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Abstract: Airborne laser scanning (ALS) acquisitions provide piecemeal coverage across the western
US, as collections are organized by local managers of individual project areas. In this study, we
analyze different factors that can contribute to developing a regional strategy to use information from
completed ALS data acquisitions and develop maps of multiple forest attributes in new ALS project
areas in a rapid manner. This study is located in Oregon, USA, and analyzes six forest structural
attributes for differences between: (1) synthetic (i.e., not-calibrated), and calibrated predictions,
(2) parametric linear and semiparametric models, and (3) models developed with predictors com-
puted for point clouds enclosed in the areas where field measurements were taken, i.e., “point-cloud
predictors”, and models developed using predictors extracted from pre-rasterized layers, i.e., “raster-
ized predictors”. Forest structural attributes under consideration are aboveground biomass, downed
woody biomass, canopy bulk density, canopy height, canopy base height, and canopy fuel load.
Results from our study indicate that semiparametric models perform better than parametric models
if no calibration is performed. However, the effect of the calibration is substantial in reducing the
bias of parametric models but minimal for the semiparametric models and, once calibrations are
performed, differences between parametric and semiparametric models become negligible for all
responses. In addition, minimal differences between models using point-cloud predictors and models
using rasterized predictors were found. We conclude that the approach that applies semiparametric
models and rasterized predictors, which represents the easiest workflow and leads to the most rapid
results, is justified with little loss in accuracy or precision even if no calibration is performed.

Keywords: LIDAR; mixed-effect models; calibration; point-cloud; raster; semiparametric models;
biomass; forest fuels

1. Introduction

Forest fires and carbon accounting are tightly interrelated areas of interest with critical
importance for sustainable forest management [1,2]. Detailed spatial information about
forest fuels and biomass accumulation in the forest are necessary to guide decision-making
processes in these areas [3–5]. However, forested areas are typically large and remote, and
obtaining this information using only field measurements is an expensive or inefficient
option for many applications. For example, national forest inventories, such as the US
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Forest Inventory and Analysis (FIA) program [6], are able to provide accurate estimates of
different forest attributes for large territories such as states or counties using only ground
data [7]; however, that level of spatial detail is too coarse to be used in stand-level forest
management problems or in fire-behavior simulations.

Prediction of forest attributes using remotely sensed auxiliary information allows
obtaining cartographic products with fine resolution with fine resolution, in the range of
10 to 30 m, that can be used in a wide array of forest-management scenarios. In particular,
airborne laser scanning (ALS) or airborne LIDAR data provide auxiliary information that
is highly correlated with a number of forest structural attributes such as above-ground
biomass (AGB), total standing volume, basal area, dominant height, diameter distributions,
tree-height distributions, and diversity indexes [8–10]. ALS auxiliary information has been
shown not to suffer from saturation problems associated with optical datasets such as
Landsat imagery when predicting AGB [11–17]. Furthermore, ALS data have also been
used to reliably predict forest fuel attributes that can be used as inputs to fire-spread
models [18–20].

Besides forest-structure mapping, ALS data can be used for numerous applications
such as deriving high-resolution digital terrain models and topographic indices [21,22],
mapping human infrastructures [22,23] or improving information about hydrological net-
works [24,25]. Considering the large set of applications for ALS data, many countries and
public agencies have coordinated efforts to obtain state- or country-wide coverage of ALS
data. None of the western United States yet have complete ALS data coverage; however,
they are continuously increasing their ALS data availability. New ALS data collections in
these states cover areas of variable size, which results in a steadily increasing patchwork of
areas with available ALS data that capture a broad range of forest conditions [26].

Prediction of forest attributes using ALS data is typically performed using supervised
methods that require matching ALS auxiliary information with observations of the target
responses taken in field plots without a sizable temporal offset with respect to the ALS data
acquisition. The data collected by the FIA program can be used to model forest structural
attributes using available ALS data in this manner. However, the discontinuous nature
in space and time of the ALS data acquisitions, in combination with the ten-year rotating
panel design of FIA in the western US, causes challenges for an operational methodology
to produce cartographic products that forest managers can use. Some ALS data acquisition
projects are small, such that too few FIA plots are available to perform any modeling
exercise. For larger areas, it is possible to develop acquisition-specific models once an
ALS data collection is completed. However, modeling requires considerable time and
hence delays for the delivery of maps of structural attributes to forest managers—e.g., for
fire-related applications—and these delays can imply obtaining inputs for fire-spread
simulators only after the fire season has finished. A potential solution to these problems is
developing models that can either be: (1) directly transferred to new ALS data collections,
or (2) calibrated for new ALS acquisition projects using a potentially small sample size.

Directly transferring a model to a new ALS data collection is a very fast way to gener-
ate cartographic products for ALS data acquisitions. As long as the covariates needed for a
model are available, generating new maps of forest structural attributes only involves gener-
ating predictions from a pre-fitted model. However, this direct transfer, oftentimes referred
as synthetic prediction, may involve extrapolations or applying a model to conditions
not included in the training dataset, which in turn, can result in significant bias problems.
These potential bias problems have been investigated by [27–29]. In particular, [28] found
bias issues for basal area and stand density when synthetic predictions were respectively
used in 33% and 50% of the ALS acquisitions under analysis. A potential solution to these
bias problems is localizing pre-existing models to the conditions of a new ALS acquisition
through calibration [30]. Calibration is typically based on using mixed-effect models [31]
with a fixed component that accounts for the general relationships in the population (i.e.,
a region) between auxiliary information and response, and a random-effects component
that models the variability between subgroups of the population (e.g., particular ALS
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acquisitions within a region). Once models are fitted, calibrating them to the conditions of
a new ALS data acquisition results in a significant reduction in modeling effort because
it is only necessary to estimate the random effects for the new ALS acquisition under
consideration, which can be done with small sample sizes and eliminates the need to fit
new models.

Linear and nonlinear mixed-effects models can be readily calibrated and appear as
appealing modeling alternatives to reduce the time needed to obtain maps of forest at-
tributes once a data collection is completed. Nonparametric modeling methods such as
k-nearest neighbor imputation [32–34], gradient nearest neighbor imputation [35], and
random forest [36–38] have been extensively used to predict forest attributes from remotely
sensed auxiliary information in the last decade. However, the flexibility of these non-
parametric methods, that impose no structure in the model errors, makes it impossible
to calibrate pre-existing models to new data collections. Nonparametric models can be
modified with parametric assumptions about the structure of the model errors [39,40].
These modifications result in semiparametric models that combine flexibility in modeling
nonlinear patterns of the nonparametric techniques they are based on, with the possibility
of calibrating predictions. Nothdurft et al. [40] proposed combining a k-NN model, fit
to obtain population means conditional on a given set of covariates, with a mixed-effects
model for the variability not explained by the k-NN model. This method allowed calibrat-
ing predictions from the k-NN model to subpopulations of stands. This approach can be
applied to the problem of calibrating pre-trained models for new ALS data collections;
however, to the best of our knowledge no previous studies exist on this topic.

Finally, models to predict forest attributes from ALS data are typically developed
using predictors or metrics derived from the point clouds enclosed in the areas where
measurements were taken [41,42]. However, in some operational scenarios direct access
to point-cloud data may not be available; i.e., when only gridded summaries of ALS
predictors are readily available. Furthermore, sharing gridded products over the internet
is more common and demands far fewer resources than sharing point-cloud data. If the
accuracy and precision of models developed by extracting predictors for the field plots
from pre-rasterized products are not substantially worse than the accuracy and precision
of models developed with predictors computed for the point clouds enclosed in field plots,
then a workflow entirely based on rasterized products can be a more tractable option for
many applications. For example, when modelers do not have the knowledge or technical
infrastructure to process point-cloud data, or when it is necessary to unify broad sets of
ALS acquisitions. We are not aware of any existing research on this matter, despite the
practical justification and need.

This study is developed with the aim of obtaining insights for a regional strategy
that allows using information from available ALS data acquisitions for rapid mapping of
multiple attributes desired by forest and fuel managers in new ALS project areas. With that
overarching objective, we focused our analysis on the state of Oregon and analyzed two
sets of response variables. Based on their importance for carbon accounting purposes, the
first set of variables consisted of AGB and downed wood biomass (DWB); i.e., the sum of
coarse and fine woody debris. The second set of variables contained canopy bulk density
(CBD), canopy height (CH), canopy base height (CBH), and canopy fuel load (CFL), chosen
because they are inputs for fire-spread models such as Flammap [43–46] that are widely
used by fire and fuel managers. For each response, we analyzed:

1. Transferability and effect of calibration. Comparisons focused on analyzing differ-
ences in accuracy and precisions between synthetic predictions and predictions ob-
tained using the same models but performing an additional calibration step with
available ground and ALS data. We will refer to this factor in the following sections
as “calibration”.

2. Differences between modeling techniques. Comparisons focused on analyzing differ-
ences between parametric linear mixed-effects models and semiparametric models.
We will refer to this factor in the following sections as “modeling technique”.
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3. Differences between models using a different source of ALS metrics. Comparisons fo-
cused on analyzing differences between models using ALS predictors computed from
point-clouds clipped around the training plot footprints, i.e., point-cloud predictors,
and models using predictors extracted from raster layers, i.e., rasterized predictors.
We will refer to this factor in the following sections as “source of predictors”.

2. Materials and Methods
2.1. ALS Data Acquisitions and ALS, Climate, and Topographic Metrics

Eight ALS data acquisitions collected by different agencies in the state of Oregon
during the period 2008–2016 were used in this study (Figure 1). These acquisitions covered
the main forested areas in the state and included areas of temperate coastal coniferous
forest, areas with Mediterranean influence in the south of the state, mountain areas on the
Cascades range, and drier and more continental forest ecosystems east of the Cascades
mountains. The area, completion year, flying altitude, sensor information, return density
and number of field plots available for each ALS acquisition are indicated in Table 1.
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Figure 1. Study area and airborne laser scanning (ALS) data acquisitions used in the analyses.
Individual ALS acquisitions can be identified using Table 1.

For all acquisitions, 30 m resolution rasters containing the ALS metrics indicated in
Table 2 were available. The ALS predictors only included descriptors of the distribution
of the ALS point cloud such as percentiles or moments and proportions of returns in
height categories. For each FIA plot we obtained two sets of ALS predictors. The first set,
“rasterized” predictors, was obtained by intersecting the FIA plot center location with the
rasters containing the ALS metrics. The second set, “point-cloud” predictors, was obtained
by first clipping the points inside the four macro-plots of each FIA plot. Then, for each
FIA plot we normalized the point cloud with digital terrain models (DTMs) provided by
the vendor of each ALS data acquisition using the R-package lidR [47]. Once normalized,
metrics for each FIA plot were computed using FUSION [48]. An extended analysis for the
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factors: (1) transferability and effect of calibration, and (2) modeling technique, including
12 additional ALS acquisitions where only rasterized predictors were used is presented in
Appendix A.

Table 1. ALS data acquisitions summary and number of field plots per ALS acquisition.

ALS Data
Acquisition

End
Year

Flying
Altitude (m) Sensor Average Pulse

Density (Pulses/m2) Area (Km2) Number of
FIA Plots

1. Willamette 2008 900 Leica ALS50 PII 8.00 8189.74 85
2. South Coast 2009 900 Leica ALS50 PII 8.50 6541.11 132
3. Deschutes 2010 900 Leica ALS50 and ALS60 8.60 7891.78 347

4. Central Coast 2012 900–1400 Leica ALS50, ALS60 and ALS70 11.54 3263.96 102
5. Rogue Valley 2012 900–1400 Leica ALS50 and ALS60 10.70 5510.75 119
6. Lane County 2015 1500 Leica ALS 80 11.50 8354.98 221

7. Upper Umpqua 2015 1200–1500 Optech Orion H and LeicaALS 80 11.88 5722.48 117
8. Canyon Creek 2016 1500 Leica ALS 80 11.00 671.72 10

Total area and number of FIA plots 46,146.51 1133

In addition to the ALS predictors, we used topographic and climate predictors listed
in Table 2 in the models for the selected responses. Topographic predictors were derived
from a DTM derived from the Shuttle Radar Topography Mission and climate predictors
were obtained from the Climate-FVS Ready Data Server [49]. Both topographic and climate
indexes were rasterized at a 30 m resolution and a grid that aligned with the grids con-
taining ALS metrics. For each FIA plot, topographic and climate predictors were obtained
intersecting the FIA plot center with the corresponding raster layers.

Table 2. Sets of candidate predictors used in the study.

Group Description Auxiliary Variables Acronym

ALS predictors
(Derived from point

clouds or extracted from
raster files)

Mean, standard deviation, skewness coefficient, kurtosis
coefficient, coefficient of variation of the distribution of

heights of the point cloud.
Mean, Stddev, CV, Skew, Kurtosis

Percentiles of the distribution of heights of the point cloud. P05, P25, P50, P75, P95

Canopy relief ratio CRR

Percentage of first (Fst) returns above 2 m and mean % First returns above 2 m, % First
returns above mean

Proportion of points in the height intervals [0–
0.5), [0.5, 1), [1, 2), [2, 4), [4, 8), [8, 16), [16, 32), [32, 48), [48, 64)

and [64, ∞), meters.

% Returns above 64 m, % Returns
[48 m, 64 m), % Returns [32 m, 48 m),
% Returns [16 m, 32 m), % Returns
[8 m, 16 m), % Returns [4 m, 8 m),
% Returns [2 m, 4 m), % Returns
[1 m, 2 m), % Returns [0.5 m,1 m),

% Returns [0 m, 0.5 m)

Climate variables

Mean annual precipitation (mm) and temperature Map, Mat
Mean maximum temperature in the warmest month Mmax

Mean minimum temperature (◦C) in the coldest month Mmin
Mean temperature (◦C) in the coldest month Mtcm

Mean temperature (◦C) in the warmest month Mtwm
Degree-days above 0 and 5 ◦C Dd0, Dd5

Julian day when the sum of degree-days >5 ◦C reaches 100 D100
Julian date of the first freezing date of autumn Fday
Julian date of the last freezing date of spring Sday

Length of the frost-free period (days) Ffp
Growing season precipitation, April to September Gsp

Summer dryness index Sdi
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Table 2. Cont.

Group Description Auxiliary Variables Acronym

Topographic indexes

Elevation Elev
Slope Slop

Transformed aspect Tasp
Slope × Sine of Aspect transformation Ssas

Slope × Cosine of Aspect transformation Scas
Global incoming radiation Grad

Accumulated number of pixels that flow through
the plot center Accu

Profile curvature Pcur
Tangential curvature Tcur

Topographic wetness index Twin
Topographic convergence index Tci

Topographic position index calculated at 90 m (3 pixels) T090
Topographic position index calculated at 150 m (5 pixels) T150

Topographic position index calculated at 510 m (17 pixels) T510
Topographic position index calculated at 990 m (33 pixels) T990

2.2. Ground Data and Response Variables

Ground data to train models was obtained from the FIA database [50]. Coordinates of
FIA plots were obtained using mapping-grade GPS units. To the best of our knowledge
no study has analyzed directly the reliability of the GPS coordinates of the FIA database
in the study area, but based on previous experiences [51,52] the errors are expected to
have accuracies in the range of a meter and maximum location errors are expected to be
in the range of 5 to 10 m [53]. Following [26], only those FIA plots that were measured
at most three years before or after each ALS data acquisition project was completed were
used. In addition, any plots presenting any sign of disturbance between the plot visit date
and the completion date of their corresponding ALS data acquisition were removed from
the dataset. For each one of the remaining FIA plots, AGB per hectare were computed
by aggregating tree-level AGB provided in the FIA database with their corresponding
expansion factors [50] (Table 3). Estimates of DWB per hectare were obtained for each
FIA plot condition class and weighed by the transect length of the appropriate condition
class. Finally, values of CBD, CH, CBH and CFL were obtained for the FIA plots using the
FireCalc program [54] and the tree-lists of the FIA plots as inputs (Table 3).

Table 3. ALS data acquisitions and summary of field attributes.

FIA
PLOTS

Mean (Standard Deviation) of Response Variables

AGB
(Mg/ha)

DWB
(Mg/ha)

CBD
(Kg/m3)

CH
(m)

CBH
(m)

CFL
(Mg/ha)

1133
234.27 27.52 0.14 31.11 5.01 15.36

(209.49) (28.59) (0.12) (15.67) (5.37) (11.18)

2.3. Parametric Models

Parametric models for AGB, DWB, CBD, CH, CBH, and CFL, were linear mixed-effects
models with random intercepts and slopes for each ALS data acquisition. The general form
of these models is

yij = xt
ij(β + vi) + eij, (1)

where xij is a p-dimensional vector with the first element a 1 and the p-1 remaining elements
being the values of p − 1 covariates for the jth plot in the ith ALS data acquisition, β is a
p-dimensional fixed-effect parameter vector, vi is a p-dimensional vector of random effects
for the ith ALS data acquisition, and eij is an additive model error. The random effects vi
were assumed to be normally distributed with a variance–covariance matrix G(δv) with δv
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a vector of variance–covariance parameters that is the same for all ALS data acquisitions;
i.e., vi ∼ N(0, G(δv)) ∀ i. Model errors were also assumed to be normally distributed, but
we allowed for nonconstant error variances. The variance of the model errors was assumed
to be proportional to a power α of the predictor most correlated with the response, mcpij.
That is, eij ∼ N(0, σ2

e mcp2α
ij ), where σ2

e and α are model parameters that are the same for
all ALS data acquisitions. For any pair of ALS data acquisitions, i and k, random effects vi
and vk were assumed to be independent so cov(vi, vk) = 0p x p and model errors eij and ekl
for any pair of FIA plots were also assumed to be independent.

Hereafter we will use lower-case Greek letters to denote sets of FIA plots possibly
distributed across several ALS data acquisitions. Four sets will be systematically considered
in the following sections. The first one, τ, will denote a set of FIA plots used to fit a model,
the second one, ρ, will be a set of FIA plots or prediction points in an ALS acquisition
for which predictions are sought. The third and fourth sets that will be considered are ρs
and ρu. The set ρs is the subset of ρ that contains the sampled elements for which both
ground and auxiliary information are available. Analogously, ρu is the subset of ρ for which
only auxiliary data is known; i.e., the complement of ρs. Letting ξ denote an arbitrary set
containing nξ FIA plots, grouped by ALS acquisitions, the model in Equation (1) can be
specified in matrix notation as

yξ = Xξ β + Zξvξ + eξ , (2)

where Xξ = col
1≤i≤m(Xi) is a matrix with nξ rows and p columns obtained by stacking the

matrices Xi = (xi1, . . . , xij, . . . , xini )
t associated to the ni elements from the ith ALS data

acquisition in ξ and Zξ is a matrix with nξ rows and mp columns formed by mxm blocks,
where all elements in off diagonal blocks are zeros and blocks in the diagonal are the matri-
ces Xi. The vector of random effects is vξ = (vt

1, . . . , vt
i , . . . , vt

m)
t with vi = (vi1, . . . , vp)

t

and the vector of model errors is eξ = (et
1, . . . , et

i , . . . , et
m)

t with ei = (ei1, . . . , eni )
t. The

variance–covariance matrix of yξ is denoted as Vξ(δv, σ2
e , α) = ZξGξ(δv)Zt

ξ + Rξ(σ
2
e , α)

where Gξ(δv) = diag
1≤i≤m

G(δv) is the variance–covariance matrix of vξ and Rξ(σ
2
e , α), the

variance–covariance matrix of eξ , a diagonal matrix where the elements in the diago-
nal equal σ2

e mcp2α
ij . Grouping all variance–covariance components into a single vector

δ = (δt
v, σ2

e , α)
t, we will simplify the notation for Vξ(δv, σ2

e , α) as Vξ(δ).

2.3.1. Model Selection

A model selection process consisting of four steps was run separately for every
response and type of ALS metrics (i.e., point-cloud and rasterized predictors). In the first
step we obtained the four linear fixed-effects models with highest R2 with one, two, three,
and up to seven predictors using the R-package leaps [55]. For most models we observed
that residuals tended to increase with the predicted value, thus, for each candidate we
obtained a second fixed-effects model where the error variance was proportional to mcp2α

ij
and compared it to the first model using a likelihood ratio test. When the p-value of the
likelihood ratio test was smaller than 0.05, the candidate model with constant error variance
was replaced by its counterpart with error variance proportional to mcp2α

ij . Finally, for
each candidate we obtained a mixed-effects model having the same fixed effects and error
variance but incorporating random effects as indicated in Equation (1). The significance of
the fixed-effect coefficients associated with each predictor was tested for each candidate
and those coefficients that were not different from zero at a 0.05 significance level were
sequentially removed from the model until all fixed effects were significantly different from
zero at a 0.05 confidence level. The result was a list of 28 models from which we selected a
final one for the response variable under consideration.

To select the final model, we first removed from the list of 28 candidates all models
where the maximum variance inflation factor, VIF, was larger than 5. To balance parsimony
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and predictive power, we observed at the increases of explained variance when increasing
the number of predictors. We initially removed from the list all models where the R2 was
2.5% less than the maximum. Then, we only kept the models with the smallest number
of predictors and selected the model with lowest root mean square error if more than one
remained in the list. All models in this process were obtained using maximum likelihood
and functions from the R package nlme [56].

2.3.2. Prediction and Calibration with Parametric Models

Once models were fitted, we obtained synthetic predictions and calibrated predictions
for each FIA plot. Letting δ̂ be the estimated variance–covariance parameters of the model,
we obtained the estimated fixed-effect parameters as

β̂ = {Xt
τV̂τ(δ̂ )

−1
Xτ}

−1
{Xt

τV̂τ(δ̂ )
−1

Xτ}
−1

Xt
τV̂τ(δ̂ )

−1
. (3)

Synthetic predictions for points in a new ALS acquisition, ρ, were obtained by a direct
extrapolation using the fixed-effects parameters obtained in the model fitting stage as

ŷsyn
ρ = Xρ β̂, (4)

To emphasize that these are synthetic predictions, we will use the superscript syn.
It is important to note that synthetic predictions do not perform any calibration to the
local conditions of a new ALS data acquisition and can be obtained without any new
ground information.

If a set ρs of ground observations with their corresponding values of the auxiliary
variables is available for the new ALS data acquisition, then, following p. 314 [57], it is
possible to obtain calibrated predictions as

ŷcal
ρ = Xρ β̂ + Zρv̂ρ, (5)

where the superscript cal is used to denote that these are calibrated predictions and

v̂ρ = Gρs(δ̂v)Zt
ρs Vρs(δ̂)

−1{yρs
−Xρs β̂}. (6)

2.4. Semiparametric Models

For each response variable we obtained semiparametric random-forest models us-
ing point-cloud and rasterized predictors. We followed the approach proposed by [40]
but included some modifications to accommodate nonconstant error variances because
increasing error variances are commonly observed when modeling forest attributes with
ALS auxiliary information (e.g., [58,59]).

The form of the semiparametric models can be described as

yij = f (xij) + θij, (7)

where f (xij) is a fixed and unknown function that will be approximated by the random
forest algorithm and θij a random variable with zero mean that includes all the variation
that is not explained by f (xij).

We further assumed that the random component not explained by f (xij) was

θij = f (xij)ui + εij, (8)

where ui is a random effect specific of the ith ALS data acquisition and εij is an additive
model error for the jth plot in the ith ALS acquisition. Random effects and model errors
are assumed to be independent of each other and normally distributed with ui ∼ N(0, σ2

u),
εij ∼ N(0, σ2

ε f (xij)
2κ) where σ2

u , σ2
ε , and κ are model parameters. Finally, ui was assumed
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to be independent of uk for any pair of ALS data acquisitions and εij independent of εkl for
any pair of FIA plots.

For an arbitrary set of units, model (8) can be expressed as

yξ = col
i,j ∈ξ

[ f (xij)] + Uξuξ + εξ , (9)

where col
i,j ∈ξ

[ f (xij)] is a nξ dimensional column vector obtained stacking the values f (xij) of

all units in ξ and Uξ is a matrix with nξ rows and m columns, where the row corresponding
to the jth element of the ith acquisition has zeros everywhere except for the ith position,
which has a value of f (xij). The vector uξ = (u1, . . . , ui, . . . , um)

t groups the random
effects for all ALS acquisitions in ξ and the vector εξ is a vector of model errors obtained in
the same way as eξ . The variance–covariance matrix of uξ is Jξ(σ

2
u) = σ2

u Imxm with Imxm

an identity matrix of dimension m and the variance–covariance matrix of εξ is Kξ(σ
2
ε , κ) =

σ2
ε diag

i,j ∈ξ

[ f (xij)
2κ ]. Letting Lξ be the variance–covariance matrix of Uξuξ + εξ , we have

cov(Uξuξ + εξ , Uξuξ + εξ) = Lξ(σ
2
u , σ2

ε , κ) = UξJξ(σ
2
u)U

t
ξ + Kξ(σ

2
ε , κ) (10)

Variance–covariance parameters σ2
u , σ2

ε , and κ were obtained after a random forest
model was fitted to the training sample τ. Then we assumed that the random forest
provided a close approximation, f̂ (.), to the unknown function f (.). Using f̂ (.) we obtained
θ̂ij = yξ − f̂ (xij), which were assumed to have a normal distribution with zero mean
and variance covariance matrix as indicated in Equation (10). The estimated residuals
from the random forest model, θ̂ij, were finally used to estimate σ2

u , σ2
ε , and κ using

maximum likelihood.

2.4.1. Model Selection

A model selection consisting of three steps was developed for every response variable
and source of ALS metrics. In the first step we followed the approach described by [28]
and eliminated correlated predictors using the QR decomposition implemented in the
multi.collinear function of the rf.Utilities R package [60]. This step was run only once for
each combination of response variable and source of ALS metrics. In the second step, we
used the function rf.modelSel [60] to identify the best combination of variables selected
in the final random-forest model for each response variable and source of ALS metrics.
Once predictors were selected, random-forest models were fit using the randomForest R
package [61]. These models provided the nonparametric component of the semiparametric
models and were used to compute values for θ̂ij. In the last step, we obtained the parametric
part of the model that e×plains differences in θ̂ij due to ALS acquisition membership. Two
models as indicated in Equation (10) were obtained for the variance–covariance of random
effects and model errors using the R package nlme [56]. The first model had a fixed
exponent κ = 0; i.e., homoscedastic errors, and the second model had an exponent κ that
was free to vary during the model-fitting stage. Both models were compared using a
likelihood ratio test. We selected the model with variable κ when the p-value of this test
was smaller than 0.05; otherwise, we selected the model with κ = 0.

2.4.2. Prediction and Calibration with Semiparametric Models

A direct application of the random forest model to a new ALS data acquisition provides
synthetic predictions

ŷsyn
ρ = col

i,j ∈ρ
[ f̂ (xij)]. (11)

Following [41] (pp. 307, 353), calibrated predictions can be obtained as

ŷcal
ρ = col

i,j ∈ρ
[ f̂ (xij)] + Uρûρ, (12)
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with
ûρ = Jρs(σ̂

2
u)U

t
ρs Lρs(σ̂

2
u , σ̂2

ε , κ̂)
−1{yρs

− col
i,j ∈ξ

[ f̂ (xij)]} (13)

2.5. Accuracy Assessment and Comparisons
2.5.1. Cross-Validation and Performance Metrics

To assess the effect of calibration for new ALS data acquisitions, we used the following
procedure for each response variable and modeling technique (Figure 2). First, for each
ALS data acquisition, we split the entire training dataset in two parts, τ and ρ. The set
τ, the training subsample, contained all FIA plots not included in the selected ALS data
acquisitions, and the set ρ contained the FIA plots within the ALS data acquisition under
consideration. Models obtained in the model selection stage were re-fitted using only τ
and synthetic predictions were obtained for all elements in ρ. Finally, random effects and
calibrated predictions for parametric and semiparametric models were obtained using
Equations (5) and (6) and Equations (12) and (13), respectively. To consider that only FIA
plots measured prior to the acquisition date will be available for the calibration of new
ALS data collections, we performed the calibration using ρs, the subset of ρ that contained
the FIA plots that were measured the year the ALS data acquisition was finished or the
three previous years. It is important to note that while models were selected including
also plots measured up to three years after the ALS data collection was finished, we tested
the effects of the calibration by excluding the plots that were measured after the ALS data
collection was finished when computing the random effects using Equations (6) and (13).
The potential use of the models developed in this study is to perform calibrations in new
ALS data acquisitions. Thus, excluding the plots that were measured after the acquisitions
were finished provides a closer approximation to the sample sizes that could be used for
calibration in a real case. The result of this process was (1) a set of synthetic predictions
from models developed with data from different acquisitions and (2) a set of calibrated
predictions where only the field plot data available at the end of the ALS acquisition project
was used to compute random effects.

We used both sets of predictions to compute êij = ŷij − yij and obtained the following
performance metrics:

RMSE =

√
∑i ∑j ê2

ij

∑i ni
, (14)

BIAS =
∑i ∑j êij

∑i ni
, (15)

where ni represents the number of elements in the ith ALS data acquisition and ŷij can
represent synthetic or calibrated predictions. In addition to these metrics we also computed
their values relative to the mean, y, of the response variable under consideration as:

RRMSE =
RMSE

y
(16)

RBIAS =
BIAS

y
(17)

And the coefficient of determination as:

R2 = 1−
∑i ∑j ê2

ij

∑i ∑j (yij − y)2 (18)
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2.5.2. Differences between Calibrated and Synthetic Predictions, Modeling Techniques, and
Sources of ALS Metrics

For each response variable, we analyzed changes in performance due to each of the
three factors under analysis (Figure 2) by computing changes in the relative root mean
square error and relative bias. For a given factor, changes were computed as:

∆RMSE f = RMSEA − RMSEB, (19)

and:
∆RBIAS f =

∣∣∣RBIASA
∣∣∣− ∣∣∣RBIASB

∣∣∣ (20)

where f , A, and B are generic superscripts that respectively indicate the factor under
analysis and the two alternatives that are compared. For the transferability analysis
we used the symbol t for f , and A = cal for calibrated predictions and B = syn for
synthetic predictions. To analyze differences due to the modeling technique we used error
metrics computed after performing the corresponding calibration. We used the symbol
m to indicate the factor “modeling technique”, and A = par for the parametric models
and B = spar for the semiparametric models. Finally, for the comparisons of models
using rasterized and point-cloud ALS predictors, error metrics were also computed after
performing the corresponding calibration. The letter s was used to indicate the factor
“source of predictors”, and A = r for models using rasterized ALS metrics, and B = pc for
models using point-cloud predictors.

To test differences in model performance due to: (1) the modeling technique and (2)
the source of ALS metrics, we used a t-test on the differences êij

A − êij
B to test differences

in accuracy and a t-test on the differences
∣∣êij
∣∣A − ∣∣êij

∣∣B to assess differences in precision.
Finally, in addition to the global values of SE, RBIAS, ∆RMSE f , and ∆RBIAS f , these
metrics were also computed for each ALS acquisition separately.

3. Results
3.1. Parametric and Semiparametric Models

Regardless of the source of ALS metrics and modeling technique, several patterns were
observed with respect to the predictive performance of the models for different response
variables. The largest R2 values were obtained for CH, followed by AGB, with values
ranging from 88.59% to 85.29% and from 80.03% to 76.45%, respectively. For the remaining
variables the explanatory power of the models was largest for CFL with R2 values above
50%. This variable was followed by CBH and CBD, which tended to have R2 values around
30% and 25% respectively. Finally, the explanatory power of the models for DWB was
very poor, and larger for the parametric models where R2 reached 13.79% for the model
using point-cloud metrics and 13.49% for the model using rasterized predictors. Patterns
observed for RRMSEcal were similar to those observed for R2 but in the opposite direction.
Finally, RBIAScal was positive for most models indicating a systematic overprediction with
a magnitude that varied substantially between variables. For CH and AGB it was below
2.5% in absolute value. For CBD, CBH, and CFL, RBIAScal was below 10% in absolute
value and for DWB RBIAScal exceeded 5% for the parametric models and 15% for the
semiparametric models (Figure 3).
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Figure 3. Relative root mean squared error (RRMSEcal), relative bias (RBIAScal), and coefficient of determination (R2)
for parametric models. Error metrics were calculated for models fitted with the entire dataset under consideration and
predictions calibrated using all plots in the corresponding ALS acquisition, which were measured either in the year that
the ALS data acquisition was finished, or in the two previous years. Model response variables are: aboveground biomass
(AGB), downed woody biomass (DWB), canopy bulk density (CBD), canopy height (CH), canopy base height (CBH), and
canopy fuel loading (CFL).

All models included random effects; however, for the parametric models for DWB
and CBH using point-cloud predictors, the inclusion of random effects did not improve the
model fit significantly at a 0.05 confidence level. For CBH the model selection algorithm
for the parametric models described in Section 2.3.1 provided models with up to six
predictors, followed by models with three predictors but with an R2 3.2% points larger
than the maximum R2. These simpler models were considered more appropriate and
selected as final models for this variable because they allowed for a substantial model
simplification without causing important performance losses. For most variables, sources
of ALS metrics, and modeling techniques, models improved when including random
effects for the ALS acquisitions and a parameter κ 6= 0 to account for nonconstant error
variances (Tables A4, A5 and A7). The only exceptions to this trend were the parametric
models for CFL and the parametric model for CH using rasterized ALS metrics.
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Important differences were observed between parametric and semiparametric models
for the number of predictors included in the model. The median number of predictors for
the semiparametric models was 33, and ALS, topographic, and climate metrics were present
in all but the semiparametric model for DWB using rasterized predictors. The median
numbers of ALS metrics, topographic, and climate metrics were 18, 10, and 4 variables
respectively (Figure A5). Parametric models always had less than five predictors and in
most cases these predictors were derived from the ALS data (Tables A4 and A5).

3.2. Differences between Synthetic and Calibrated Predictions

All models included ALS acquisition random effects; however, the magnitude of these
effects varied significantly between variables and modeling techniques. For semiparametric
models, reductions in global RMSE and RBIAS were negligible, which indicates that with
these models using synthetic predictions and omitting the calibration step will not have
consequences of practical importance in accuracy and precision. While semiparametric
models seem to capture differences between ALS acquisitions directly, leaving little room
for improvements to the calibration stage, parametric models operate differently, and their
performance improves substantially with the calibration. Parametric models captured
the main relationship with auxiliary information in their fixed-effect component, and a
part of the variability between ALS acquisition was accounted for in the calibration stage
(Figure 4). Focusing on the parametric models, for AGB, CBD, CBH, and CFL calibration
resulted in consistent reductions of the global RMSEcal and RBIAScal . For DWB and CH,
three parametric models failed at reducing the global RBIAScal . We further inspected this
issue by looking at ALS-acquisition-specific values of RBIAScal for the parametric models.
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For all variables and source of ALS metrics the |BIAS| decreased in the majority of
the ALS acquisitions after the calibration was performed (Figure 5). These reductions in
the ALS acquisition BIAS also resulted in a reduction of RMSE. Similar patterns were
observed for the e×tended dataset using only rasterized metrics (Figure A3). The effect of
the calibration in DWB was very small and erratic, which, in conjunction with the poor
performance of the models for this variable, indicate that the variability in DWB cannot be
predicted well by the auxiliary information used in this study or by geographic factors such
as membership in a particular ALS acquisition area. For the remaining variables the effect
of the calibration varied in magnitude depending on the variable and source of predictors.
Most important effects of calibration were observed for CH followed by CBH and AGB,
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and the smallest reductions of ALS-specific BIAS were observed for CBD. Overall, the
calibration step had positive impact in reducing the ALS acquisition biases and that is the
main advantage of the mixed-effects parametric models developed in this study.Remote Sens. 2020, 12, × FOR PEER REVIEW 16 of 37 
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parametric models by ALS data acquisitions. AGB, DWB, CBD, CH, CBH, and CFL respectively indicate aboveground
biomass, downed woody biomass, canopy bulk density, canopy height, canopy base height, and canopy fuel load.
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3.3. Differences between Parametric and Semiparametric Models

Parametric models provided lower values of the global RBIAScal in 11 of the 12 possi-
ble combinations of response variables and sources of ALS metrics, while semiparametric
models provided lower values of the global RRMSEcal in 8 of the 12 possible comparisons.
With the exception of DWB, for which parametric models provided consistently better
results in terms of RBIAScal and RRMSEcal , there was no modeling technique that can
be considered as clearly superior than the other. For DWB, CBD, CH, CBH, and CFL,
the RBIAScal of parametric models was smaller than the bias of their semiparametric
counterparts regardless of the source of ALS predictors (Table 4). For AGB there was no
modeling technique better than the other in terms of RBIAScal . Semiparametric models
provided better results in terms of global RRMSEcal for AGB, CBD, and CH, while for
DWB the parametric models had consistently smaller values of RRMSEcal . The magnitude
of the differences in RBIAScal and RRMSEcal between parametric and semiparametric
models were of small magnitude for those responses with larger R2. For CH and AGB,
differences between modeling techniques in RBIAScal and in RRMSEcal were below 1.35%
and 2.27% respectively, regardless of the source of ALS metrics. Excluding DWB, magni-
tude of the differences in RBIAScal were most important for the models for CBH and CFL
using rasterized predictors, while differences in RRMSEcal were below 4% for all variables
(Table 4). Similar results were obtained when comparing parametric and semiparametric
models with an extended dataset that included 12 additional ALS acquisitions (Table A3).
The smaller RBIAScal of the parametric models and smaller RRMSEcal in semiparametric
models clearly indicates performance tradeoffs between modeling techniques; however,
the magnitude of these tradeoffs is for most variables of very small magnitude.

Table 4. Differences between parametric and semiparametric models. AGB, DWB, CBD, CH, CBH, and CFL respectively
indicate aboveground biomass, downed woody biomass, canopy bulk density, canopy height, canopy base height, and
canopy fuel load. Superscripts p and sp indicate error metrics for parametric and semiparametric models respectively and
the superscript m denote changes in RBIAS and RRMSE due to using a different modeling technique.

Variable Source of
ALS Metrics

t-Test Accuracy:
^
eij

par
−^

eij
spar

t-Test Magnitude

|^eij|
par
−|^eij|

spar

∆RBIASm ∆RRMSEm
Mean

Difference p-Value Mean
Difference p-Value

AGB
(Mg/ha)

Point-cloud −2.56 1.21 × 10−1 3.69 7.28 × 10−3 1.09% 1.02%
Rasterized −5.51 2.70 × 10−5 2.39 3.94 × 10−2 −2.27% 1.35%

DWB
(Mg/ha)

Point-cloud −3.03 6.59 × 10−22 −1.44 3.07 × 10−7 −10.99% −4.04%
Rasterized −2.66 6.88 × 10−15 −1.37 6.61 × 10−6 −9.65% −3.58%

CBD
(Kg/m3)

Point-cloud −1.67 × 10−3 1.44 × 10-1 1.61 × 10−3 1.22 × 10−1 −1.18% 0.74%
Rasterized −1.16 × 10−3 3.19 × 10−1 1.86 × 10−3 9.07 × 10−2 −0.82% 1.96%

CH
(m)

Point-cloud 1.01 × 10−1 2.25 × 10−1 9.39 × 10−3 9.01 × 10−1 −0.07% 0.94%
Rasterized −3.25 × 10−1 3.86 × 10−5 −1.25 × 10−1 7.75 × 10−2 −1.04% 0.37%

CBH
(m)

Point-cloud −2.37 × 10−1 3.61 × 10−5 2.02 × 10−1 9.80 × 10−5 −2.83% 3.84%
Rasterized −3.54 × 10−1 4.80 × 10−9 −6.10 × 10−2 2.60 × 10−1 −7.06% −0.03%

CFL
(Mg/ha)

Point-cloud −6.81 × 10−1 1.16 × 10−10 2.80 × 10−2 7.49 × 10−1 −2.60% 1.57%
Rasterized −1.09 4.13 × 10−21 −3.32 × 10−1 4.41 × 10−4 −6.05% −0.93%

Except for CFL, where parametric models consistently had lower ALS-acquisition-
specific values of BIAScal , differences between parametric and semiparametric models did
not show clear patterns of dominance of a modeling technique over the other in terms of
BIAScal (Figure 6). In terms of RMSEcal , semiparametric models provided slightly lower
acquisition specific values of RMSEcal for CBD and CH and for the remaining variables no
modeling technique consistently provided lower values of this performance metric. For
both sources of ALS predictors, the magnitude of the differences between parametric and
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semiparametric models in RMSEcal was, in general, orders of magnitude smaller than the
values of RMSEcal themselves. Similar results were obtained when comparing parametric
and semiparametric models with the extended dataset that included 12 additional ALS
acquisitions (Figure A4) and only used rasterized predictors. These results show that
multiple exceptions to the trends observed for the global BIAScal and RMSEcal can be
observed when focusing on specific ALS acquisitions and confirmed that differences in
performance due to the modeling technique are very minor.
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3.4. Differences between Sources of ALS Metrics

For the parametric models, differences in global RBIAScal between models based
on point-cloud and rasterized ALS predictors were significant only for CBH, and the
magnitude of these differences only reached 1.43%. For the semiparametric models, using
point-cloud predictors resulted in significantly more accurate models for AGB, CH, CBH,
and CFL, but the magnitude of these differences was below 2% for AGB and CH and below
4% and 6% for CBH and CFL respectively. Except for the semiparametric models for DWB,
models using point-cloud predictors had lower values of global RMSEcal . However, the
magnitude of these differences only reached a 5% for the semiparametric models for CBH,
and for the remaining variables differences were always below 3.3% (Table 5).

Table 5. Differences between models developed using point-cloud metrics and rasterized predictors. AGB, DWB, CBD, CH,
CBH, and CFL respectively indicate aboveground biomass, downed woody biomass, canopy bulk density, canopy height,
canopy base height, and canopy fuel load. Superscripts pc and r indicate error metrics for models point-cloud and rasterized
predictors and the superscript s denote changes in RBIAS and RRMSE due to using a different source of ALS metrics.

Model Type Variable

t-Test Accuracy
^
eij

r
−^

eij
pc

t-Test Magnitude

|^eij|
r
−|^eij|

pc

∆RRBIASS ∆RRMSES
Mean

Difference p-Value Mean
Difference p-Value

Parametric
models

AGB (Mg/ha) 3.79 7.08 × 10−2 3.55 4.06 × 10−2 −1.61% 2.40%
DWB (Mg/ha) −9.35 × 10−2 5.24 × 10−1 2.79 × 10−2 8.35 × 10−1 −0.34% 0.17%
CBD (Kg/m3) 1.03 × 10−3 2.75 × 10−1 3.23 × 10−3 1.42 × 10−4 0.73% 3.28%

CH (m) 1.96 × 10−1 1.57 × 10−1 4.82 × 10−1 9.61 × 10−5 0.63% 1.36%
CBH (m) 1.67 × 10−1 4.64 × 10−4 4.85 × 10−2 2.68 × 10−1 1.43% 1.50%

CFL (Mg /ha) 5.82 × 10−2 4.02 × 10−1 1.45 × 10−1 1.72 × 10−2 −0.38% 0.68%

Semiparametric
models

AGB (Mg/ha) 6.74 5.74 × 10−5 4.86 4.28 × 10−4 1.73% 2.08%
DWB (Mg/ha) −4.63 × 10−1 3.15 × 10−2 −4.26 × 10−2 8.33 × 10−1 −1.68% −0.28%
CBD (Kg/m3) 5.20 × 10−4 5.75 × 10−1 2.98 × 10−3 5.41 × 10−4 0.37% 2.06%

CH (m) 6.22 × 10−1 1.99 × 10−6 6.17 × 10−1 5.19 × 10−8 1.61% 1.92%
CBH (m) 2.84 × 10−1 2.48 × 10−7 3.12 × 10−1 7.59 × 10−10 5.69% 5.39%

CFL (Mg /ha) 4.72 × 10−1 5.81 × 10−8 5.05 × 10−1 2.58 × 10−10 3.05% 3.17%

Finally, side by side comparison of ALS-acquisition-specific values of BIAScal and
RMSEcal for models using point-cloud and rasterized metrics showed that models using
point-cloud predictors were not always better than the models using rasterized metrics
(Figure 7). The only exceptions to this trend were the models for CH in which using
point-cloud predictors resulted in RMSEcal about 1 m smaller for most acquisitions. More
important, the magnitude of the change in acquisition specific BIAScal and RMSEcal was
generally negligible compared to the values of these metrics. This suggests that using
rasterized metrics instead of point-cloud metrics has a limited impact on accuracy.
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4. Discussion

We considered the prediction of a wide array of attributes of interest for forest
managers and observed important differences between variables. Models for CH and
AGB showed a high predictive performance, similar to that found in previous stud-
ies [20,26,62,63]. The percentages of explained variance for both parametric and semi-
parametric models for CBH and CFL were similar to those obtained by [20] for a single ALS
acquisition. For CBD the percentage of explained variance of the semiparametric models
was about 10% smaller than those reported by [20] for ALS acquisition-specific models.
The low R2 values obtained for DWB were also about 10% smaller than those reported
by [20] for local models, indicating that regional models developed using the auxiliary
information considered in this study only provide a very crude approximation to reality
for this variable.

Important efforts have recently been made to analyze the potential transferability of
ALS models to new acquisitions not considered in the training dataset [27–29] or to a new
collection over the same study area [64]. These studies showed that the degradation in
model performance due to temporal offsets, and differences in the configuration of the
ALS data collection are small compared to the losses in performance due to (1) ecological
differences between the regions where the models were fit and transferred, and (2) the
effect of the modeling technique. In our study we focused on developing models that can
be calibrated to new acquisitions as a way of developing maps of forest fuels and structural
attributes in a rapid manner. Our results partially align with those obtained by [29] and for
almost all response variables, synthetic predictions from semiparametric models had lower
RRMSE than synthetic predictions from parametric models. The most important effect of
the calibration in the parametric models was the reduction in the ALS-acquisition-specific
BIAS. Such BIAS reduction cannot be obtained transferring fixed-effect models to new
ALS acquisition as fixed-effect models can only generate synthetic predictions. Once the
parametric models were calibrated, few differences were observed between both modeling
techniques. One factor that should be considered in future applications is that models
developed with more ALS acquisitions will result in more reliable estimates of the variance
parameters of the random effects [57]. For cases with fewer ALS acquisitions of large size
or where the calibration is not an issue because no new ALS acquisitions are expected,
other modeling techniques using only fixed-effects models would be more appropriate. We
developed this study using eight ALS acquisitions, but main results were confirmed in the
analysis of the extended dataset with 20 ALS acquisitions (Appendix A).

The minor effect that calibration had in the semiparametric models can be explained
by the ability of random forest to effectively use large numbers of predictors and model
nonlinear patterns [37,38]. If the training dataset covers the main ecological gradients of
the area under analysis, random forest captures the most important sources of variability
that can be explained by the auxiliary information leaving little room for improvements in
the calibration step. The linear mixed-effects models with random intercepts and slopes
developed in this study operate in a very different manner. The fixed component of the
model characterizes the main relationships between auxiliary information and response
variables and complex effects, specific of a given ALS data collection, are accounted for in
the calibration step.

Results from our study support the idea that both techniques produce comparable
results if calibration is a possibility and suggest the following recommendations for future
applications. When calibration is a possibility, linear mixed-effects models do not provide
consistently worse results than semiparametric models and have clear advantages in terms
of simplicity, interpretability, and ease of use. Apart from the corresponding ground data
and auxiliary information, only parameters reported in Tables A4 and A5 are necessary
to develop the calibrations of the parametric linear models. For random forest-based
semiparametric models, external users need to have access to the original random forest
data-structure developed by the modeler to obtain predictions in new areas. In addition,
linear mixed-effects models allow mapping uncertainty of predictions using well-known
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methods [58,65], but reporting the same uncertainties for semiparametric models is still a
field under development [38,66]. When calibration is not a possibility, or a fast and direct
model transfer is necessary, semiparametric models are clearly a better option. For these
models, synthetic predictions and calibrated predictions showed little differences for all
variables, which indicates that omitting the calibration step should not imply significant
losses in accuracy with respect to a scenario where calibration is possible.

Regardless of the modelling technique and source of ALS predictors, for all responses
analyzed in this study, ALS-acquisition-specific biases did not completely disappear af-
ter the calibration step indicating that global models should not be a replacement for
ALS-acquisition-specific models, but instead a solution to enable a fast mapping of forest
attributes. This result is consistent with [30,31] for nonparametric random forest models.
The calibration approach used in this study relies on the assumption of having different
error structures due to membership in a particular ALS acquisition. This assumption is
reasonable because ALS acquisitions usually cover relatively homogeneous areas and the
specifications in the ALS data collection can differ among ALS data-collection projects. The
inclusion of ALS-acquisition-specific random effects allows accounting for these differences
between ALS acquisitions in the calibration step. Nevertheless, other approaches to cali-
bration should be investigated in the future. Of special interest is the approach proposed
by [31] that develops calibrated predictions by considering the variability of geographic
areas that do not have to match a specific ALS acquisition.

Differences between models using point-cloud and rasterized metrics were negligible
(Figures 7 and A7). Differences of such a small magnitude were not expected; however, this
result can be explained by: (1) the presence of GPS positioning errors that even if expected
to be in the range of a meter introduce some noise in the ALS metrics [67], and (2) by the
averaging that occurs when aggregating point-cloud metrics at the FIA plot level. FIA
plots are composed of four 17.95 m radius subplots, with one subplot at the center and
the other three subplots 36.58 m from the central plot. Point clouds for the subplots are
combined when computing ALS predictors for an FIA plot, resulting in an aggregation
effect similar to the one that occurs when computing rasterized metrics. While the use
of pre-rasterized layers to e × tract ALS predictors implies a departure from traditional
workflows using ALS data, this process is equivalent to that used in many applications
using optical sensors such as Landsat images (e.g., [26]) and has been used in previous
studies to combine ALS, optical, and topographic predictors [68]. Additionally, and more
importantly: (1) ALS metrics are computed in a standardized and structured way that
for every point of the territory assigns a unique support area [69] for the computation of
ALS metrics, and (2) empirical results from our analysis showed that, by using rasterized
ALS metrics instead of point-cloud metrics, the predictive performance of the models
does not worsen substantially and allows generating cartographic products useful for
multiple planning tasks, with accuracies and precisions similar to those obtained using
point-cloud predictors.

The small differences between models developed using point-clouds or rasterized
predictors in combination with the fact that sharing rasterized products is far more op-
erationally feasible than sharing large point-clouds, opens the possibility of developing
models in a more efficient way. Future mapping applications that require rapid delivery
could be developed extracting ALS metrics for the training units using interpolation over
pre-rasterized products available from spatial data infrastructures serving raster layers
with metrics derived using a standardized workflow. Operating in this way eliminates the
need of intersecting ground measurements with large point clouds that are more difficult to
share and manipulate, since a larger number of users will be more comfortable extracting
auxiliary variables from raster files than clipping and normalizing point-cloud data. These
two factors combined can reduce (1) the time needed to develop models and (2) the time
that forest managers need to wait for maps of structural attributes once an ALS data are
acquired and processed.
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5. Conclusions

The increasing availability of ALS data in the western US states raises questions
about methodological aspects to derive cartographic products of forest attributes such as
AGB, DWB, CBD, CH, CBH, and CFL. This study analyzes three factors of importance for
development of a regional strategy to map forest structural attributes that allows using
available ALS data acquisitions and incorporating new ALS project areas in a rapid manner.
The main conclusion regarding these factors are:

Transferability and calibration. For both modeling techniques, calibration reduced
bias problems when predicting to ALS data acquisitions not included in the training dataset;
however, the effect of calibration was much more important for parametric linear mixed-
effects models than for semiparametric models using random forest. This indicates that
linear models developed over such a large region only account for main trends with respect
to the auxiliary information and need to (1) account for the variability between ALS data
acquisitions and (2) be calibrated to local conditions to eliminate bias problems.

Modeling technique. Once the calibration is performed, both modeling techniques
have similar performance in terms of acquisition-specific RBIAS or RRMSE. Interpretabil-
ity of results and simplicity make the linear mixed-effects models more appealing for
situations where performing a calibration for new acquisitions is feasible, and the small
effect of calibration in semiparametric models makes them a better choice for cases where
calibration is not possible.

Source of ALS metrics. Differences in performance between models developed with
predictors obtained by interpolation over rasterized ALS metrics and models developed
using predictors computed by clipping the point clouds coincident with areas where field
measurements were taken were minimal for the variables considered in this study. This
clearly suggests that raster layers can be used to drive the entire modeling workflow with
little loss in terms of performance, which can be important for time-sensitive applications
because the pre-processing of the ALS data can be substantially simplified.
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Appendix A. Effect of Calibration and Modeling Technique using Rasterized
Predictors and an Extended Set of ALS Acquisitions

An extended dataset was used to assess the factors (1) transferability and effect of
calibration and (2) differences between modeling techniques. In this analysis, 12 additional
ALS acquisitions were included in the dataset (Figure A1, Tables A1 and A2). For the
extended dataset, 20 ALS acquisitions in total, we analyzed the first two factors: (1)
transferability and calibration and (2) modeling technique. The third factor, source of ALS
predictors, was omitted for the analysis because for the 12 additional acquisitions point-
cloud predictors for the FIA plots were not available at the time of the analysis. Therefore,
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it was impossible to analyze the effect of the third factor, source of ALS predictors. Means
and standard deviation of the variables of interest in the extended dataset are reported
in Table A2. For each variable we obtained parametric and semiparametric models using
the FIA plots in the combined dataset using the model selection methods described in
Sections 2.3.1 and 2.4.1. Error metrics and model comparisons described in Section 2.5 were
computed for the parametric and semiparametric models fitted with the extended dataset.

Selected parametric models are reported in Table A6, and predictors and variance
components of the semiparametric models are shown in Figure A6 and Table A8. Models
fitted with the extended dataset were very similar to those obtained with the set of eight
ALS acquisitions used in the main study and few differences were observed with respect to:
(1) global model performance (Figure A2), (2) predictors included in the model, Table A6
and Figure A6, and (3) structure of model errors and random effects (Tables A6 and A8).

The effect of the calibration was important for the parametric models and negligible
for the semiparametric models. The most important effect of calibration in the parametric
models was a reduction in the ALS-acquisition-specific BIAS (Figure A3). The magnitude of
this effect varied among variables from a negligible effect for CBD to substantial reductions
in ALS-acquisition-specific BIAS for AGB, CBH, and CFL.

Once calibrated, the parametric models had smaller values of global BIAS except
for AGB and larger values of global RMSEs. These results are similar to those obtained
with the main dataset and confirm that, globally, parametric models are less prone to bias
problems, and semiparametric models tend to have smaller RMSEs (Figure A4). Difference
in BIAS and RMSEs for specific ALS acquisitions also showed that trends observed for
the global BIAS and RMSEs have multiple exceptions when observing ALS acquisitions
specific performance metrics. ALS-specific BIAS and RMSEs showed that no modeling
technique was consistently better than the other one in terms of these metrics (Figure A4).
This result indicates that factors such as model interpretability or the possibility of omitting
the calibration are expected to be more relevant than differences in model performance
when selecting a modeling technique for a similar problem. Overall, results from this
extended analysis confirmed the main conclusions obtained for the factors transferability
and effect of calibration and differences between modeling techniques.
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Table A1. Additional ALS data acquisitions summary and number of field plots per ALS acquisition. * Data collection date
not reported by vendor; flying altitude and sensor inferred from the data reported for acquisitions obtained the same year.

ALS Data
Acquisition End Year Flying

Altitude (m) Sensor
Average Pulse

Density
(Pulses/m2)

Area (Km2) FIA PLOTS

9. North Coast 2009 900 * Leica ALS50 PII* 8.00 4506.55 77
10. Medford 2009 900 * Leica ALS50 PII* 7.80 984.5 14
11. Umpqua 2008 900 Leica ALS50 PII 8.80 272.92 6

12. Eagle Point 2010 900 Leica ALS60 8.08 546.58 7

13. Yambo 2010 900–1300 Leica ALS50 and
ALS60 9.17 2803.88 69

14. Ochoco A 2011 1300 Leica ALS50 9.74 795 57
15. Green Peter 2012 900 Leica ALS60 9.81 897.71 25
16. Tillamook

Yamhill 2012 900 Leica ALS50 and
ALS60 9.72 808.72 16

17. Ochoco B 2013 900 Leica ALS60 9.07 1228.71 39
18. Scapoose 2013 900 Leica ALS60 7.60 150.64 3

19. Clackamol 2013 900 Leica ALS60 9.19 1835.42 40

20. Upper Rogue 2015 1200–1500
Optech Orion H,
LeicaALS 70 and

ALS80
12.24 5654.01 166

Additional plots 20,548.66 519

Total dataset (Including acquisitions 1–8) 66,695.17 1652

Table A2. Means and standard deviations of the variables of interest in the extended dataset.

FIA PLOTS

Mean (Standard Deviation) of Response Variables

AGB
(Mg/ha)

DWB
(Mg/ha)

CBD
(Kg/m3)

CH
(m)

CBH
(m)

CFL
(Mg/ha)

All
acquisitions 1652

236.26 27.7 0.14 31.11 4.97 15.51
(206.52) (28.82) (0.12) (15.31) (5.26) (10.99)
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Figure A2. Relative root mean squared error (RRMSEcal), relative bias (RBIAScal), and coefficient of determination (R2) for
parametric and semiparametric models using rasterized predictors in the extended dataset of 20 ALS acquisitions. Model
response variables are: aboveground biomass (AGB), downed woody biomass (DWB), canopy bulk density (CBD), canopy
height (CH), canopy base height (CBH), and canopy fuel loading (CFL).
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Table A3. Global differences between parametric and semiparametric models in the extended dataset of 20 ALS acquisitions. AGB,
DWB, CBD, CH, CBH, and CFL respectively indicate aboveground biomass, downed woody biomass, canopy bulk density, canopy
height, canopy base height, and canopy fuel load. Superscripts p and sp indicate error metrics for parametric and semiparametric
models respectively and the superscript m denote changes in RBIAS and RRMSE due to using a different modeling technique.

Variable
Set of Acquisitions

& Source of ALS
Metrics

t-Test Accuracy
^
eij

p
−^

eij
sp

t-Test Magnitude

|^eij|
p
−|^eij|

sp

∆RBIASm ∆RRMSEm
Mean

Difference p-Value Mean
Difference p-Value

AGB
(Mg/ha) Extended set raster −2.05 6.41 × 10−2 4.25 1.36 × 10−5 0.87% 1.94%

DWB
(Mg/ha) Extended set-raster −1.54 7.90 × 10−9 −3.84 × 10−1 1.12 × 10−1 −5.57% −1.96%

CBD
(Kg/m3) Extended set-raster −4.27 × 10−3 3.49 × 10−5 2.40 × 10−3 1.24 × 10−2 −3.01% 4.56%

CH (m) Extended set-raster −3.40 × 10−1 3.29 × 10−6 7.87 × 10−2 2.42 × 10−1 −0.80% 1.03%

CBH(m) Extended set-raster −1.81 × 10−1 7.55 × 10−5 7.14 × 10−2 9.20 × 10−2 −3.63% 2.15%

CFL (Mg/ha) Extended set-raster −5.50 × 10−1 5.25 × 10−13 9.35 × 10−2 1.48 × 10−1 −1.30% 1.39%
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Appendix B. Selected Parametric and Semiparametric Models

Table A4. Parameters and global performance metrics of linear mixed-effects models using point-cloud ALS predictors. * Indicates the most correlated predictor used to model
heteroscedasticity. Model response variables are: aboveground biomass (AGB), downed woody biomass (DWB), canopy bulk density (CBD), canopy height (CH), canopy base height
(CBH), and canopy fuel loading (CFL).

Variable
Fixed-Effect Parameters Error Variance Random Effects

RMSEcal Biascal
Coefficient Value p-Value σe α Var(v)0.5 Correlation Matrix of v

AGB
(Mg/ha)

(Intercept) 3.20 × 101 9.60 × 10−6

2.02 × 102 2.62 × 10−1

1.58 × 101 1.00 −0.94 0.59 −0.75

9.59 × 101 −3.88% Returns [16 m, 32 m) 3.80 × 102 4.90 × 10−16 1.19 × 102 −0.94 1.00 −0.39 0.85
% Returns [32 m, 48 m) * 7.30 × 102 1.20 × 10−31 1.12 × 102 0.59 −0.39 1.00 −0.54
% Returns [48 m, 64 m) 1.80 × 103 3.30 × 10−10 6.94 × 102 −0.75 0.85 −0.54 1.00

DWB
(Mg/ha)

(Intercept) 2.40 × 101 6.80 × 10−17

1.12 × 101 1.89 × 10−1
1.83 1.00 0.11 0.05

2.65 × 101 2.20sdi −2.60 1.60 × 10−7 8.00 × 10−1 0.11 1.00 −0.99
P95 * 1.80 × 10−1 2.60 × 10−15 3.20 × 10−2 0.05 −0.99 1.00

CBD
(Kg/m3)

(Intercept) −1.30 × 10−2 4.60 × 10−1

8.10 × 10−2 5.00 × 10−2

3.15 × 10−2 1.00 −0.98 −0.49 −0.08

1.06 × 10−1 1.05 × 10−2%First returns above 2 m * 2.50 × 10−3 2.40 × 10−34 3.53 × 10−4 −0.98 1.00 0.63 −0.09
StdDev −2.70 × 10−3 3.90 × 10−25 1.99 × 10−4 −0.49 0.63 1.00 −0.83
×10lev 8.90 × 10−5 3.00 × 10−5 5.22 × 10−5 −0.08 −0.09 −0.83 1.00

CH (m) (Intercept) 2.00 2.10 × 10−6
3.50 1.04 × 10−1 2.58 × 10−1 1.00 −1.00

5.58 3.97 × 10−2
P95 * 3.00 × 10−1 4.50 × 10−252 1.46 × 10−2 −1.00 1.00

CBH (m)

(Intercept) 6.60 × 10−1 1.10 × 10−1

4.67 × 10−1 5.32 × 10−1

4.31 × 10−1 1.00 0.90 −0.20 −0.83

4.36 −4.78 × 10−2CRR 7.30 5.80 × 10−8 1.24 0.90 1.00 −0.60 −0.99
P50 * 5.20 × 10−2 1.70 × 10−13 9.06 × 10−3 −0.20 −0.60 1.00 0.72
×10lev −1.60 × 10−3 3.90 × 10−6 5.75 × 10−4 −0.83 −0.99 0.72 1.00

CFL (Mg/ha)

(Intercept) −1.10 × 101 3.40 × 10−11

7.43

3.44 1.00 0.30 −0.99 0.80

7.53 −1.40 × 10−1P05 1.80 × 10−1 1.10 × 10−9 3.40 × 10−2 0.30 1.00 −0.40 0.81
%First returns above 2 m 2.60 × 10−1 1.20 × 10−24 6.04 × 10−2 −0.99 −0.40 1.00 −0.86

×10lev 9.70 × 10−3 1.80 × 10−9 3.98 × 10−3 0.80 0.81 −0.86 1.00
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Table A5. Parameters and global performance metrics of linear mixed-effects models using rasterized ALS predictors. * Indicates the most correlated predictor used to model
heteroscedasticity. Model response variables are: aboveground biomass (AGB), downed woody biomass (DWB), canopy bulk density (CBD), canopy height (CH), canopy base height
(CBH), and canopy fuel loading (CFL).

Variable
Fixed-Effect Parameters Error Variance Random Effects

RMSEcal Biascal
Coefficient Value p-Value σe α Var(v)0.5 Correlation Matrix of v

AGB
(Mg/ha)

(Intercept) 3.10 × 101 2.50 × 10−1

3.78 × 101 3.30 × 10−1

6.80 × 101 1.00 −0.99 0.76 −0.63

1.02 × 102 −9.64 × 10−2CRR −3.30 × 102 2.40 × 10−6 1.66 × 102 −0.99 1.00 −0.80 0.66
Mean * 1.80 × 101 4.00 × 10−34 3.63 0.76 −0.80 1.00 −0.96

%First returns above 2 m 5.90 × 10−1 2.50 × 10−2 6.44 × 10−1 −0.63 0.66 −0.96 1.00

DWB
(Mg/ha)

(Intercept) 2.50 × 101 3.90 × 10−16

1.52 × 101 1.68 × 10−1
3.77 1.00 0.58 −0.69

2.66 × 101 2.11sdi −2.60 4.50 × 10−8 7.32 × 10−1 0.58 1.00 −0.99
P95 * 5.60 × 10−1 2.80 × 10−10 1.72 × 10−1 −0.69 −0.99 1.00

CBD
(Kg/m3)

(Intercept) 1.30 × 10−1 9.80 × 10−2

6.46 ×
10−2 1.06 × 10−1

1.67 × 10−1 1.00 −0.95 −0.52 −0.08 0.15

1.10 × 10−1 1.15 × 10−2
mmax −8.50 × 10−3 2.00 × 10−3 5.87 × 10−3 −0.95 1.00 0.24 −0.14 0.15
sday 1.00 × 10−3 2.10 × 10−4 5.78 × 10−4 −0.52 0.24 1.00 0.50 −0.91

%First returns above 2 m * 2.20 × 10−3 1.80 × 10−24 4.29 × 10−4 −0.08 −0.14 0.50 1.00 −0.43
StdDev −8.70 × 10−3 3.10 × 10−17 1.43 × 10−3 0.15 0.15 −0.91 −0.43 1.00

CH
(m)

(Intercept) 5.00 2.30 × 10−30
5.98

3.37 × 10−2 1.00 0.99
6.01 2.36 × 10−1

P95 9.50 × 10−1 4.10 × 10−215 5.25 × 10−2 0.99 1.00

CBH
(m)

(Intercept) 2.30 9.50 × 10−3

5.63 3.18 × 10−1

1.66 1.00 −0.52 −0.98 −0.32

4.44 1.19 × 10−1CRR * 1.30 × 101 1.60 × 10−15 3.29 −0.52 1.00 0.31 −0.65
% Returns [8 m,16 m) −7.30 5.40 × 10−11 1.58 −0.98 0.31 1.00 0.52

Elev −2.60 × 10−3 1.70 × 10−5 1.39 × 10−3 −0.32 −0.65 0.52 1.00

CFL
(Mg/ha)

(Intercept) −8.50 2.10 × 10−8

7.52

3.06 1.00 0.42 −0.99 0.77

7.63 −8.23 × 10−2P05 4.10 × 10−1 4.90 × 10−9 1.21 × 10−1 0.42 1.00 −0.52 0.88
%First returns above 2 m 2.20 × 10−1 6.60 × 10−22 5.41 × 10−2 −0.99 −0.52 1.00 −0.84

Elev 9.70 × 10−3 3.10 × 10−10 3.75 × 10−3 0.77 0.88 −0.84 1.00
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Table A6. Parameters and global performance metrics of linear mixed-effects models using rasterized predictors on extended set of 20 ALS data acquisitions with rasterized metrics
described in Appendix A. * Indicates the most correlated predictor used to model heteroscedasticity. Model response variables are: aboveground biomass (AGB), downed woody biomass
(DWB), canopy bulk density (CBD), canopy height (CH), canopy base height (CBH), and canopy fuel loading (CFL).

Variable
Fixed-Effect Parameters Error Variance Random Effects

RMSEcal Biascal
Coefficient Value p-Value σe α Var(v)0.5 Correlation Matrix of v

AGB
(Mg/ha)

(Intercept) 4.80 × 101 3.70 × 10−2

3.83 × 101 3.33 × 10−1

8.69 × 101 1.00 −0.99 0.73 −0.73

1.01 × 102 −3.23CRR −3.50 × 102 8.30 × 10−11 1.81 × 102 −0.99 1.00 −0.79 0.77
Mean * 1.80 × 101 9.70 × 10−45 4.67 0.73 −0.79 1.00 −0.96

%First returns above Mean 1.10 1.60 × 10−2 1.64 −0.73 0.77 −0.96 1.00

DWB
(Mg/ha)

(Intercept) 2.40 × 101 1.70 × 10−11

1.28 × 101 2.13 × 10−1
1.11 × 101 1.00 −0.84 0.33

2.62 × 101 6.15 × 10−1sdi −3.10 1.50 × 10−5 2.61 −0.84 1.00 −0.79
P95 * 6.50 × 10−1 1.00 × 10−19 2.03 × 10−1 0.33 −0.79 1.00

CBD
(Kg/m3)

(Intercept) 5.90 × 10−2 1.30 × 10−6

5.49 × 10−2 1.54 × 10−1
3.84 × 10−2 1.00 −0.94 0.22

1.08 × 10−1 1.11 × 10−3%First returns above Mean * 2.10 × 10−3 1.60 × 10−28 5.91 × 10−4 −0.94 1.00 0.12
StdDev −8.80 × 10−3 1.30 × 10−27 8.55 × 10−4 0.22 0.12 1.00

CH (m) (Intercept) 5.60 2.30 × 10−20
6.39

1.70 1.00 −0.60
6.42 −4.61 × 10−2

P95 9.40 × 10−1 2.80 × 10−265 6.44 × 10−2 −0.60 1.00

CBH (m)
(Intercept) 3.70 7.30 × 10−15

2.32 2.45 × 10−1
1.40 1.00 −0.14 −0.91

4.30 3.33 × 10−2P25* 2.60 × 10−1 2.90 × 10−40 4.27 × 10−2 −0.14 1.00 −0.03
ELEV −2.20 × 10−3 5.20 × 10−10 9.25 × 10−4 −0.91 −0.03 1.00

CFL (Mg/ha)

(Intercept) −6.20 7.00 × 10−8

7.49

3.15 1.00 0.33 −0.93 0.25

7.55 −1.74 × 10−1P05 4.40 × 10−1 3.10 × 10−16 9.89 × 10−2 0.33 1.00 −0.30 0.24
%First returns above 2 m 2.00 × 10−1 1.60 × 10−34 5.20 × 10−2 −0.93 −0.30 1.00 −0.57

Elev 8.10 × 10−3 5.80 × 10−10 4.51 × 10−3 0.25 0.24 −0.57 1.00
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Figure A5. Predictors included in the semiparametric models and variable importance as percent reduction in mean squared
error. R and PC indicate models developed with rasterized and point-cloud metrics respectively. Model response variables
are: aboveground biomass (AGB), downed woody biomass (DWB), canopy bulk density (CBD), canopy height (CH), canopy
base height (CBH), and canopy fuel loading (CFL).

Table A7. Variance parameters for the random effects and model errors for the semiparametric models obtained for each
response variable, set of ALS acquisition and source of ALS predictors. Model response variables are: aboveground biomass
(AGB), downed woody biomass (DWB), canopy bulk density (CBD), canopy height (CH), canopy base height (CBH), and
canopy fuel loading (CFL).

Variable Source of ALS
Predictors σ2

ε σ2
u κ RMSEcal Biascal

AGB
(Mg/ha)

Point-cloud 6.84 9.54 × 10−10 4.63 × 10−1 9.36 × 101 1.33
Rasterized 7.59 7.14 × 10−11 4.54 × 10−1 9.84 × 101 −5.41

DWB
(Mg/ha)

Point-cloud 2.33 7.04 × 10−6 7.15 × 10−1 2.76 × 101 −5.23
Rasterized 2.20 6.33 × 10−6 7.27 × 10−1 2.76 × 101 −4.77

CBD
(Kg/m3)

Point-cloud 3.73 × 10−1 4.98 × 10−2 7.06 × 10−1 1.05 × 10−1 −1.22 × 10−2

Rasterized 3.47 × 10−1 6.21 × 10−2 6.52 × 10−1 1.08 × 10−1 −1.27 × 10−2

CH
(m)

Point-cloud 2.01 9.20 × 10−10 2.84 × 10−1 5.29 6.15 × 10−2

Rasterized 4.07 5.21 × 10−10 9.85 × 10−2 5.89 −5.61 × 10−1

CH
(m)

Point-cloud 9.52 × 10−1 2.60 × 10−7 8.24 × 10−1 4.17 −1.90 × 10−1

Rasterized 1.25 3.03 × 10−7 7.12 × 10−1 4.44 −4.73 × 10−1

CFL
(Mg/ha)

Point-cloud 1.89 1.69 × 10−13 4.75 × 10−1 7.29 −5.40 × 10−1

Rasterized 1.91 3.22 × 10−13 4.86 × 10−1 7.78 −1.01
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Figure A6. Predictors included in the semiparametric models and variable importance as percent reduction in mean squared
error for the extended set of 20 ALS acquisitions using rasterized predictors described in Appendix A. Model response
variables are: aboveground biomass (AGB), downed woody biomass (DWB), canopy bulk density (CBD), canopy height
(CH), canopy base height (CBH), and canopy fuel loading (CFL).

Table A8. Variance parameters for the random effects and model errors for the semiparametric models obtained for each
response variable for the extended set of 20 ALS acquisitions using rasterized predictors described in Appendix A. Model
response variables are: aboveground biomass (AGB), downed woody biomass (DWB), canopy bulk density (CBD), canopy
height (CH), canopy base height (CBH), and canopy fuel loading (CFL).

Variable
Set of ALS Acquisitions

and Source of ALs
Predictors

σ2
ε σ2

u κ RMSEcal Biascal

AGB (Mg/ha) Extended set Rasterized 3.56 2.61 × 10−2 5.95 × 10−1 9.67 × 101 1.18

DWB (Mg/ha) Extended set Rasterized 2.23 6.81 × 10−4 7.22 × 10−1 2.67 × 101 −2.16

CBD (Kg/m3) Extended set Rasterized 3.45 × 10−1 6.31 × 10−2 6.63 × 10−1 1.01 × 10−1 −5.38 × 10−3

CH (m) Extended set Rasterized 5.94 4.65 × 10−3 0.00 6.10 −2.94 × 10−1

CBH(m) Extended set Rasterized 1.30 4.91 × 10−7 6.76 × 10−1 4.20 −2.14 × 10−1

CFL (Mg/ha) Extended set Rasterized 1.80 3.06 × 10−6 5.04 × 10−1 7.34 −3.76 × 10−1
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