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Abstract: This study presents a new ensemble framework to predict landslide susceptibility by
integrating decision trees (DTs) with the rotation forest (RF) ensemble technique. The proposed
framework mainly includes four steps. First, training and validation sets are randomly selected
according to historical landslide locations. Then, landslide conditioning factors are selected and
screened by the gain ratio method. Next, several training subsets are produced from the training
set and a series of trained DTs are obtained by using a DT as a base classifier couple with different
training subsets. Finally, the resultant landslide susceptibility map is produced by combining all
the DT classification results using the RF ensemble technique. Experimental results demonstrate
that the performance of all the DTs can be effectively improved by integrating them with the RF
ensemble technique. Specifically, the proposed ensemble methods achieved the predictive values of
0.012–0.121 higher than the DTs in terms of area under the curve (AUC). Furthermore, the proposed
ensemble methods are better than the most popular ensemble methods with the predictive values of
0.005–0.083 in terms of AUC. Therefore, the proposed ensemble framework is effective to further
improve the spatial prediction of landslides.

Keywords: landslide spatial prediction; ensemble methods; decision tree; rotation forest; Three
Gorges Reservoir area

1. Introduction

Landslides are one of the most serious natural disasters in the world, causing a large
number of casualties each year [1]. Therefore, it is crucial to perform landslide susceptibility
mapping (LSM) to prevent and reduce damages. In recent decades, many methods on
landslide susceptibility analysis have been proposed and can be mainly divided into two
groups, i.e., qualitative and quantitative [2]. Qualitative methods have been widely used
for LSM, such as weighted linear combination [3], multi-criteria evaluation [4] and ordered
weighted averaging [5]. Quantitative methods mainly depend on the relationship between
influencing factors and landslide occurrences and can be grouped into two categories,
i.e., physically-based methods and data-driven approaches. Physically-based methods
assess landslide susceptibility based on simplified physically modeling strategy [6], while
data-driven approaches develop a functional relationship between conditioning factors and
the past and historical landslide events [7], including weights of evidence [8–10], frequency
ratio [11], random forest [12,13], artificial neural network (ANN) [14,15], convolutional
neural networks [16,17], and support vector machine (SVM) [18–20].

Nowadays, the ensemble framework has become a hot issue in the field of machine
learning and pattern recognition [21]. Many studies validated that the combined paradigm
is better than individual classifiers [22–24]. The ensemble techniques have been also used in

Remote Sens. 2021, 13, 238. https://doi.org/10.3390/rs13020238 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1347-7030
https://doi.org/10.3390/rs13020238
https://doi.org/10.3390/rs13020238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13020238
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/2/238?type=check_update&version=1


Remote Sens. 2021, 13, 238 2 of 22

LSM and obtained better prediction results than traditional classifiers [25,26]. Specifically,
the popular ensemble techniques of AdaBoost, Bagging, Dagging, and MultiBoost were
proposed in the early period and obtained reliable prediction performance [27–31]. For
instance, Chen et al. [32] proposed a new ensemble technique that integrates an adaptive
neuro-fuzzy inference system (ANFIS) with three metaheuristic optimization for LSM.
As an improved method of the Interactive Dichotomize 3 tree algorithm, J48 DT splits
information by calculating standardized data gain and can handle particular characteristics,
missing feature estimations and varying feature costs [33]. The J48 DT with the AdaBoost,
Bagging, and rotation forest ensemble techniques were proposed to evaluate landslide
susceptibility [30], which achieved satisfying prediction results. Therefore, the ensemble
methods are very promising for predicting landslide-prone areas.

The Three Gorges Reservoir area stretches along the Yangtze River is characterized
with very complex geological conditions, which are highly vulnerable to landslide occur-
rences and seriously threaten peoples’ lives and property. To perform landslide spatial
prediction, several contributions have made remarkable achievement in the past few years,
including logistic regression (LR) [34], SVM [35], and ANN [36], but studies on the appli-
cation of machine learning methods in the Three Gorges Reservoir area are still very rare.
Furthermore, different ensemble techniques have different advantages and disadvantages
in combining multiple single classifiers, and thus selecting an appropriate base classifier is
of great significant, which can affect final landslide susceptibility results. The literature
mentioned previously only compared the performance of different ensemble methods when
integrating with a same base classifier, but they rarely explore the integration capability of
the selected ensemble method when coupling with different base classifiers.

Therefore, the main goal of this work is to assess and compare the performance
of a novel ensemble framework by integrating different base classifiers with the same
ensemble technique for LSM. It should be noted that the DTs are selected as the base
classifiers because spatial prediction of landslides can be partitioned into a set of similar
sub-problems with specific decision rules to which the same tactics can be used to solve
the entire prediction problem. The selected DTs includes alternating decision tree (ADT),
forest by penalizing attributes (FPA), functional tree (FT), logistic model tree (LMT), and
Hoeffding tree (VFDT). Meanwhile, the rotation forest (RF) ensemble technique is used in
the proposed ensemble framework because the DTs are sensitive to rotation of the feature
axes in the RF structure [37]. To validate the effectiveness of the proposed framework,
several statistical criteria including the receiver operating characteristic (ROC) curve, area
under curve (AUC), overall accuracy (OA), and Matthews correlation coefficient (MCC)
technique were used to assess and compare the proposed ensemble methods with the
DTs to predict landslide occurrence in the Three Gorges Reservoir area. Furthermore, to
validate the robust integration capability of RF and DTs, the proposed framework was
compared with three benchmark methods: multilayer perceptron neural networks with RF
(MLPNNs+RF) [29], naïve Bayes with RF (NB+RF) [38] and radial basis function neural
network with RF (RBFNN+RF) [39]. It should be noted that the ArcGIS environment was
used for data preparation and the Weka software was applied for model construction
and evaluation.

2. Study Area and Accessible Data
2.1. Description of Study Area

The study area is located in China and has an area of 446.32 km2 and its altitude
is in the range of 80–2000 m mean sea level (Figure 1). The Zigui-Badong section of the
Three Gorges reservoir is in the subtropical monsoon climate zone and the study area has
sufficient rainfall and humidity. During 2001–2010, the annual average precipitation in
Zigui and Badong Counties is 944.5 and 1069.2 mm, respectively. Abundant rainfall is one
of the main conditioning factors for the frequent occurrence of geological disasters in the
reservoir area [40].
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2.2. Preparation of the Database

Historical landslide locations were employed to construct relevant landslide suscepti-
bility models. Consequently, an accurate landslide inventory map is particularly important
for LSM. In this study, a total of 196 landslide locations were identified through field
surveys, historical landslide records and Google Earth images visual interpretation, and
the distribution of the landslide locations is shown in Figure 1. To construct the landslide
susceptibility models, the training and validation sets are required. In this work, the 196
landslide locations were randomly divided into two parts: 70% (137 locations) were used
as training samples and the remaining 59 landslide locations for validation. To predict non-
landslide areas, the same number (137 and 59) of non-landslide locations was randomly
selected to construct the training and validation sets for prediction.

Figure 1. Location of the study area with landslide locations.

The selection of conditioning factors is an important step of LSM. There are many
conditioning factors that trigger landslides [1]. In this study, 20 landslide conditioning
factors were selected based on expert knowledge and literature review [35,41–45], including
altitude, aspect, catchment area, catchment slope, curvature, distance to rivers, slope, slope
form, terrain position index (TPI), terrain ruggedness index (TRI), terrain surface convexity
(TSC), terrain surface texture (TST), topographic wetness index (TWI), lithology, distance
to faults, land use, rainfall, magnitude, normalized difference vegetation index (NDVI),
and normalized difference water index (NDWI). Table 1 shows the information of landslide
conditioning factors.
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Table 1. Information of the landslide conditioning factors.

Factors Implementation/Calculation Sources

Altitude

Extracted from DEM data using the ArcGIS software [35,42,46].

ASTER GDEM Version 2

Aspect
Curvature

Slope
Catchment area
Catchment slope

Slope form

TPI

Extracted form DEM data using the SAGA software [42,47,48].
TRI
TSC
TST
TWI

Distance to rivers Extracting the main river lines and using the Euclidean
Distance tool in ArcGIS software to calculate distance to rivers.

Lithology Extracted from a 1: 50,000 geological map. Hubei Geological Bureau
(http://dzj.hubei.gov.cn)

Distance to faults
Extracting the fault lines form the geological map and used the
Euclidean Distance tool in ArcGIS software to calculate distance

to faults.

Land use Using a support vector machine method to classify the images
into five land use classes with an overall accuracy of 93.95%. Landsat 7 ETM + images

NDVI Calculated from remote sensing images using the ENVI
software [49,50].NDWI

Magnitude Using a Kriging interpolation method to generate magnitude
raster data.

Historical earthquakes and instruments
monitored data since 1970

Rainfall Using an inverse distance weighted spatial interpolation
method to generate the rainfall factor. 6 rainfall stations

3. Methodology

The proposed framework is based on the integration of DTs and the RF ensemble
technique. The flowchart is illustrated in Figure 2 and three main steps in this framework
as follows:

(1) Data acquisition and preprocessing. In this work, historical landslide events and
landslide conditioning factors are acquired to perform spatial prediction of landslide
occurrence. Specifically, the historical landslide locations are produced by past land-
slide records and remote sensing images. Meanwhile, a series of related conditioning
factors are selected for LSM and screened using the GR method. Afterwards, these
data are resampled with the same grid size. Finally, the training and validation sets
are produced for constructing and testing landslide prediction methods.

(2) Construct prediction methods and produce landslide susceptibility maps. The ensem-
ble framework is first performed to optimize the original datasets using the training
set. Then, the base classifier of DT is applied to the screened datasets for spatial
prediction of landslides. Next, the RF ensemble technique is used for landslide sus-
ceptibility modeling. Finally, landslide susceptibility maps are obtained using the
constructed prediction methods.

(3) Verification and comparison. The predictive performance of the proposed ensemble
framework is evaluated using the objective criteria of ROC and AUC.

http://dzj.hubei.gov.cn
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Figure 2. The flowchart of the proposed ensemble framework. The terrain position index (TPI), terrain
ruggedness index (TRI), terrain surface convexity (TSC), terrain surface texture (TST), topographic
wetness index (TWI), normalized difference vegetation index (NDVI), and normalized difference
water index (NDWI) are landslide conditioning factors. The alternating decision tree (ADT), forest
by penalizing attributes (FPA), functional tree (FT), logistic model tree (LMT), and Hoeffding tree
(VFDT) are base classifiers. RF is the rotation forest ensemble technique.

3.1. Gain Ratio Method

Gain ratio (GR) is a widely applied factors selection method in LSM. It can determine
the importance of each landslide conditioning factor through assigning a weight to each
feature based on its capability [51]. Let T be a training set and n the total of instances, the
GR on attribute X is briefly calculated as follows.

GainRatio(X) =
Gain(X)

SplitIn f oX(T)
, (1)

where Gain(X) is the information gain of attribute X and SplitIn f oX(T) is inferred the
split information value. Gain(X) and SplitIn f oX(T) are calculated by following equations:

Gain(X) = H(T)−
n

∑
i=1

pi H(T), (2)

SplitIn f oX(T) = −
m

∑
i=1

Xi(Ti/T) log2(Ti/T), (3)
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where pi is the prior probability and m represents the number of values of attribute X. The
H(T) is the expect information entropy of data set T and is defined as follows:

H(T) = −
n

∑
i=1

pi log2(pi) (4)

The final calculated average merit (AM) reveals the importance of conditioning factors
to the occurrence of landslides.

3.2. Decision Tree Base Classifiers
3.2.1. Alternating Decision Tree

It is known that the AdaBoost algorithm is an important machine learning tech-
nique [52]. Thus, it is natural to combine the techniques of boosting and DTs to obtain
reliable classifiers, whose results are based on majority voting over several DTs. For in-
stance, two popular boosting DTs of CART and C4.5 have been widely used. However, the
interpretation of these classifiers is a challenging problem. The ADT is a combination of
DTs with boosting that produce classification rules that are easier to interpret [53].

3.2.2. Forest by Penalizing Attributes

Recently, a novel decision forest approach of FPA was presented [54]. This approach
has the following advantages. First, a series of high-precision DTs can be obtained by
this approach using not only a subset of but all non-class attributes in a dataset. Second,
penalties are imposed to those attributes that are used in the current tree to produce the
following trees to encourage better diversity. Finally, this approach is capable of gradually
increasing weights from the attributes that have not been validated in the following tree(s).
Consequently, this approach can ensure the optimized prediction accuracy.

3.2.3. Functional Tree

The main idea of the FT framework is to build multivariate trees for classification and
regression problems [55]. In this framework, both functional decision and leaf nodes are
produced for prediction problems when growing and pruning the tree, respectively. As the
behavior of FT, the employment of functional decision and leaf nodes can be considered
as a bias and variance reduction process, respectively. Furthermore, it is favorable for
multivariate methods to use linear functions both at decision nodes and leaves, especially
for large datasets.

3.2.4. Logistic Model Tree

The LMT, integrating standard DT classifier and LR function, is a classification tree
method which is evaluated more efficiently than simple LR of C4.5 model. [56]. In the LMT
algorithm, a DT is defined as a tree structure with the LR functions at the leaves. This
approach employs the LogitBoost and C4.5 algorithms for building an LR function at each
node and pruning, respectively. The LogitBoost is capable of providing a novel strategy for
choosing the attributes involved in the LR function.

3.2.5. Hoeffding Tree

The Hoeffding tree is an incremental DT induction algorithm that is capable of learn-
ing from large data streams based on the assumption that the data distribution is fixed
over time [57]. It grows incrementally a DT based on the theoretical guarantees of the
Hoeffding bound, which can measure the number of observations that can compute statis-
tics with a specified accuracy. This theoretical advantage can ensure that this algorithm
can demonstrate better performance than other incremental DT methods and cost less
computational time.
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3.3. Rotation Forest Ensemble

RF is a classifier ensemble method using independently trained DTs [58] which aims
at constructing accurate and diverse classifiers. Different from the idea of random forest,
each tree in RF is trained on the entire dataset in a rotated feature space. In the tree-induced
prediction methods, the clusters are always parallel to the feature axes. Thus, any rotation
of the axes may produce a very different tree.

Assuming that M represents the number of DTs, RF trains M DTs independently
and uses a new different dataset whose features are extracted for each tree. Let x =
{x1, x2, . . . , xn}T be a sample characterized with n attributes, D = {D1, D2 , . . . , DM}
be the ensemble of M classifiers, X and N × n matrix denote the training instances and the
feature set, respectively. The RF algorithm is briefly introduced as follows:

(1) To construct the training set for the RF algorithm, the feature set with n features
is randomly divided into K subsets, and thus each feature subset consists of M =
n/K features.

(2) To apply the feature selection algorithm of principle component analysis (PCA) on

each feature subset and obtain a series of principle components (PCs) of PCj
i (i = 1, 2,

. . . , M; j = 1, 2, . . . , K).
(3) Repeat the previous steps to obtain the K sets of PC coefficients and put these PC

coefficients into the Matrix R as follows:

R =


(

PC1
1 , PC1

2 , . . . , PC1
M
) (

PC2
1 , PC2

2 , . . . , PC2
M
)

. . . (
PCK

1 , PCK
2 , . . . , PCK

M
)
 (5)

(4) Multiply the original dataset X with this Matrix (5) to obtain the new feature dataset
and the base classifier is trained using this feature dataset.

(5) Repeat the previous steps to obtain trained base classifiers.
(6) For a given unknown sample for prediction, each base classifier produces a class

probability value, and all the class probabilities are combined to obtain the final
prediction probability.

It should be noted that different features can be obtained by the feature set with
various ways for partition. Therefore, RF can construct accurate and diverse classifiers for
landslide prediction.

3.4. Model Evaluation Criteria

The performance of prediction methods is commonly assessed using the ROC curve
technique [59]. It is constructed by plotting two values which are true positive (TP) rate
and false positive (FP) rate [60,61]. Furthermore, the area under ROC curve (AUC) has
been often applied to quantitatively assess the performance of LSM methods [62–64].
More specifically, a LSM method is confirmed good if the AUC value is near to 1 [65,66].
Meanwhile, two statistical criteria of OA and MCC were also used in our experiments
as follows:

OA =
TP + TN

TP + TN + FP + FN
, (6)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (7)

where TP and TN (true negative) denote the number of landslide and non-landslide
samples that are correctly classified, whereas FP and FN (false negative) represent the
number of non-landslide and landslide instances that are misclassified, respectively. In
addition, the Chi Square test is another crucial statistical approach that is widely applied
to assess the significant difference among expected models [67]. The statistical indexes
of Chi-square and p values are calculated and ranked. If the Chi-square value is higher
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than the standard value of 3.841 and p value is smaller than 0.05, the difference among the
methods is significant [68].

4. Results
4.1. Analysis of Landslide Conditioning Factors
4.1.1. Importance Evaluation of Landslide Conditioning Factors

In this work, the predictive ability of all the landslide conditioning factors were
obtained before constructing landslide susceptibility framework. Generally, a factor with
higher AM value is confirmed important to landslide susceptibility modelling. In present
study, the factor with AM value of zero is removed for further analysis. The AM value of
each conditioning factors is shown in Figure 3. It can be observed that distance to rivers
and altitude have the highest prediction capability with the AM values of 0.3624 and 0.2744,
respectively, indicating that the two factors are more significant than the other factors.
Most of the other factors have the AM values between 0.0105 and 0.1006, including NDWI,
NDVI, land use, TST, distance to faults, TWI, TRI, lithology, curvature, catchment area,
TSC, TPI, slope, catchment slope, slope form and magnitude. In addition, the AM values
of the remaining factors are positive but less than 0.01, indicating that little contribution
is provided to the methods by aspect and rainfall. Therefore, all the conditioning factors
were used for the subsequent steps of LSM.

Figure 3. Average merit (AM) values for the landslide conditioning factor.

4.1.2. Conditioning Factors Analyses Using Frequency Ratio

The results of spatial relationship between landslide locations and related conditioning
factors using the frequency ratio (FR) model are shown in Appendix A Table A1. The
frequency ratio method can evaluate the sub-classes of specific factors and provide useful
instructions for decision-makers to understand the conditioning factors related to landslides
and make better policies [11,16,30]. The higher FR value shows that landslide hazards are
more prone to occur in corresponding zone [69]. Specifically, with regard to altitude, the
class of <300 m has the highest FR value of 4.08, whereas the other classes have lower
probability for landslide occurrence because the FR values are near to 0. The FR analysis
of the aspect factor proved that the slopes facing northwest, south and north have more
potential for landslide occurrence than those facing other orientations. The higher FR values
of 1.61 and 1.31 were obtained in the class of 9000–25,000 m2 and 0.3–0.5 for the catchment
area and catchment slope factors, respectively, indicating higher spatial relationship with
landslide occurrence. As for curvature, the class of (–0.05)–0.15 has the highest FR value
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of 1.21, indicating that the slopes with the other classes in terms of curvature are not
responsible for landslides in this area. For magnitude, the FR values decreases as the
magnitude increases. For distance to faults, we can observe that the area is more prone
to landslide occurrence when its location is 3600–5400 m away from the faults. Distance
to rivers is a critical factor because landslides often occur on both sides of the Yangtze
River. It is obvious that landslide occurrences decrease with increasing distance to rivers.
Furthermore, the possibility of landslides is greatly increased when the distance to rivers
is less than 560 m, which can be verified by the highest FR value of this class (<560 m).
For land use, the residential areas are responsible for landslides due to the highest FR
value of this class. For lithology, it can be concluded from Table A1 that the F class has
highest probability of landslide occurrence with the highest FR value of 1.88. In the case of
NDVI, the class of 0.1–0.5 is responsible for landslide because this class obtains the highest
FR value of 3.94. With respect to NDWI, we can observe that the class of –0.4–0.3 has
high spatial relationship with landslide occurrence. Rainfall is another crucial factor that
influences slope stability; thus, the 1030–1060 mm class gets the highest FR value of 1.08.

The 10–20◦ class of the slope factor has the highest spatial relationship with landslide
occurrence due to its highest FR value. Slope form plays a key role in analyzing the stability
of landslides. It is observed that the class of GE/V is responsible for landslide occurrence
with the highest FR value of 2.79. For TPI factor, more than 50% of landslides occurred in
the −5–2 class. Results regarding TRI revealed that the FR value decreases as the TRI value
increases and the class of <7 has the highest possibility of landslide occurrence with the FR
value of 1.27. As for TST and TWI, the classes of <23 and 3.6–4.2 are highly susceptibility to
landslides occurrence. The spatial relationship between landslide locations and TSC shows
that the <42 class has the highest spatial relationship with FR values of 2.27.

4.2. Model Validation

In our experiments, all landslide models were constructed using the training set
and the parameters were optimized through the trial-and-error process. Some related
parameters of these methods were set up as shown in Table 2. Once the methods were
built, the final landslide susceptibility map based on these methods were prepared in an
ArcGIS environment. In order to better describe the susceptibility level of the study area,
we used the natural break algorithm to divide the whole study area into five susceptibility
classes [46,70]. Figure 4 presents landslide susceptibility maps of different methods and
depicts the distribution of each susceptible class. It can be observed that all the DTs and
DT+RF ensemble methods have similar spatial distributions. Specifically, the susceptibility
class varies from very high to very low as distance to rivers increases. Furthermore,
very high susceptible zones locate in the areas with lower altitude, indicating that these
areas have great contribution to landslide occurrence. Landslide density is defined as the
percentage of landslide pixels divided by the percentage of susceptible class pixels [71],
and it was used to evaluate the effectiveness of landslide susceptibility maps. We can
conclude from Table 3 that the very high susceptible class has the highest landslide density,
followed by high, moderate, low, and very low susceptibility classes. Moreover, all the
ensemble methods achieved higher very high landslide density values than corresponding
base classifier.
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Table 2. Related parameters of the methods used in this study.

Methods Parameters

Base
classifiers

ADT Batch size: 100; number of boosting iterations: 10; seed: 1.
FPA Batch size: 100; number of trees: 15; number of pruning folds: 2; seed: 1.
FT Batch size: 100; number of boosting iterations: 15; minimum number of instances: 15.
LMT Batch size: 100; number of boosting iterations: 15; minimum number of instances: 15
VFDT Batch size: 100; grace period: 200; hoeffding tie threshold: 0.05; minimum fraction of weight info gain: 0.01.

Ensembles

ADT+RF Base classifier: ADT; number of iterations: 26. Minimum size of the group: 3;
maximum size of the group: 3;
removed percentage of in-stance: 50;
principal components analysis used for projection filter;
number of iterations: 26; seed: 1.

FPA+RF Base classifier: FPA; number of iterations: 11.
FT+RF Base classifier: FT; number of iterations: 20.
LMT+RF Base classifier: LMT; number of iterations: 26.
VFDT+RF Base classifier: VFDT; number of iterations: 10.

Figure 4. Cont.
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Figure 4. Landslide susceptibility maps of different prediction method. (a) ADT, (b) FPA,
(c) FT, (d) LMT, (e) VFDT, (f) ADT+RF, (g) FPA+RF, (h) FT+RF, (i) LMT+RF, and (j)
VFDT+RF.
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Table 3. Landslide density of different susceptibility maps.

Classes
Landslide Density

ADT FPA FT LMT VFDT

Very low 0.02 0.03 0.10 0.02 0.02
Low 0.09 0.59 0.33 0.43 0.10

Moderate 0.98 0.73 0.51 0.77 0.50
High 1.28 2.59 2.04 1.74 0.61

Very high 4.12 5.22 4.07 4.96 4.18

ADT+RF FPA+RF FT+RF LMT+RF VFDT+RF

Very low 0.00 0.01 0.02 0.00 0.04
Low 0.19 0.65 0.11 0.34 0.56

Moderate 0.52 0.52 0.52 0.79 1.31
High 1.34 1.42 1.65 1.30 1.34

Very high 5.85 5.49 6.04 5.78 4.94

Table 4 lists the OA and MCC value of all the methods. It can be seen that all the
ensemble methods achieved better performance than corresponding DT classifiers in terms
of OA and MCC. In particular, the FT+RF method achieved the highest improvement of
7.63% than FT model in terms of OA, followed by the ADT+RF (2.54%), LMT+RF (1.7%),
VFDT+RF (0.88%), and FPA+RF (0.85%) methods, respectively. The same trend can be
seen in terms of MCC that the FT+RF methods achieved the highest improvement of
0.152, followed by the ADT+RF (0.049), LMT+RF (0.035), VFDT+RF (0.019), and FPA+RF
(0.017) methods.

Table 4. Performance of different methods.

Methods OA Value MCC

ADT 77.97% 0.561
ADT+RF 80.51% 0.610

FPA 76.27% 0.526
FPA+RF 77.12% 0.543

FT 75.42% 0.509
FT+RF 83.05% 0.661
LMT 79.66% 0.594

LMT+RF 81.36% 0.629
VFDT 79.66% 0.596

VFDT+RF 80.53% 0.615

The ROC curves using the validation set are illustrated in Figure 5. For the DTs in
Figure 5a, the VFDT method achieved the highest AUC value of 0.892, followed by the
LMT, ADT, FPA, and FT methods with the AUC values of 0.884, 0.871, 0.858, and 0.779,
respectively. For the ensemble methods in Figure 5b, both the VFDT+RF and FPA+RF
methods obtained the highest AUC value of 0.907, followed by the ADT+RF, FT+RF and
LMT+RF methods with the AUC values of 0.903, 0.900, and 0.896, respectively. It can be
seen that the VFDT method obtained better prediction result than that of the other DTs.
When this base classifier is integrated with the RF ensemble technique, the best prediction
performance was achieved using the VFDT+RF method as well. Furthermore, all the
DTs can be improved when integrating them with the RF ensemble technique because
the ensemble methods are more efficient than the DTs. In particular, the FT+RF method
achieved the greatest improvement over FT (0.121) in terms of AUC, followed by the
FPA+RF (0.049), ADT+RF (0.032), VFDT+RF (0.015) and LMT+RF (0.012) methods. Table 5
lists the results of Chi-square test between DTs and ensemble methods. It can be seen that
there is a significant difference between the DTs and the corresponding ensemble methods
because the Chi-square and p values of these pair models ideally satisfied the specified
threshold values previously mentioned.
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Figure 5. The ROC curves for all the methods using the verification set. (a) DTs and (b) RF-based ensemble methods.

Table 5. Chi-square values and significant levels of all the methods.

Comparative Pairs Chi–Square Value p Value Significance Level

ADT vs. ADT+RF 813.288 <0.0001 Yes
FPA vs. FPA+RF 854.927 <0.0001 Yes

FT vs. FT+RF 634.815 <0.0001 Yes
LMT vs. LMT+RF 824.088 <0.0001 Yes

VFDY vs. VFDT+RF 612.270 <0.0001 Yes

4.3. Comparation with Benchmark Methods

To further validate the effectiveness of the ensemble framework, three state-of-the-art
RF-based ensemble methods of RBFNN+RF, MLPNNs+RF and NB+RF were selected for
comparison. The three benchmark methods have been successfully used in LSM [29,38,39].
The resultant maps of these methods and the corresponding ROC curves are shown in
Figures 6 and 7, respectively. In terms of prediction performance, all the proposed ensemble
methods were better than the three ensemble methods because the DTs are sensitive to
rotation of the feature axes of the RF structure, which can result in more accurate results.

Figure 6. Landslide susceptibility maps for different state-of-the-art ensemble methods. (a) RBFNN+RF,
(b) MLPNNs+RF, and (c) NB+RF.
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Figure 7. The ROC curves for different popular ensemble methods using the verification set.

4.4. Parameter Analysis

As mentioned in Section 3.3, the PCA algorithm was originally used in the RF en-
semble technique to rotate the axes rather than reducing dimensionality. In fact, other
linear transformations may realize the same function in the RF algorithm, such as nonpara-
metric discriminant analysis (NDA), Gaussian random projections (GRP), sparse random
projections (SRP), and random subset (RS). To evaluate the performance of these feature
extraction approaches on the prediction results, we construct several RF ensemble tech-
niques for comparison. Figure 8 shows the AUC values of the ensemble methods with
different feature extraction methods. Specifically, for the ADT+RF, LMT+RF, and VFDT+RF
methods, each of them with PCA achieved higher AUC values than that with GRP, SRP
and RS, respectively. The FPA+RF method with SRP obtained the highest AUC value of
0.914, which is only 0.007 higher than that of the FPA+RF method with PCA. Moreover,
the FT+RF method with PCA, GRP and SRP obtained the same AUC value of 0.901, which
means that any of these feature extraction approaches can result in a satisfactory prediction
accuracy. Based on the above analysis, the PCA algorithm is an appropriate choice for the
performance of the RF ensemble technique.
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Figure 8. The AUC value of four RF ensemble methods with different feature selection methods.

5. Discussion

Recently, many machine learning techniques have been developed for landslide
susceptibility modelling, including LR [14], SVM [72], and ANN [73]. Among them,
ensemble methods are very effective to combine weak classifiers to obtain better prediction
performance [24,30,39]. To the best of our knowledge, there is no comparative study
of a generalized ensemble framework by integrating the same ensemble technique with
different base classifiers. In this study, the main goal of this study is to compare and evaluate
the performance of a novel ensemble framework by integrating five DTs with the RF
ensemble technique for LSM at the Three Gorges Reservoir area. Before analyzing landslide
susceptibility, it is significant to evaluate the predictive capability of 20 conditioning factors.
Zhou et al. [36] implemented the landslide susceptibility analysis in the Three Gorges
Reservoir area and indicated that the factors of altitude and distance to rivers are much
more important than other factors, which was in agreement with our results. The altitude
and distance to rivers are important factors that influence the occurrence and development
of landslides, especially in the Three Gorges Reservoir area. The Yangtze River runs
through the entire study area, and the reservoirs construction induce a large number of
landslide hazard. Furthermore, in the study area, areas with lower altitude are usually close
to the mainstream of the Yangtze river. The periodically fluctuation of water level strongly
influences the rock and soil mass near the bank slope. Therefore, the factors of altitude and
distance to rivers play an important role in the occurrence of landslides. Moreover, Peng
et al [35] concluded that rainfall was relatively uniform in the same Three Gorges Reservoir
area and had little importance to landslide occurrence, which is in consistent with current
study. Specifically, The GR results demonstrated that the altitude and distance to rivers
factors obtain much higher AM value than the other conditioning factors. Furthermore,
the FR results showed that the <300 m class of altitude and the <560 m class of distance
to rivers achieved the highest FR values, accounting for over 83% and 88% of landslide
locations, respectively. The main reason on these observations is that the areas located
in a lower altitude are very close to the Yangtze River. Meanwhile, the water level of
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the Three Gorges Reservoir unusually has significant increases and periodic fluctuations,
which seriously affect the stability of bank slopes [42,74].

In our experiments, all the proposed ensemble methods can achieve a better perfor-
mance than the traditional DTs, since the proposed ensemble framework can effectively
improve predictive capability by avoiding over-fitting and reducing variance and bias,
which is accord with the previous studies [30,39,44]. Comparison of the performance of
all models indicated that ensemble methods have 0.012–0.121 and 0.85%–7.63% improve-
ment than base classifier in terms of AUC and OA values, respectively. Although the
improvement seems to be limited, but from Table 3 we can confirm that all the models is
significant on providing susceptibility maps. Moreover, the result of significance analysis
also demonstrated that ensemble methods is statistical difference with corresponding base
classifiers, which proved that ensemble methods is instructive for decision makers to prefer
those ensemble methods than DT classifiers. Specifically, the FT+RF method obtained the
greatest performance improvement among all the proposed methods, since the FT model
can reduce bias by using functional decision and has a better combination capability with
the RF ensemble technique than the other DT base classifiers, which demonstrated that
selecting an optimal base classifier is critical for applying ensemble technique. The RF
ensemble method has been proved as a preeminent technique that integrated tree-related
classifiers in the field of LSM [30,39,75]. Moreover, several previous studies applied RF
ensemble integrated with other base classifiers of RBFNN, MLPNNs, and NB, respec-
tively [29,38,39], which obtained relatively good results. However, the result of present
study shows that our proposed five ensemble frameworks all achieved better accuracy
than RBFNN+RF, MLPNNs+RF, and NB+RF in terms of AUC. It is reasonable because RF
can optimize the dataset and train the base classifier in a rotated feature space, and the
selected DTs are very sensitive to rotation of the feature axes in RF architecture. Therefore,
the DTs can perform better in combination with RF and improve its performance.

6. Conclusions

This article proposes a novel ensemble framework by integrating DTs with the RF
ensemble technique to produce landslide susceptibility maps. RF ensemble technique can
accurately portray the landslide susceptibility distribution of the Three Gorges Reservoir
area of China. The final susceptibility maps were produced using the DTs of ADT, FPA,
FT, LMT, and VFDT and their ensembles, which were based on 20 conditioning factors
and landslide inventory map. Experiment results demonstrated that all the DT-based
classifiers can be improved by the RF ensemble technique with 0.012–0.121, 0.85–7.63%,
and 0.017–0.152 in terms of AUC, OA, and MCC, respectively. Specifically, FT obtained the
highest performance improvement and exhibits the best integration ability than other DT
base classifiers. Moreover, all the proposed ensemble methods achieved better performance
against the state-of-the-art RF ensemble methods in terms of AUC, which demonstrated
that the RF ensemble technique has better integration capability with DT classifiers. That
comparison also confirmed that selecting an appropriate base classifier is of great signif-
icant for ensemble technique to perform landslide susceptibility analysis. In conclusion,
the proposed ensemble framework is effective for landslide disaster management and as-
sessment. In the future, our studies will be made by investigating more efficient ensemble
prediction methods.
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Appendix A

Table A1. Spatial relationship between each landslide conditioning factor and landslides using FR model.

Factors Class No. of Landslide Percentage of
Landslide %

No. of Pixels in
Domain

Percentage of
Domain % FR

Altitude (m)

<300 164 83.67 103,566 20.50 4.08
300–600 32 16.33 208,846 41.34 0.39
600–900 0 0.00 133,188 26.36 0.00
900–1000 0 0.00 17,855 3.53 0.00
1000–2000 0 0.00 41,790 8.27 0.00

Aspect

Flat 0 0.00 2749 0.54 0.00
North 34 17.35 77,236 15.29 1.13
Northeast 25 12.76 64,499 12.77 1.00
East 20 10.20 57,824 11.44 0.89
Southeast 15 7.65 51,996 10.29 0.74
South 27 13.78 62,269 12.32 1.12
Southwest 18 9.18 54,352 10.76 0.85
West 26 13.27 73,462 14.54 0.91
Northwest 31 15.82 60,858 12.05 1.31

Catchment
area (m2)

900–9000 113 57.65 361,223 71.49 0.81
9000–25,000 75 38.27 120,329 23.82 1.61
>25,000 8 4.08 23,693 4.69 0.87

Catchment
slope (◦)

< 0.3 35 17.86 110,803 21.93 0.81
0.3–0.5 143 72.96 281,154 55.65 1.31
> 0.5 18 9.18 113,288 22.42 0.41

Curvature
(◦/100 m)

<–0.25 2 1.02 26,532 5.25 0.19
-0.25–0.05 39 19.90 129,494 25.63 0.78
-0.05–0.15 132 67.35 280,986 55.61 1.21
>0.15 23 11.73 68,233 13.50 0.87

Magnitude
(MS)

<1.4 97 49.49 211,196 41.80 1.18
1.4–1.7 76 38.78 195,731 38.74 1.00
>1.7 23 11.73 98,318 19.46 0.60

Distance to
faults (m)

<1200 48 24.49 129,597 25.65 0.95
1200–2400 44 22.45 137,238 27.16 0.83
2400–3600 42 21.43 113,788 22.52 0.95
3600–5400 57 29.08 96,751 19.15 1.52
>5400 5 2.55 27,871 5.52 0.46
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Table A1. Cont.

Factors Class No. of Landslide Percentage of
Landslide %

No. of Pixels in
Domain

Percentage of
Domain % FR

Land use

Residential 43 21.94 26,063 5.16 4.25
Forest 5 2.55 70,400 13.93 0.18
Water 29 14.80 86,629 17.15 0.86
Shrub 11 5.61 106,239 21.03 0.27
Farmland 108 55.10 215,914 42.73 1.29

Lithology

A 4 2.04 36,276 7.18 0.28
B 8 4.08 83,547 16.54 0.25
C 4 2.04 12,109 2.40 0.85
D 10 5.10 68,380 13.53 0.38
E 57 29.08 119,492 23.65 1.23
F 57 29.08 78,188 15.48 1.88
G 56 28.57 107,253 21.23 1.35

NDVI

<0.1 10 5.10 13,832 2.74 1.86
0.1–0.5 39 19.90 25,492 5.05 3.94
0.5–0.7 76 38.78 112,911 22.35 1.74
>0.7 71 36.22 353,052 69.88 0.52

NDWI

<−0.6 99 50.51 413,436 81.83 0.62
−0.6–−0.4 64 32.65 63,499 12.57 2.60
−0.4–0.3 26 13.27 18,352 3.63 3.65
>0.3 7 3.57 9998 1.98 1.80

Rainfall
(mm/yr)

<980 83 42.35 243,656 48.23 0.88
980–1000 6 3.06 29,800 5.90 0.52
1000–1030 47 23.98 160,937 31.85 0.75
1030–1060 44 22.45 105,453 20.87 1.08
>1060 16 8.16 43,003 8.51 0.96

Distance to
rivers (m)

<560 173 88.27 129,924 25.72 3.43
560–890 18 9.18 63,275 12.52 0.73
890–1450 4 2.04 98,029 19.40 0.11
>1450 1 0.51 214,017 42.36 0.01

Slope (◦)

<10 10 5.10 39,238 7.77 0.66
10–20 80 40.82 154,434 30.57 1.34
20–30 74 37.76 173,889 34.42 1.10
30–40 27 13.78 97,336 19.27 0.72
40–50 5 2.55 31,630 6.26 0.41
50–60 0 0.00 7419 1.47 0.00
>60 0 0.00 1299 0.26 0.00

Slope form

V/V 67 34.18 144,923 28.68 1.19
GE/V 9 4.59 8311 1.64 2.79
X/V 23 11.73 56,096 11.10 1.06
V/GR 8 4.08 17,748 3.51 1.16
GE/GR 1 0.51 3038 0.60 0.85
X/GR 11 5.61 15,352 3.04 1.85
V/X 23 11.73 69,636 13.78 0.85
GE/X 5 2.55 12,208 2.42 1.06
X/X 49 25.00 177,933 35.22 0.71

TPI

<−15 2 1.02 19,483 3.86 0.26
−15–5 35 17.86 91,128 18.04 0.99
−5–2 99 50.51 186,356 36.88 1.37
2–10 56 28.57 158,197 31.31 0.91
>10 4 2.04 50,081 9.91 0.21
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Table A1. Cont.

Factors Class No. of Landslide Percentage of
Landslide %

No. of Pixels in
Domain

Percentage of
Domain % FR

TRI

<7 58 29.59 117,952 23.35 1.27
7–14 113 57.65 270,695 53.58 1.08
14–21 21 10.71 88,865 17.59 0.61
21–28 4 2.04 19,126 3.79 0.54
>28 0 0.00 8607 1.70 0.00

TSC

<42 20 10.20 22,695 4.49 2.27
42–49 82 41.84 133,494 26.42 1.58
49–54 68 34.69 219,694 43.48 0.80
>54 26 13.27 129,362 25.60 0.52

TST

<23 68 34.69 80,958 16.02 2.17
23–29 81 41.33 171,818 34.01 1.22
29–35 43 21.94 176,691 34.97 0.63
>35 4 2.04 75,778 15.00 0.14

TWI

<3 12 6.12 99,599 19.71 0.31
3–3.6 83 42.35 216,121 42.78 0.99
3.6–4.2 86 43.88 147,164 29.13 1.51
4.2–6.6 15 7.65 38,306 7.58 1.01
>6.6 0 0.00 4055 0.80 0.00
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