2008, 2008–2009, 2011–2012, 2013–2014)
experienced high turbidity levels while the “drier” hydrological year with low precipitation
(2006–2007, 2009–2010, 2015–2016) experienced low turbidity levels (Figure 10b).
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Spatially, we also observed different temporal patterns between turbidity and pre-
cipitation at different sections (Figure 11). In the upper to middle sections from S1 to S5,
turbidity shows the same trend as precipitation, slightly decreasing from S1 to S3 then
increasing to S5. In the lower sections from S6 to S7, turbidity decrease regardless of the
increasing precipitation. Compared with the upper and middle sections, precipitation is
much higher in lower sections, although turbidity values are relatively lower.

3.4.2. Turbidity Changes with Normalized Difference Vegetation Index (NDVI)

Vegetation mitigates turbidity in rivers by preventing soil erosion and absorbing pol-
lutants [63]. As a proxy of vegetation cover, the mean annual NDVI within a 200 m buffer
zone along each section was extracted and examined with turbidity change. Spatially,
NDVI is the lowest in the middle section and the highest in the lower section (Figure 12).
Temporally, the lower section experienced relatively large NDVI variations with a decreas-
ing trend from 2007 to 2017, while the NDVIs of other sections slightly increased with
minor fluctuations from 2008 to 2017 (Figure 12). However, turbidity change does not
agree well with the NDVI change. In the upper, middle, and widest sections, several high
turbidity values occurred during low NDVI years (2008, 2011, 2013). In contrast, high
turbidity values occurred during the high NDVI years in the lower section.
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4. Discussion
4.1. Turbidity Models

We evaluated a set of regression models based on the red/green band ratio of satellite
imagery to monitor turbidity patterns in the YZR. The model performance was evaluated
based on both model development and validation samples. Studies suggest that algorithms
based on single band or band ratios associated with red band generally produce satisfactory
results when deriving the concentration of total suspended sediments in inland waters [67].
The particulate scattering in red wavelength prohibits the overwhelming influence from
phytoplankton pigments and allows for the extraction of nonpigment components in wa-
ter [67]. A near-infrared band was also applied in water sediment and turbidity monitoring
but it is more suitable for high-turbidity waters [12,19]. Our results indicated that the
red/green band ratio is sufficient to derive turbidity in the YZR and the inclusion of the
NIR band does not improve the model significantly. This is probably due to the relatively
clean water in the YZR compared to contaminated urban waters [28].

We selected the s-curve model for deriving turbidity from time-series remote sensing
images. The comparison with other regression models indicates the s-curve model fits the
observed data well and is more robust for different turbidity levels (Table 7). The linear
model cannot describe the complex interactions between water-leaving reflectance and
turbidity. The linear, logarithmic, and inverse models would also produce meaningless
negative turbidity predictions. Both exponential and power models face the issues of
infinite growth of turbidity with increasing reflectance, although they provide relatively
high R2 and low MRE values. The infinite growth of turbidity is unrealistic due to the
spectral saturation of remote sensors. The s-curve model uses the upper and lower asymp-
totes to define the growth curve. It is therefore more reasonable for turbidity estimation
in the YZR where extreme clean or turbid water might occur in different climate and
environmental conditions.

The optical complexity of water, atmospheric correction, and adjacency effects are the
major challenges in inland water remote sensing [68]. Unlike waters in the developed urban
regions, the YZR has not experienced severe eutrophic and pollutant issues, mitigating the
complexity of optical properties in monitoring turbidity. However, the radiometric noises
from atmosphere, riverbed, and surrounding environments must be removed properly to
estimate turbidity in the YZR. In this study, water-leaving reflectance was calculated based
on measured reflectance of the reference board in the field survey to remove the radiance
from the surrounding environment. We also conducted atmospheric correction and filter
processes on remote sensing images. The adopted atmospheric correction methods are
proven to be suitable for studying inland water quality and reliable when no auxiliary
atmospheric measurements are available [53,69]. Despite these challenges, the turbidity
models developed in this study provides a significant improvement for turbidity monitor-
ing in the YZR at a large temporal and spatial scale. Our derived turbidity patterns from
remote sensing imagery agree well with the gauge station-based research in terms of the
spatial, seasonal, and annual changing patterns [6,26,27,33].

4.2. Effects of Tributaries

The spatial pattern of turbidity change in the middle reaches of the YZR indicates that
the confluence of major tributaries increases the turbidity in the mainstreams. Figure 13
illustrates the changes in Pearson’s correlation coefficients between the turbidity values
in the tributary and mainstream sections. The correlation coefficients are positive and
increase after the confluence of Lhasa River and Nyang River, indicating that high turbidity
in the mainstream usually occurs after the confluence of high turbidity tributaries. The
correlation between the turbidity in Lhasa River and the mainstream becomes much higher
and statistically significant after the confluence at S4. It seems that the turbidity at S5 is
still affected by the influence of Lhasa River. The impact of Lhasa River starts to weaken or
disappears at S6 and beyond. Turbidity in Nyang River is not significantly correlated with
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the turbidity in the mainstream based on the Pearson’s correlation and we only observed
that the coefficient slightly increases after the confluence in S8.
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Lhasa River is the largest tributary of the YZR [70] and contributes approximately 20%
of the sediment to the middle section of the YZR [33]. Flowing through Lhasa, the largest
city on the Tibetan Plateau, turbidity of the river increases 13% before and after the city [32].
In contrast, Nyang River has been reported as one of the “cleanest” and most dilute rivers on
the Tibetan Plateau [32]. This difference was observed in our field measurements. Turbidity
of the in situ collected water samples indicate that the turbidity levels in Lhasa River are
high with large variations, close to the turbidity levels of the mainstreams, whereas Nyang
River is clean with relatively low turbidity (Figure 3). Therefore, the confluence of Lhasa
River makes more contribution to the turbidity of the middle section of the YZR, while the
impact of Nyang River on the mainstream turbidity is minor.

4.3. Effects of Precipitations

We analyzed the correlation between turbidity and precipitation change and observed
that the monthly average turbidity changes have an approximately one-month lag behind
the changes in precipitation. As illustrated in Figure 10a, monthly precipitation begins to
increase in April and reaches the peak in July, while monthly turbidity tends to increase in
May and peaks in August. The correlation analysis indicated that turbidity is positively
related to precipitation at different months, but the correlations are much higher compared
to the precipitation of one month earlier in S2, S3, S5, and S6 (Table 9). The time-lag effect
is also observed in the vegetation growth in the YZR [71]. The monthly NDVI is mostly
affected by precipitation 0–1 months earlier due to the fact that the vegetation cover of
upper and middle sections of the YZR are mainly herbs and scrubs with a lag period of
approximately 25 days in NDVI [72]. It indicates that the growth of these vegetations also
affects water turbidity of the upper and middle sections in the YZR.
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Table 9. Correlation coefficients of turbidity and precipitation.

Turbidity~ Precipitation Turbidity~
Precipitation One Month Earlier

S1 0.865 ** 0.843 **
S2 0.790 ** 0.851 **
S3 0.471 ** 0.753 **
S4 0.670 ** 0.541 **
S5 0.608 ** 0.668 **
S6 0.752 ** 0.835 **
S7 0.494 ** 0.368 **
S8 0.280 0.293

** Correlation is significant at the 0.01 level (2-tailed).

In the lower sections of S7 and S8, turbidity is not as closely correlated to precipitation
as it is in the upper sections. Turbidity in these sections also shows a different spatial chang-
ing pattern from other sections (Figure 11). This can be explained by the relatively wetter
climate and denser vegetation cover in these sections, which may reduce the sensitivity of
turbidity to precipitation.

We also evaluated the effects of precipitation in terms of wet–dry and snowfall–rainfall
periods. A year in the middle reaches of the YZR can be divided into either rainfall (May
to October) and snowfall periods (November to April), or wet (June to September) and dry
periods (October to May) [28,40]. Figure 14 illustrates the correlations between turbidity
and precipitation in these periods. Higher coefficients in the wet period indicates that the
correlations between turbidity and precipitation are stronger in the wet period. It seems
that the impact of precipitation is more distinctive for the rainfall periods. In most stream
sections (S1, S2, S4, S5 and S6), turbidity changes are positively correlated with precipitation
during the rainfall periods (Pearson’s coefficients >0.5). During snowfall periods, however,
the turbidity values are weakly correlated with the snowfall with negative correlations.
The erosivity of the snowmelt runoff is lower than the rainfall erosivity and soil erosion
in the snowfall period accounts for only 5.9% of the annual soil erosion in the YZR [40].
This suggests that turbidity is affected by the precipitation type: rainfall increases the
turbidity because it erodes and brings more sediments into the river, whereas snowfall
slightly decreases the turbidity because snowfall protects the slope and bank from erosion
during the snowfall period.
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4.4. Effects of Vegetations

Figure 15 shows Pearson’s correlation coefficients between turbidity and NDVIs.
Turbidity is negatively correlated with NDVI in the upper and middle sections (S1, S3,
S4, S5), while there are almost no correlations in the lower sections (S6, S7). This pattern
suggests that higher vegetation coverage tends to reduce turbidity in the upper and middle
sections or vice versa, especially at the middle section (S3). NDVI in the lowest section (S8),
however, shows a slight positive correlation with turbidity. This positive correlation may
be affected by the overall declining trends in both NDVI and turbidity from 2007 to 2017 at
this section (Figures 9 and 12). Considering the spatial and temporal variations of NDVI in
this area, the correlations between NDVI and turbidity are significant in the sections where
the vegetation coverages are relatively low, but minor where vegetation coverages are high.
Vegetation in the riverine area can reduce water turbidity, but it plays more important roles
in less vegetated areas than densely vegetated regions [73].
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Reports show that NDVI has been increasing since 2014 due to afforestation in the
middle reach of the YZR [30]. In 2014, a large afforestation project was launched to reduce
the soil and water loss in this area. The sediment yield in the middle reach of the YZR
has been reported to be reduced by >80% owing to the effective soil erosion control in
this project [30]. We also observed a sharp decline of turbidity in 2014 at all sections and
turbidity has stayed at relatively low levels since 2014 (Figure 9). However, our results
show that NDVI within a 200 m stream buffer does not have significant impacts on turbidity
change in several sections (S1, S2, S5, S6, S7, S8). This is different from the other studies
showing that the declining trend in turbidity from 2014 was caused by afforestation in this
area. One potential reason is that a 200 m buffer might not be suitable for evaluating the
effects of vegetation at the regional scale. A previous study showed that the regions within
200 m of riverbanks were the key regions for natural vegetation to influence river water
quality [63]. However, this conclusion was drawn based on the observations from a small
study scale. More work is needed to quantify the impact of NDVI on turbidity in the YZR.

5. Conclusions

This paper demonstrates the potential of using multispectral satellite imagery to
monitor long-term turbidity changes for the alpine rivers on the Tibetan Plateau. We
presented a remote sensing-based study on turbidity change in the middle reaches of
the YZR from 2007 to 2017 using Landsat 5, Landsat 8, and Sentinel-2 imagery. We
developed empirical models based on in situ measured water-leaving reflectance and
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turbidity. Turbidity patterns for large temporal and spatial scales were derived from
remote sensing images using the developed models. We also compared turbidity changes
with precipitation and NDVI to investigate the potential influencing factors of turbidity
change in the YZR. The main conclusions include:

(1) The reflectance ratio of the red and green bands is identified as the most sensitive
spectral signature based on the in situ measurements. The s-curve model has the best
performance for turbidity estimation in the YZR due to its relatively higher R2, lower
RMS and MRE values, and robustness at different turbidity levels;

(2) Turbidity tends to decrease from the upper to the lower sections and the high turbidity
occurs in the upper section and the widest section of the YZR. Seasonal variations
are observed with relatively high turbidity from July to September and low turbidity
from October to the next May. Turbidity fluctuates over years with a slightly temporal
declining trend from 2007 to 2017;

(3) The spatial turbidity change is affected by the confluence of major tributaries that
bring additional sediments to the mainstream. Lhasa River has more significant
impacts on the mainstream turbidity than Nyang River due to its high turbidity
levels;

(4) Precipitation is an important factor influencing the turbidity of the YZR, especially in
the upper and middle sections. We found a lag of approximately one month for the
effect of precipitation on turbidity. We also found the impact of precipitation type on
turbidity change. Rainfall shows a positive correlation with turbidity in most stream
sections. Snowfall, on the other hand, presents a slightly negative correlation with
turbidity;

(5) Vegetation plays a vital role in reducing turbidity at the upper and middle sections
where vegetation coverage is limited.

Atmospheric correction and the removal of adjacency effects are critical but challeng-
ing for remote sensing-based turbidity monitoring of rivers on the Tibetan Plateau. Our
study demonstrated that river turbidity could be derived successfully by the incorporation
of measured reference radiance in the field and by careful atmospheric correction and
water pixel extraction. Future study is recommended to optimize the time and locations
of the in situ sampling collection with the consideration of stream types, accessibility,
seasonal variation, and weather conditions to refine the turbidity models for different
remote sensors. It is also worth exploring inherent optical properties and advanced models
to develop more robust and generalized models and conducting additional hydrological
analysis to understand the driving mechanisms in turbidity variations of the alpine rivers.
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