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Abstract: Hyperspectral images capture very detailed information about scanned objects and, hence,
can be used to uncover various characteristics of the materials present in the analyzed scene. However,
such image data are difficult to transfer due to their large volume, and generating new ground-truth
datasets that could be utilized to train supervised learners is costly, time-consuming, very user-
dependent, and often infeasible in practice. The research efforts have been focusing on developing
algorithms for hyperspectral data classification and unmixing, which are two main tasks in the
analysis chain of such imagery. Although in both of them, the deep learning techniques have
bloomed as an extremely effective tool, designing the deep models that generalize well over the
unseen data is a serious practical challenge in emerging applications. In this paper, we introduce
the deep ensembles benefiting from different architectural advances of convolutional base models
and suggest a new approach towards aggregating the outputs of base learners using a supervised
fuser. Furthermore, we propose a model augmentation technique that allows us to synthesize new
deep networks based on the original one by injecting Gaussian noise into the model’s weights. The
experiments, performed for both hyperspectral data classification and unmixing, show that our
deep ensembles outperform base spectral and spectral-spatial deep models and classical ensembles
employing voting and averaging as a fusing scheme in both hyperspectral image analysis tasks.

Keywords: hyperspectral imaging; deep learning; ensemble learning; segmentation; classifica-
tion; unmixing

1. Introduction

Hyperspectral images (HSIs) capture a large number of narrow channels, referred to
as bands, acquired for a continuous span of the electromagnetic spectrum. Because such
imagery can provide very detailed characteristics of the scanned objects and can help
extract insights that are invisible to the human eye, hyperspectral imaging has attracted re-
search interest in various fields of science and industry, including mineralogy [1], precision
agriculture [2], medicine [3], chemistry [4], forensics [5], and remote sensing [6–8]. Since
these kinds of data are extremely highly-dimensional, its efficient acquisition, transfer,
storage and analysis are important real-life challenges that need to be faced in practical
scenarios [9,10]. Additionally, generating ground-truth image data containing manually-
delineated objects of interest is not only user-dependent and prone to human errors but also
cumbersome and costly, as it requires transferring raw image data for further analysis,
e.g., from an imaging satellite. This issue negatively affects our abilities to train well-
generalizing supervised learners for HSI analysis that could benefit from large and repre-
sentative training sets [11,12].

The HSI processing chain virtually always includes their segmentation, being the pro-
cess of finding coherent regions within an input image of similar characteristics, hence
delineating the boundaries of the same-class objects within a scene. Segmentation involves
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hyperspectral data classification—the procedure of assigning class labels to specific pixels.
The approaches for these tasks are commonly split into classical machine learning and
deep learning techniques, with the former ones utilizing hand-crafted feature extractors.
On the other hand, deep learning models benefit from automated representation learning,
therefore, do not require feature engineering. There indeed exist efficient and powerful de-
scriptors that are able to capture discriminative features for HSI classification [13], but deep
extractors allow for elaborating the features that may be impossible to design by human
practitioners [14]. The results of hyperspectral data classification directly influence all other
steps in the processing pipeline, such as object tracking [15], scene understanding [16],
or change detection that additionally incorporates the temporal aspect of multiple HSI
acquisitions performed for the very same scene [17]. Thus, building well-performing clas-
sification engines that are robust against small training samples is of significant practical
importance. Finally, the hyperspectral pixel size, together with the spatial resolution of an
HSI, can substantially vary across applications—in remote sensing, the ground sampling
distance, being the distance between the centers of two neighboring pixels measured on
the ground, can easily reach tens of meters. It, therefore, leads to capturing the character-
istics of several materials within each pixel—quantifying the fractional abundance of a
given material in an HSI pixel is pivotal in understanding the mixture of such materials.
Given notable intra-class variability and inter-class similarities [18], elaborating supervised
regression models for this task, referred to as the hyperspectral unmixing [19], that can be
effectively deployed in target execution environments is challenging in the case of limited
training samples and is considered a more difficult problem than hyperspectral image
data classification.

Ensemble learning can significantly improve the generalization abilities of the sepa-
rate base learners in both classification and regression tasks [20]. Such multiple classifier
systems are commonly divided into different categories according to their topology, con-
tent, and the way the decisions of base models are fused [21]. Homogeneous ensembles
benefit from the same-type models trained over different training samples or features,
whereas heterogeneous ensembles couple different underlying models into a single engine.
The content of an ensemble may be selected according to the competence regions of the base
classifiers determined during the training process, or may be elaborated dynamically [22].
Furthermore, there exist techniques that optimize the ensemble’s content based on its
overall performance and, hence, embody the wrapper approach [23].

Although ensemble learning has been successfully employed in a plethora of pattern
recognition tasks, its applications to the HSI analysis is under-researched, and the existent
ensemble methods are focused on building HSI classifiers over different training and/or
feature subsets through bootstrap aggregating [24]. To the best of our knowledge, there
are no methods that combine the advantages of different deep architectures in order to
improve the hyperspectral data classification or hyperspectral unmixing (HU). In this paper,
we tackle this issue and propose to exploit ensemble learning for HSI analysis—a high-
level visualization of our approach is rendered in Figure 1, whereas our most important
contributions will be summarized in Section 1.2.
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Figure 1. Outline of the proposed deep ensemble for HSI data analysis. The augmented models
are obtained by modifying the base models by injecting the Gaussian noise into each model’s
weights (note that more than one augmented model may be obtained from a single original model,
as presented using red arrows). The final ensemble’s output can be a class label (for hyperspectral
image data classification) or a vector of fractional abundances (for HU).

1.1. Related Work

In this section, we review the state-of-the-art of HSI classification (Section 1.1.1) and
hyperspectral unmixing (Section 1.1.2) and highlight the underlying approaches exploited
in the existent techniques.

1.1.1. Hyperspectral Image Data Classification

Segmentation of HSI may be approached in a pixel-wise manner without exploiting the
spatial relations captured within a hyperspectral cube [25]. Hence, each pixel is classified
independently based on its spectral signature—HSI segmentation thus encompasses the
classification of all pixels separately. This process is often termed as HSI classification
when performed in a supervised manner, even if the spatial information is exploited [26].
In many works, the HSI segmentation term is used only in the unsupervised context, where
we divide an HSI into coherent regions of uniform properties. This is in contrast with the
terminology adopted in the image processing community [27], where segmentation may
be supervised and unsupervised, while image classification is a procedure of assigning a
label (or a set of labels) to the input image based on its contents.

In general, supervised hyperspectral data classification techniques are split into classi-
cal and deep learning-based algorithms, with the former including the k-nearest neighbor
classifier [28], support vector machines (SVMs) [29], Gaussian mixture models [30], and the
approaches utilizing various sparse representations coupled with machine learning mod-
els [31]. Since we have been witnessing an unprecedented success of deep learning in
virtually all fields of science and engineering, such algorithms are currently blooming in
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HSI analysis. While deep belief networks [25] and recurrent neural nets [32] effectively
extract high-quality latent data representations, the use of convolutional neural networks
(CNNs) allowed us to benefit either from the spectral [33], or from both spectral and
spatial information captured in hyperspectral data cubes [34–37]. Recently, Okwuashi
and Ndehedehe introduced a deep network combining multiple SVMs as neurons [38].
The recent advancements in the field include densely connected CNNs [39], attention
mechanisms [40], and multi-branch networks [41,42] that are often of a very large capacity.
However, as processing HSI on-board imaging satellites are becoming a critical real-life use
case that can boost the adoption of this cutting-edge technology in practice, many attempts
are aimed at elaborating lightweight models [43–45]. Finally, although some boosting
methods couple several base models trained over different feature/training samples [24]
for hyperspectral data classification, ensemble learning has not been widely researched for
this task. Specifically, there are no techniques that would benefit from different approaches
(spectral and spectral-spatial), or that would exploit the augmented base models generated
through manipulating the weights of a trained CNN—in this paper, we follow this research
pathway in order to improve the generalization of deep learners.

Deep learning has been shown successful in HSI classification and segmentation,
but acquiring new representative ground-truth sets is time-consuming, costly, and human-
dependent in practice [11]. The problem of limited labeled data is also reflected in the
way the hyperspectral data classification methods are trained and evaluated—commonly,
machine learning models are trained and tested using hyperspectral pixels sampled from
the very same HSI. This approach is correct as long as there is no information leakage
between the test and training samples. For the methods based on spectral features, it is
sufficient to prevent the same pixel from being incorporated into the training (T) and test
(Ψ) set at the same time. However, for spectral-spatial analysis, the entire neighborhood of
the pixels in the test set must be excluded from training, which has been overlooked in many
works. Importantly, if it is not ensured, the estimated classification performance can easily
be over-optimistic, and may not reflect the real generalization abilities of the supervised
learners [33,46,47]. To effectively tackle this issue, we introduced a patch-based validation
procedure, which ensures no training-test information leakage [33]—we will follow this
technique in the work reported here. Furthermore, there are approaches that may be
employed for (i) augmenting the existent labeled sets [48–50], and (ii) building classification
engines in the case of very small training samples—they include transfer [51,52] and semi-
supervised learning [53–55]. Finally, we can utilize unsupervised learning to find consistent
regions within input hyperspectral scenes [56,57]. Albeit such techniques do not require
ground-truth data, their results are more difficult to interpret and, hence, may not be directly
applicable in real-life Earth observation (They can, however, act as a pre-segmentation
step that makes generating the ground-truth labels much easier. Here, a pre-segmented
HSI may be further analyzed by a human reader who would assign specific class labels to
coherent regions of similar characteristics [56].).

1.1.2. Hyperspectral Unmixing

In HU, we estimate the fractional abundances of various endmembers that are cap-
tured in hyperspectral pixels, hence tackle the regression task [58,59]. In the linear HU, each
pixel is a linear combination of the endmembers’ abundances. However, this assumption
may be violated by changes in illuminations, variations in the atmospheric conditions,
or other acquisition difficulties. Therefore, the bilinear and non-linear models have been
introduced [60]. The HU algorithms may be further divided into the approaches exploiting
physical modeling, mixture models, kernel methods, and artificial neural network-based
techniques. In two-stage algorithms, the automated feature extraction, e.g., using auto-
associative nets, is followed by fuzzy classification to perform abundance estimation [61].
There also exist very effective three-step techniques, in which the estimation of the number
of endmembers in a scene is performed first, and then the identification of the spectral
signatures of the endmembers, together with the estimation of the fractional abundance
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of each endmember in each pixel of the scene are performed (these constitute the second
and the third step of this method) [62]. The majority of deep learning HU algorithms
exploit CNNs (both spectral and spectral-spatial). However, due to a limited number of
labeled sets, semi-supervised and unsupervised methods are also employed to tackle this
task [63]. In CNNs introduced in [64], the first part of the deep architecture is a feature ex-
tractor, which encompasses several convolutional layers, whereas the final, fully-connected
segment of the model estimates the abundance for each endmember in an input HSI. To pre-
vent the model from overfitting, the dropout technique is utilized [65]. The experimental
study proved that this method offers superiority to other HU approaches such as linear
spectral unmixing [66] and cascaded artificial neural networks [61]. In our previous work,
we investigated the influence of the training set sizes on the performance of such CNNs
(and also on autoencoder-based architectures [67]) [68]. The experiments performed on two
real-life datasets showed that the deterioration in the unmixing performance is especially
visible for smaller training samples. Moreover, there is a training set’s cardinality threshold,
over which increasing the number of training samples does not introduce improvements
in HU—it may indicate that it could be possible to determine a sufficient threshold of the
minimal training set size for a given task and, therefore, lower the costs of manual labeling.

In [67], a deep convolutional autoencoder (DCAE) is utilized without any prior knowl-
edge about the abundances. However, a fully unsupervised approach should estimate
both the endmembers and their abundances—DCAE exploits the linear mixing model,
and employs the known endmembers’ spectra to learn the fractional abundances as a latent
representation in the autoencoder part of the underlying architecture. By taking advantage
of the linear model, the code extracted by the encoder is reconstructed into the input
spectrum. An encoder–decoder approach was also followed in [69], where Palsson et al.
exploited the encoder, which was composed of four fully-connected layers, whereas the
decoder’s weights were set to the endmember spectra. The code, being the activations of the
last hidden layer of the encoding part of the architecture, becomes the abundance vector for
an input sample. Additionally, to enable the encoder to capture the non-linear data charac-
teristics, it utilizes a number of non-linear activation functions, including sigmoid, rectified
linear unit (ReLU) activations or leaky ReLU [70]. Furthermore, to accelerate the training
phase, the batch normalization was incorporated into one of the encoder’s layers [71]. Fi-
nally, to prevent overfitting and to introduce additional regularization, a Gaussian dropout
layer [65] concludes the encoding part of the model. The stacked autoencoders have been
employed in [72] to improve feature extraction. Afterward, a variational autoencoder
was employed for estimating the endmember signatures as well as fractional abundances.
The experimental results obtained for the synthetic and real-life datasets indicated that
the proposed method works on par with other state-of-the-art HU techniques. In [73],
the authors suggested an interesting multitask learning architecture based on parallel au-
toencoders to tackle the problem of HU. Here, the spectral and spatial features are utilized
to take advantage of the correlations between the neighboring pixels, where each one is fed
through a separate encoder path, whereas the decoder constitutes a linear mixing model.
The inputs from each path are concatenated together and connected to a hidden layer,
which is shared across all encoders. This operation allows for capturing the spatial context
of neighboring pixels. Finally, there have been attempts that train generative models for
unsupervised unmixing, in which the endmember variability is inferred directly from the
data [74].

Bhatt and Joshi summarized the most important challenges that are concerned with
applying deep learning to HU [19] and indicated the lack of ground-truth datasets and
restricted access to them as two major obstacles (as the remedy for that, the authors
indicated transfer learning and generative models that could synthesize training data)
that make the adoption of such techniques difficult in practice. Thus, building deep HU
models that work well over unseen data is an open question in the literature—we tackle
this problem using ensemble learning, which has not been exploited for HU so far.
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1.2. Contribution

We exploit ensemble learning to improve the generalization of deep learning algo-
rithms through benefiting from different architectural approaches to the hyperspectral data
classification and unmixing. Overall, the contribution of this work is multi-fold:

• We build heterogeneous ensembles, which include spectral and spectral-spatial CNNs
for hyperspectral data classification and unmixing, and propose to utilize supervised
learners to benefit from the outcomes elaborated using the base models (Section 2).
In our approach, their outputs are concatenated in order to form the combined feature
vector, which is later fed to the fusing learner for elaborating the final answer of the
ensemble. We emphasize that the proposed ensembles equipped with the supervised
fusers are independent of the underlying base models and, hence, can be utilized for
ensembling other, perhaps more efficient models.

• We introduce a model augmentation technique that injects Gaussian noise into weights
of a trained convolutional model and show that the ensembles built with such aug-
mented deep networks manifest better generalization abilities and outperform not
only base classifiers and regression models but also other classical ensembles.

• We perform a thorough experimental validation of our approaches and confront the
proposed ensembles with base models of various convolutional architectures and with
other classical techniques (Section 3).

• We make our implementations publicly available at https://github.com/ESA-PhiLab/
hypernet/tree/master/beetles (accessed on 18 August 2021) to ensure full repro-
ducibility of our experimentation.

2. Methods

In this section, we present the key components of our technique. The approach for
building task-agnostic ensembles is discussed in Section 2.1. Then, we present the deep
architectures that are exploited as base models for hyperspectral image data classification
(Section 2.2) and HU (Section 2.3).

2.1. Building Deep Ensembles

To benefit from various architectural advances in HSI analysis, we build heterogeneous
ensembles containing different base models whose outcomes are fused together to elaborate
the final ensemble’s decision. We exploit both classical fusers, such as the majority (hard)
voting or averaging (in regression tasks), and our supervised fusing scheme. In the latter,
an additional supervised model is put on top of the ensemble. It is trained over feature
vectors F = [o1; o2; . . . ; oN ]

T , where oi is the output vector of the i-th base model, and it is
treated as a feature vector corresponding toMi (see the red outputs of the base models
rendered in Figure 1). The combined feature vector is fed to the fusing learner, and it
includes the concatenated outputs of N base models obtained for each training sample.
Therefore, the size of such feature vectors will increase for larger N’s. As an example, for a
classification task, the i-th base model would elaborate c class probabilities, e.g., using
the softmax layer, which would constitute oi (the size of the concatenated feature vector
F would amount to c · N). On the other hand, a base regressor would elaborate the
abundances for HU, and such abundance vectors would analogously be concatenated for
all base models (hence, the final vector of abundances would be N times larger than a
vector of abundances obtained by each base model, as it concatenates the outputs of N
models). The fuser merges the base predictions and elaborates the ensemble’s output.

We not only train classification and unmixing deep models from scratch but also
propose to augment the already trained base learners by injecting Gaussian noise into their
weights. The probability density function p of a Gaussian variable x is

p(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

, (1)

https://github.com/ESA-PhiLab/hypernet/tree/master/beetles
https://github.com/ESA-PhiLab/hypernet/tree/master/beetles
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where µ and σ2 are the mean and variance (σ denotes standard deviation). For each j-th
convolutional layer, we contaminate its weights using the Gaussian distribution with zero
mean and standard deviation σ′j = ε · σw

j , where σw
j is the weights’ standard deviation

in the j-th layer of the corresponding i-th original model Mi (we use ε = 0.1, which
was experimentally selected, but fine-tuning this hyperparameter or perhaps using a set
of ε values for generating a variety of contaminated models constitute an interesting
research venue that requires further investigation). Once the layers are perturbed with
such Gaussian noise, we obtain the augmented modelM′

i, and using this approach we can
generate any number of derived learners that are included in the final ensemble together
with N original models. In Figure 1, we show an example of contaminating the models
M1 andM2, which results in obtainingM′

1,M′′
1 , andM′

2, whose output is further fed to
the fuser, as in the case of other base models.

2.2. Hyperspectral Image Data Classification: Base Models

To verify the generalization abilities of both spectral and spectral-spatial CNNs, we
investigate three convolutional architectures that are gathered in Table 1. The spectral
network (referred to as 1D-CNN—this model performs the pixel-wise classification) is
inspired by [33], whereas two spectral-spatial CNNs are denoted as 2.5D-CNN [36] and
3D-CNN [75] (these models perform the patch-wise classification of the central pixel in the
corresponding patch, and the patch sizes for 2.5D-CNN for specific datasets were taken as
suggested in [76]). Although both 2.5D-CNN and 3D-CNN models benefit from the spectral
and spatial information while classifying the central pixel in an input patch, 3D-CNN can
capture fine-grained spectral relations within the hyperspectral cube, as it exploits small
(3× 3× 3) convolutional kernels. It is in contrast to 2.5D-CNN whose kernels span the
entire spectrum, i.e., λ bands in the first convolutional layer.

Table 1. The CNNs for hyperspectral image data classification. We present its hyperparameters,
where k denotes the number of kernels, s is stride, λ denotes the number of hyperspectral bands,
w×w is the size of the input patch, and c is the number of classes in the considered dataset. The Conv,
MP, and FC are the convolutional, max-pooling, and fully-connected layers, respectively, whereas
ReLU is the rectified linear unit activation function.

Model Layer Parameters Activation

1D-CNN
(1× 1× λ)

Conv1 k: 200@(1× 1× 6) ReLU
s: 1× 1× 1

Conv2 k: 200@(1× 1× 6) ReLU
s: 1× 1× 3

Conv3 k: 200@(1× 1× 6) ReLU
s: 1× 1× 2

Conv4 k: 200@(1× 1× 6) ReLU
s: 1× 1× 2

FC1 #× 192 ReLU
FC2 192× 150 ReLU
FC3 150× c Softmax

2.5D-CNN
(w× w× λ)

Conv1 200@(w− 3× w− 3× λ) ReLU
MP1 2× 2

Conv2 200@(2× 2× 200) ReLU
Conv3 c@(2× 2× 200) Softmax

3D-CNN
(7× 7× λ)

Conv1 24@(3× 3× 3) ReLU
Conv2 24@(3× 3× 3) ReLU
Conv3 24@(3× 3× 3) ReLU

FC1 #× 512 ReLU
FC2 512× 256 ReLU
FC3 256× 128 ReLU
FC4 128× c Softmax
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2.3. Hyperspectral Unmixing: Base Models

For HU, we utilize the convolutional architecture introduced in [64], which can op-
erate in both pixel- and patch-wise manner, therefore can exploit only spectral or both
spectral-spatial information while elaborating the endmember abundances (Table 2). Here,
the feature extraction part of the network (four convolutional layers) is followed by a
predictor, being a multilayer perceptron with three fully-connected layers.

Table 2. The CNNs for HU. We report the number of kernels, alongside their dimensions, and a
denotes the number of endmembers.

Variant Layer Parameters Activation

1D-CNN
(1× 1× λ)

Conv1 3@1× 1× 5 ReLU
Conv2 6@1× 1× 4 ReLU
Conv3 12@1× 1× 5 ReLU
Conv4 24@1× 1× 4 ReLU

FC1 #× 192 ReLU
FC2 192× 150 ReLU
FC3 150× a Softmax

3D-CNN
(3× 3× λ)

Conv1 16@1× 1× 5 ReLU
Conv2 32@1× 1× 4 ReLU
Conv3 64@1× 1× 5 ReLU
Conv4 128@1× 1× 4 ReLU

FC1 #× 192 ReLU
FC2 192× 150 ReLU
FC3 150× a Softmax

3. Experiments and Discussion

The experimental study is divided into two experiments, concerning hyperspectral
image data classification (Section 3.1) and unmixing (Section 3.2). Here, we present the
experimental settings and discuss the results in detail. Our models were coded in Python
3.6 with Tensorflow 1.12, and the experimental validation was run using an NVIDIA
Tesla T4 GPU.

3.1. Hyperspectral Image Data Classification

The training (using the ADAM optimizer [77] with the categorical cross-entropy loss,
and the learning rate of 0.001, β1 = 0.9, and β2 = 0.999) finished if after 15 consecutive
epochs the accuracy over the validation set V (10% of randomly picked training pixels) does
not increase. The hyperparameters used in the experimental validation were experimentally
fine-tuned, unless stated otherwise (e.g., for the base CNNs, we pick the size of the spatial
neighborhood as suggested in the corresponding papers).

To quantify the performance, we report the overall and balanced accuracy scores (OA
and BA, where BA is the average of recall obtained on each class), and the values of the
Cohen’s kappa κ = 1− 1−po

1−pe
, where po and pe are the observed and expected agreement

(assigned vs. correct label), and −1 ≤ κ ≤ 1 [78] (we report (100 · κ) when we refer
to κ). Since there are folds in which there are classes that were not captured within the
corresponding training samples (see our training-test splits in Section 3.1.1), but they are
present in the corresponding Ψ’s, we exclude such classes from Ψ of a given fold (as the
models were unable to learn them from T). All reported metrics are obtained for the unseen
test sets Ψ, and they are averaged across all folds (we ran training five times per fold and
averaged the results).

3.1.1. Datasets

We focus on four benchmark HSIs [33]: Indian Pines (IP), Salinas Valley (SV), Pavia
University (PU), and University of Houston (Houston) [79]. IP (145× 145 pixels) was
acquired using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
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the Indian Pines area, USA, with a spatial resolution of 20 m, and it presents agriculture,
forest, and natural perennial vegetation areas (16 classes; see Figure 2 together with Table 3).
The number of all bands was reduced to 200 (from the original 224 bands) by the authors of
this set by removing those that cover the region of water absorption. SV (217× 512 pixels)
was acquired over Salinas Valley, USA (with the spatial resolution of 3.7 m, capturing
204 spectral bands using the AVIRIS sensor). This set, visualized in Figure 3 and Table 4,
shows different sorts of vegetation (16 classes). PU (340× 610) was captured over Pavia
University, Italy (spatial resolution of 1.3 m, 103 bands, Reflective Optics System Imaging
Spectrometer). It shows an urban scenery (nine classes; Figure 4 and Table 5). Finally,
Houston (4172× 1202 pixels, Figure 5 and Table 6) was captured over the University of
Houston campus, USA (spatial resolution of 1 m, 48 bands, ITRES CASI 1500 hyperspectral
imager) and shows 20 urban land-cover/land-use classes. This set was introduced in the
IEEE GRSS Data Fusion Challenge (we thank IEEE GRSS IADF and the Hyperspectral
Image Analysis Lab at the University of Houston, USA).

(a) False-color image (b) Ground truth

Figure 2. Visualization of the Indian Pines dataset (a), alongside the ground-truth segmentation (b).

Table 3. The ground-truth color, and the number of examples for each class in Indian Pines.

Class Description GT Color Number of Samples

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass-pasture 483

6 Grass-trees 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybean-notill 972

11 Soybean-mintill 2455

12 Soybean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 2 93

Total 10,249
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(a) False-color image (b) Ground truth

Figure 3. Visualization of the Salinas Valley dataset (a), alongside the ground-truth segmentation (b).

Table 4. The ground-truth color, and the number of examples for each class in Salinas Valley.

Class Description GT Color Number of Samples

1 Broccoli 1 2009

2 Broccoli 2 3726

3 Fallow 1 1976

4 Fallow 2 1394

5 Fallow 3 2678

6 Stubble 3959

7 Celery 3579

8 Grapes 11,271

9 Soil 6203

10 Corn 3278

11 Lettuce 1 1068

12 Lettuce 2 1927

13 Lettuce 3 916

14 Lettuce 4 1070

15 Vineyard 1 7268

16 Vineyard 2 1807

Total 54,129
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(a) False-color image (b) Ground truth

Figure 4. Visualization of the Pavia University dataset (a), and its ground-truth segmentation (b).

Table 5. The ground-truth color and number of samples for each class in Pavia University.

Class Description GT Color Number of Samples

1 Asphalt 6631

2 Meadows 18,649

3 Gravel 2099

4 Trees 3064

5 Painted metal sheets 1345

6 Bare Soil 5029

7 Bitumen 1330

8 Self-Blocking Bricks 3682

9 Shadows 947

Total 42,776

Although Monte Carlo cross-validation has been used to verify the abilities of the HSI
classification and segmentation techniques, it may lead to over-optimistic estimation of
the generalization performance of deep models, especially spectral-spatial CNNs. Such
deep architectures utilize all pixels in a spatial patch while classifying the central pixel,
and such neighboring pixels may be included in both T and Ψ [33]. To tackle this issue, we
exploit the multi-fold patch-based divisions of IP, SV, and PU introduced in [33], and our
two training-test split versions of Houston (referred to as Version A and B) introduced
in [76]. In Version A, the 24 × 95 patches are sampled until at least 3 × 104 training
pixels are present in T. Version B divides Houston into a grid (10 × 10 blocks of the
120× 477 size), and each fold contains 20 random blocks for training. Thus, Version A
includes more heterogeneously drawn patches, whereas the number of training pixels
is much larger in Version B. As discussed in [76], this splitting strategy can lead to very
challenging training/test samples (there might be test classes that are not captured within
the corresponding training sets and, hence, the models are unable to learn them) but may
also reflect practical use cases, where capturing the examples of all classes is difficult.
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(a) False-color image

(b) Ground truth

Figure 5. Visualization of the Houston dataset (a), alongside the ground-truth segmentation (b).

Table 6. The ground-truth color, and the number of examples for each class in the Houston dataset.

Class Description GT Color Number of Samples

1 Healthy grass 39,196

2 Stressed grass 130,008

3 Artificial turf 2736

4 Evergreen trees 54,322

5 Deciduous trees 20,172

6 Bare earth 18,064

7 Water 1064

8 Residential buildings 158,995

9 Non-residential building 894,769

10 Roads 183,283

11 Sidewalks 136,035

12 Crosswalks 6059

13 Major thoroughfares 185,438

14 Highways 39,438

15 Railways 27,748

16 Paved parking lots 45,932

17 Unpaved parking lots 587

18 Cars 26,289

19 Trains 21,479

20 Stadium seats 27,296

Total 2,018,910
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3.1.2. Experimental Results

The experiment is divided into two main parts—in the first one, we focus on building
deep ensembles that include base CNNs of different architectures (1D-CNN, 2.5-CNN,
and 3D-CNN (for brevity, we refer to these models as 1D, 2.5D, and 3D in the tables)),
whereas in the second part, we investigate the impact of augmenting 1D-CNN models
through our Gaussian noise injection. As the supervised fusers, we exploit a random forest
(RF) with the default parameterization of 100 estimators and the Gini impurity used to
measure the quality of a split, decision tree (DT), and a support vector machine (SVM) with
a radial-basis kernel with C = 1 and γ = 1/(|F | · Var(X)), where |F | is the number of
features, and Var(X) is the variance of the input data X, and compare them with majority
(hard) voting. Note that by using RF on top of a deep ensemble, we additionally benefit
from bootstrapping, as RF builds an ensemble of DTs over different sub-samples of the
training data to avoid overfitting.

Table 7 gathers the results obtained for all datasets (averaged across all folds and
runs) using the heterogeneous deep ensembles. We can observe that the spectral 1D-CNN
model consistently elaborates accurate classification scores and significantly outperforms
both 2.5D-CNN and 3D-CNN. We can attribute it to the fact that the amount and repre-
sentativeness of training samples are very limited, hence large-capacity learners tend to
overfit and do not generalize well over the unseen data. Conversely, if the training sets are
larger, as in the case of Houston (ver. B), which is referred to as H(B) in Table 7, a spectral-
spatial 3D-CNN model gave notably better results than 1D-CNN. Therefore, it was able to
capture fine-grained characteristics of the underlying classes manifested in both spatial
pixel’s neighborhood and spectral pixel’s information. The problem of limited number of
training samples can be, however, tackled using a variety of techniques, including transfer
learning and data augmentation through using the Extended Multi-attribute Profiles—this
approach was shown to be successful in land cover classification for a decreased number
of hyperspectral bands [80].

The results show that including 1D-CNN effectively compensates for the lack of
generalization abilities of spectral-spatial models. It may be especially useful in emerging
use cases, in which quantifying the capabilities of deep networks over large unseen test
samples is difficult or even impossible, as the amount of annotated data is very limited.
In such situations, we can benefit from different deep architectural choices—on the one
hand, ensembling high-quality spectral-spatial models (i.e., those delivering accurate
classification), e.g., 3D-CNN for Houston (ver. B) with 1D-CNN or 2.5D-CNN would
improve its performance even further (see the SVM fuser in an ensemble containing three
models). On the other hand, low-quality CNNs are significantly boosted with those that
generalize well (see all ensembles that include 1D-CNN). Additionally, we can observe
that the supervised fusers notably outperformed hard voting in the majority of cases
(according to the two-tailed Wilcoxon test over per-class accuracies at p < 0.05). The only
exception here, being DT and SVM for the ensemble of 2.5D-CNN and 3D-CNN models,
shows that the training sample, built with the outputs of base spectral-spatial CNNs, was
not representative enough (and presumably low-quality) to train effective fusers. In the
hard voting case, if the models elaborate different predictions in ensembles with two
CNNs, we select the prediction with the lower uncertainty. It indicates that the uncertain
predictions adversely affect the performance of the supervised fusers, especially DT and
SVM, and pruning such uncertain base models from the ensembles could help improve
their capabilities independently from the fusing scheme.
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Table 7. The results (BA, OA, and κ) obtained using all investigated base models and various heterogeneous ensembles built with CNNs of different architectures (with all fusing schemes:
Hard, RF, DT, and SVM) for all datasets: IP, SV, PU, H(A), and H(B) (averaged across all folds and executions). The best results for each row are boldfaced, the second best results are
underlined, whereas the worst are grayed.

Model→ Base Models (1D, 2.5D, 3D) (1D, 2.5D) (1D, 3D) (2.5D, 3D)

Metric↓ 1D 2.5D 3D Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM

IP

BA 66.86 40.31 46.54 43.86 48.81 52.81 57.84 56.60 60.37 55.68 60.80 53.88 61.38 55.35 59.69 52.29 57.34 45.69 47.77
OA 68.63 48.40 52.04 50.90 54.63 59.27 63.15 60.80 64.36 62.06 65.86 60.44 65.62 60.40 64.36 59.03 62.60 52.01 54.40

κ 64.08 40.37 45.10 44.04 48.04 53.43 57.80 55.48 59.21 56.57 60.87 54.98 60.58 54.72 59.20 52.92 57.15 45.05 47.73

SV

BA 81.39 69.98 79.31 72.03 76.88 77.52 79.18 79.67 83.99 74.82 76.72 73.75 79.93 81.04 82.96 79.79 82.08 75.46 75.97
OA 78.01 69.60 76.46 72.93 75.45 76.86 76.70 78.41 81.16 74.08 75.20 75.10 77.00 79.07 79.61 77.03 78.85 74.87 74.72

κ 75.17 65.74 73.43 69.34 72.26 73.80 73.66 75.50 78.71 70.74 71.97 71.73 74.02 76.36 76.95 74.04 76.09 71.59 71.41

PU

BA 80.14 77.61 76.70 76.31 80.50 80.22 81.48 77.28 80.23 79.60 80.24 78.02 80.84 78.81 80.25 80.12 81.36 79.91 80.35
OA 79.58 78.63 76.49 79.29 80.62 80.10 80.83 79.71 79.27 79.86 80.16 81.03 80.92 78.34 79.46 80.18 81.21 79.73 80.16

κ 72.81 70.94 68.67 71.40 73.90 73.18 74.35 72.14 72.55 72.84 73.29 73.68 74.34 71.26 72.87 73.40 74.78 72.71 73.36

H
(A

) BA 47.67 38.76 38.75 39.69 38.56 37.49 37.15 35.44 38.37 38.24 36.22 35.45 40.17 37.60 35.20 40.61 39.61 38.47 39.03
OA 59.85 52.27 51.40 54.48 52.00 49.91 51.83 53.57 51.38 50.80 51.78 53.85 53.04 50.24 50.66 55.70 53.17 50.80 52.39

κ 47.11 38.73 37.91 40.57 38.57 36.37 38.15 37.35 37.84 37.35 38.02 37.89 39.76 36.34 36.62 41.61 39.77 37.30 38.95

H
(B

) BA 47.67 49.11 52.08 50.23 49.23 50.56 52.07 53.40 52.14 47.16 46.28 51.48 52.25 50.48 50.66 54.39 52.17 50.45 51.60
OA 59.85 62.06 62.34 64.65 62.12 62.26 63.43 66.48 62.54 60.54 62.15 66.68 63.62 61.33 62.36 66.76 63.71 62.48 63.12

κ 47.11 50.88 52.00 53.79 51.07 51.61 53.19 56.29 52.25 49.05 50.98 56.16 53.38 50.71 51.96 56.70 53.47 51.93 52.66
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In Table 8, we present the results obtained using the deep ensembles that contain dif-
ferent numbers of augmented 1D-CNN models (we focus on 1D-CNN, as it obtains the best
classification across all base learners). Such augmented models are generated by injecting
Gaussian noise into the original (uncontaminated) model (as rendered in Figure 1)—here,
any number of augmented models may be elaborated based on a single (original) model.
Introducing augmented models helps to significantly improve the ensemble’s generaliza-
tion, and SVM fusers consistently outperformed the other schemes (note that the hard
voting approach gave the worst scores in all cases). Therefore, such noisy CNNs can be
treated as a model-level regularization. It is also manifested in Table 9, where we collect the
rankings of all investigated methods, calculated separately for ensembles containing 1D-
CNN, 2.5-CNN, and 3D-CNN models (Heterogeneous), those with augmented 1D-CNNs
(Augmented), and collectively for all approaches (All). Here, the rankings are averaged
over all datasets, and the best-performing technique for a given set obtains the ranking of
1, the second best: 2, and so forth (therefore, the smaller the value of the ranking becomes,
the better the corresponding algorithm is). We consider κ to be the primary metric, hence
sort the algorithms according to rankings obtained for κ. The results show that augmenting
1D-CNNs through manipulating their weights can lead to the best generalization over
unseen data—the top three models included the deep ensembles with the SVM fusers
containing different numbers of augmented 1D-CNNs.

The training times obtained for all investigated base models indicate that performing
the convolutions through the spectral dimension notably slows down the process (Table 10).
To build the ensembles with the proposed fusers, such supervised learners must be trained
over the elaborated outputs of base models—their training time depends on the selected
fusing scheme (Table 11). We can observe that the training is the slowest for the SVM fuser,
as it has cubic time complexity with respect to the training set size (therefore, the training
process is the most time-consuming for the largest datasets, H(A) and H(B), being two ver-
sions of the Houston scene). Similarly, in the case of the heterogeneous ensembles in which
we use the base models of various architectures, the training time of the fusers depends on
the number of exploited models (Table 12). Additionally, assembling different base models
into ensembles will result in building different feature spaces (as their outcomes form
feature vectors)—it may also affect the training time, as the convergence of the supervised
training of specific classifiers/regressors can vary [81]. Therefore, incorporating an addi-
tional feature selection step in our pipeline could not only help improve the capabilities of
the ensembles (through rejecting the least informative or redundant features) but could
also reduce the training time of their fusers—it constitutes an interesting research area,
which should be further explored.
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Table 8. The results (BA, OA, and κ) obtained using a single 1D-CNN model (1D), and using the ensembles with different numbers of augmented 1D-CNNs (# copies) with all fusing
schemes (Hard, RF, DT, and SVM)—each ensemble always contains one original 1D-CNN model. We report the results for all datasets: IP, SV, PU, H(A), and H(B). Note that the augmented
models were generated by injecting noise into the weights of the original model, and the number of such contaminated (augmented) copies may be freely updated. The best results for each
row are boldfaced, the second best are underlined, whereas the worst are grayed.

# Copies→ 1 Copy 2 Copies 4 Copies 8 Copies 16 Copies

Metric↓ 1D Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM

IP

BA 66.86 63.48 68.58 66.08 67.48 64.51 68.50 66.67 67.61 62.59 68.41 65.63 67.41 60.84 68.47 67.05 66.54 60.67 68.66 67.37 66.90
OA 68.63 64.72 70.39 66.68 69.81 65.67 70.42 67.28 69.67 63.90 70.50 67.16 69.69 63.06 70.37 67.12 69.58 63.14 70.38 67.02 69.65

κ 64.08 59.69 66.31 61.94 65.41 60.55 66.36 62.55 65.24 58.48 66.46 62.40 65.25 57.62 66.32 62.44 65.12 57.73 66.34 62.31 65.19

SV

BA 81.39 79.64 82.80 82.46 83.54 81.11 82.71 83.23 83.61 81.08 82.89 83.46 83.90 80.51 82.83 83.06 83.83 80.51 82.95 82.15 83.87
OA 78.01 77.53 79.52 78.46 79.48 78.22 79.53 79.54 79.56 78.21 79.72 79.55 80.36 77.64 79.50 79.56 80.35 77.68 79.58 78.58 80.07

κ 75.17 74.55 76.92 75.72 76.88 75.38 76.93 76.92 76.97 75.36 77.14 76.91 77.82 74.73 76.91 76.93 77.81 74.77 76.99 75.85 77.52

PU

BA 80.14 79.61 79.82 79.67 80.71 80.01 79.82 80.04 80.81 80.05 79.81 79.91 80.92 80.11 79.62 79.82 80.93 80.19 79.69 79.74 80.91
OA 79.58 79.43 78.68 78.57 80.42 79.10 78.74 79.03 80.45 79.02 78.72 78.25 80.45 78.93 78.70 78.36 80.46 78.94 78.70 78.11 80.40

κ 72.81 72.51 71.85 71.64 73.88 72.29 71.92 72.21 73.92 72.21 71.89 71.33 73.93 72.12 71.84 71.29 73.95 72.15 71.86 71.12 73.88

H
(A

) BA 47.67 47.86 45.25 45.10 47.79 47.90 45.16 45.41 47.89 47.92 45.08 45.22 48.07 47.80 45.07 44.84 48.04 47.69 45.12 44.45 47.99
OA 59.85 60.47 57.50 56.99 59.50 59.95 57.47 57.25 59.55 60.05 57.40 57.21 59.71 60.16 57.38 57.04 59.85 60.23 57.40 56.91 59.83

κ 47.11 47.71 44.49 43.43 46.80 47.27 44.46 43.79 46.85 47.37 44.39 43.69 47.11 47.42 44.38 43.50 47.24 47.40 44.38 43.38 47.20

H
(B

) BA 47.67 55.01 54.38 54.60 56.95 56.06 54.22 54.44 57.03 56.15 54.18 54.14 57.26 56.20 54.14 54.40 57.41 56.29 54.16 54.68 57.52
OA 59.85 65.93 64.47 64.35 66.51 65.73 64.36 64.32 66.69 65.69 64.25 64.32 66.80 66.03 64.24 64.30 66.90 66.05 64.15 64.33 66.97

κ 47.11 56.08 54.77 54.26 56.99 56.07 54.67 54.20 57.10 56.10 54.57 54.22 57.25 56.47 54.57 54.18 57.40 56.46 54.49 54.25 57.58
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Table 9. The ranking obtained for all investigated HSI classification methods, averaged across all
datasets (the best algorithm for a given set receives the ranking of 1, the second best: 2, and so
on). We consider κ to be the primary metric and, hence, sort the algorithms according to rankings
obtained for κ. We report the rankings for the (i) heterogeneus deep ensembles built with different
CNNs (see the detailed results in Table 7), (ii) augmented ensembles containing various numbers of
noise-contaminated 1D-CNN (Table 8), and (iii) all methods altogether.

Ensemble Fuser BA OA κ

H
et

er
og

en
eo

us

RF (2.5D, 3D) 4.2 4.6 4.2
RF (1D, 3D) 3.4 5.4 5.0

Hard (2.5D, 3D) 6.8 5.8 5.8
. . . . . . . . . . . .

DT (1D, 2.5D) 13.6 13.8 13.6
DT (2.5D, 3D) 13.4 13.6 14.6

2.5D 15.4 16.0 15.8

A
ug

m
en

te
d

SVM (4 copies) 3.0 4.4 4.2
SVM (8 copies) 4.4 4.2 4.2
SVM (16 copies) 4.0 5.2 4.8

. . . . . . . . . . . .
DT (4 copies) 13.6 15 16.2
DT (1 copy) 15.4 16.6 17

DT (16 copies) 14.6 17.2 17.6

A
ll

SVM (4 copies) 3.6 5.6 5.0
SVM (8 copies) 5.0 5.4 5.0
SVM (16 copies) 4.6 6.4 5.8

. . . . . . . . . . . .
DT (1D, 3D) 33.6 30.6 30.2

3D 31.4 34.2 33.4
2.5D 35.4 35.2 35.8

Table 10. Training time (in seconds) of all investigated base models, for all datasets.

Dataset 1D-CNN 2.5D-CNN 3D-CNN

IP 13.28 2.84 39.16
SV 14.33 14.25 64.33
PU 7.44 5.11 22.07

H(A) 41.31 27.44 87.33
H(B) 261.57 323.16 538.89

To better understand the operational abilities of the models, we report the prediction
(test) times of the ensembles with different numbers of augmented 1D-CNNs (Table 13),
together with the prediction times obtained using the ensembles built with base models
of various CNN architectures (Table 14). Here, the increase in the inference time strongly
depends on the selected fuser (see, e.g., a minor impact of the increasing number of
contaminated 1D-CNNs on the operation of the ensemble with RF in Table 13, and a much
more visible impact of this increase once the SVM fuser is utilized). Although the inference
time is increased for ensembles when compared to the base models (the test time, averaged
for all datasets amounted to 2.88, 15.80, and 21.78 s for the 1D-CNN, 2.5D-CNN, and 3D-
CNN models, respectively), the proposed techniques can still maintain very fast operation
while significantly improving the accuracy of the classification engine. Note that, as in the
case of the training time, the inference time is dependent on a specific supervised fuser.
As an example, the SVM fusers trained over the outcomes of the 1D, 2.5D, and 3D models
would likely include a different number of support vectors (being the selected training
vectors determining the position of the decision hyperplane) than the SVMs trained over
the outputs of the 1D and 3D models (due to different underlying feature spaces). If the
number of support vectors was smaller in the former case, the inference time of the fuser
would be shorter even though the number of base models is larger, because the prediction
time linearly depends on the number of support vectors in the case of SVMs [82].
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Table 11. Training time (in seconds) of all investigated supervised fusers: RF, DT, SVM, for all datasets: IP, SV, PU, H(A) and H(B), obtained for the ensembles with different numbers of
augmented 1D-CNNs (# copies). Each ensemble always contains one original 1D-CNN model.

# Copies→ 1 Copy 2 Copies 4 Copies 8 Copies 16 Copies

Dataset RF DT SVM RF DT SVM RF DT SVM RF DT SVM RF DT SVM

IP 15.55 138.50 530.00 13.70 128.00 182.75 13.15 417.75 651.25 17.20 528.25 1214.00 28.15 179.00 1184.75
SV 18.04 177.40 175.80 19.92 166.80 166.60 24.68 445.20 185.80 31.60 147.40 316.40 47.56 177.60 330.20
PU 12.92 136.60 122.40 14.12 123.40 133.00 15.24 152.60 83.60 17.76 127.40 204.80 27.68 101.40 182.40

H(A) 510.48 122.80 428.40 525.76 129.80 529.00 560.72 148.20 726.40 851.32 181.20 1104.00 897.68 346.60 1921.40
H(B) 951.00 160.80 6164.60 1031.04 191.20 8969.40 1256.40 253.40 98,723.34 1509.88 358.60 108,325.67 2018.48 631.60 128,238.24

Table 12. Training time (in seconds) of all investigated supervised fusers: RF, DT, SVM, for all datasets: IP, SV, PU, H(A) and H(B), obtained for the ensembles with different CNN
architectures (various combinations of the 1D, 2.5D, and 3D models).

Ensemble→ (1D, 2.5D, 3D) (1D, 2.5D) (1D, 3D) (2.5D, 3D)

Dataset RF DT SVM RF DT SVM RF DT SVM RF DT SVM

IP 67.25 43.65 45.15 56.10 37.40 36.45 48.70 40.70 40.40 41.70 38.80 35.85
SV 96.00 64.48 60.20 258.68 49.80 49.04 66.88 49.68 49.68 65.92 56.48 55.28
PU 72.12 42.32 39.92 49.72 35.32 35.48 54.72 37.40 37.60 47.52 39.00 39.80

H(A) 240.96 139.20 206.88 259.88 115.12 323.48 424.96 115.72 191.84 471.12 286.04 417.36
H(B) 466.80 132.92 947.24 480.52 142.80 2142.32 621.80 177.84 1910.12 687.84 283.48 1380.80

Table 13. Prediction time (in seconds, over the entire test set) of all investigated supervised fusers: RF, DT, SVM (together with the Hard voting), for all datasets: IP, SV, PU, H(A) and H(B),
obtained for the ensembles with different numbers of augmented 1D-CNNs (# copies). Each ensemble always contains one original 1D-CNN model.

# Copies→ 1 Copy 2 Copies 4 Copies 8 Copies 16 Copies

Dataset Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM

IP 1.17 1.16 1.17 1.46 2.14 1.30 1.29 1.66 4.53 1.61 1.59 2.12 6.88 2.20 2.18 3.07 9.37 3.39 3.37 4.96
SV 3.59 7.00 3.47 5.62 4.62 8.13 4.44 7.16 6.82 10.04 6.40 10.38 11.34 14.38 10.37 16.61 21.59 22.34 18.23 29.37
PU 2.13 2.37 3.20 2.91 2.58 2.73 2.41 2.75 3.48 3.51 3.09 3.55 5.48 5.00 4.41 5.07 10.37 7.95 6.73 9.04

H(A) 55.65 468.63 17.81 322.48 61.62 478.32 24.63 421.66 78.88 508.47 40.25 616.14 111.01 790.50 68.99 988.35 177.04 816.69 132.52 1792.90
H(B) 43.90 429.58 14.24 299.82 50.67 430.78 20.52 402.75 62.55 447.03 32.93 601.32 89.92 515.02 57.86 902.82 144.31 677.53 108.55 1582.83
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Table 14. Prediction time (in seconds, over the entire test set) of all investigated supervised fusers: RF, DT, SVM (together with the Hard voting), for all datasets: IP, SV, PU, H(A) and H(B),
obtained for the ensembles with different CNN architectures (various combinations of the 1D, 2.5D, and 3D models).

(1D, 2.5D, 3D) (1D, 2.5D) (1D, 3D) (2.5D, 3D)

Dataset Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM Hard RF DT SVM

IP 0.15 0.08 <0.01 0.19 0.15 0.08 <0.01 0.18 0.15 0.08 <0.01 0.17 0.15 0.08 <0.01 0.21
SV 0.94 0.40 0.01 1.00 0.93 0.39 <0.01 0.91 0.97 0.39 <0.01 1.10 0.92 0.38 0.01 0.77
PU 0.75 0.19 <0.01 0.12 0.77 0.20 <0.01 0.12 0.80 0.20 <0.01 0.13 0.75 0.19 <0.01 0.08

H(A) 39.56 26.77 0.37 175.20 38.33 27.40 0.29 204.19 38.74 25.50 0.30 214.04 38.48 26.68 0.29 116.00
H(B) 32.49 31.63 0.36 176.23 32.05 28.60 0.34 198.39 30.99 28.01 0.30 211.85 31.43 28.11 0.31 109.93
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3.2. Hyperspectral Unmixing

In our experimental study, we exploit the original hyperparameters of the investigated
models [64,67] and, hence, the neighborhood of the 3× 3 size is utilized for 3D-CNN.
For comparison, we use the DCAE architecture (Table 15) with originally proposed hyper-
parameters (the spatial neighborhood of 5× 5 for 3D-DCAE), and we exploit a single FC
layer as a decoder, where the weight matrix is set to the endmembers’ spectral characteris-
tics (similarly, it can work with separate pixels or patches, and these variants are referred
to as 1D-DCAE and 3D-DCAE). It is built upon the observation that the input pixel can
be represented as a linear combination of its abundances, and the endmembers’ matrix is
built with the spectral characteristics of the materials captured in an HSI [67]. The latent
vector obtained by the encoder, therefore, explains the vector of endmember abundances.
Since DCAE is trained in an unsupervised way, such base models cannot be fit into our
ensemble that exploits a supervised learner as a fuser, but we investigate the abilities of
deep unsupervised ensembles that couple DCAEs trained over different training samples
through averaging their outcomes. Additionally, the classical hyperspectral data unmix-
ing techniques, including support vector regression (R-SVR) and the fully constrained
least-squares based linear unmixing (LMM) models were taken for comparison (with the
experimentally fine-tuned parameterization).

Table 15. The DCAE architecture. We report the number of kernels, alongside their dimensions.

Variant Layer Parameters Activation

1D-DCAE
(1× 1× λ)

Conv1 2@1× 1× 3 ReLU
Conv2 4@1× 1× 3 ReLU
Conv3 8@1× 1× 3 ReLU
Conv4 16@1× 1× 3 ReLU
Conv5 32@1× 1× 3 ReLU

FC1 #× 256 ReLU
FC2 256× a +Softmax
FC3 a× λ ReLU

3D-DCAE
(5× 5× λ)

Conv1 16@3× 3× 3 ReLU
Conv2 32@3× 3× 3 ReLU
Conv3 64@1× 1× 3 ReLU
Conv4 128@1× 1× 3 ReLU

FC1 #× 256 ReLU
FC2 256× a +Softmax
FC3 a× λ ReLU

Both models were trained using Adam with the learning rates of 10−3, 10−4, 10−5,
and 5× 10−5 for the pixel-based and cube-based variants of CNN and DCAE, respectively.
The maximum number of epochs was 100, with the early stopping of 15 epochs without
an improvement in the loss value over a random V (10% of all training pixels)—the afore-
mentioned hyperparameters were experimentally fine-tuned. To minimize the distance
between the input and reconstructed sample in both variants of DCAE, we utilize the
spectral information divergence (SID) as the loss function [83] (a standard mean square
error loss is exploited to train the unmixing CNNs).

We perform 30-fold Monte Carlo cross-validation, and sample 30 test sets that do
not change with the change of the training set size (as in the HSI classification experiment,
we report the results obtained for Ψ’s). The test set size is kept constant as suggested
in [64]. For the Jasper and Urban set (see Section 3.2.1), we have 7.5× 103 and 47× 103

training pixels in total. To verify the impact of the training set size on the unmixing
ensembles including different base models, we sample approximately {1, 6, 13, 33, 66}%
random training pixels and form reduced sets of {75, 500, 103, 2.5 × 103, 5 × 103} and
{470, 2.8× 103, 6.1× 103, 15.5× 103, 31× 103} pixels for Jasper and Urban, respectively.
To measure the performance of unmixing algorithms, we use the metrics that quantify the
distance between the estimated and observed abundances (the lower values these metrics
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have, the better corresponding unmixing becomes): the root-mean square error (RMSE),
and the root-mean square abundance angle distance (rmsAAD). The RMSE is:

RMSE =

√√√√∑
|Ψ|
i=1(ai − âi)2

|Ψ| , (2)

where |Ψ| denotes the number of samples in Ψ, whereas a and â represent the observed
and estimated abundance vectors. Additionally, the rmsAAD becomes:

rmsAAD =

√√√√∑
|Ψ|
i=1 arccos( a>i âi

‖ai‖‖âi‖ )
2

|Ψ| . (3)

3.2.1. Datasets

We focus on two HU benchmarks (Figure 6): Urban (Ur) and Jasper Ridge (JR) [84].
In Urban (207× 307, 162 bands), we have three versions of the ground truth with four,
five, and six endmembers. We utilize the most challenging variant with six endmembers:
#1 Asphalt, #2 Grass, #3 Tree, #4 Roof, #5 Metal, and #6 Dirt. The JR dataset (100× 100,
198 hyperspectral channels out of 224 original bands, as the ones contaminated by water
vapor and atmospheric effects were removed by the authors of this set) includes four
endmembers: #1 Road, #2 Water, #3 Soil, and #4 Tree.

(a) Urban (b) Jasper Ridge

Figure 6. Visualization of the (a) Urban and (b) Jasper Ridge datasets for the hyperspectral unmixing.

3.2.2. Experimental Results

We not only investigate the impact of introducing augmented models into the en-
sembles but also analyze the ensembles containing the models trained over training sets
of different sizes. As the supervised fusers, we use a random forest regressor (RF) with
100 estimators and the mean squared error used to measure the split’s quality, decision
tree (DT), and a support vector regressor (SVR) with a radial-basis kernel (with the same
parameterization as in Section 3.1.2).

The results obtained for all sizes of training sets and algorithms are visualized in
Figure 7. Although increasing the training samples helps enhance the abilities of CNNs and
DCAEs, we can observe very little improvements for the largest T’s (see the results obtained
for the entire training sets and 66% random examples). Building heterogeneous ensembles
allows us to improve the unmixing process for all T’s, with the RF fuser outperforming
the others. As SVR does not natively support multi-target regression, we fit one regressor
per target to support the multi-target unmixing task. This technique, however, does not
exploit the inter-target relations and resulted in the worst performance in the majority of
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cases. Finally, the models trained using larger T’s (in the All variant of our deep ensembles)
effectively compensated for low-quality models trained from limited ground-truth samples.
Additionally, the results show that the suggested ensembles are able to outperform the
classical hyperspectral data unmixing techniques (note that the results are not reported
for the largest training set in the case of R-SVR, as this regressor failed to train within
the assumed time budget of 12 h). In Figure 8, we can appreciate the training and test
times obtained for all investigated unmixing procedures and averaged for both datasets (as
already mentioned, the R-SVR results are not reported, as it failed to train within 12 h). It is
worth mentioning that the ensemble approach has a minor influence on the non-functional
capabilities of the algorithms and, hence, allows us to maintain fast inference (significantly
faster than, e.g., R-SVR).
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Figure 7. The results (overall RMSE and rmsAAD, averaged across Ur and JR) obtained using 1D-CNN and 3D-CNN (two
upper plots), and the results obtained using 1D-DCAE and 3D-DCAE (two lower plots), as well as the scores elaborated
using the ensembles and classical algorithms taken for comparison (LMM and R-SVR). For the supervised CNNs, we exploit
the RF, DT, and SVR fusers, whereas for both supervised and unsupervised techniques we also utilize the ensemble that
averages the predictions of base models (the mean aggregating variant). For each training set size, we build heterogeneous
ensembles containing the 1D and 3D variants of the corresponding models (CNNs and DCAEs). Finally, we report the
results obtained using the ensembles that include all models trained over all investigated sizes of training sets (the All
variant for CNNs and DCAEs). We do not report the results for R-SVR for the largest training sets, as this method failed to
train within the assumed time budget of 12 h.
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Figure 8. Training and prediction (test) times (in seconds, note the logarithmic scale—the test times are reported for the entire test sets)
for all investigated training set sizes and algorithms (averaged across the datasets). We do not report the time results for R-SVR for the
largest training sets, as this method failed to train within the assumed time budget of 12 h.

Table 16 gathers the results obtained using the deep ensembles with noise-augmented
1D-CNN models trained over 1% of available training pixels (note that the metrics are
multiplied by 100). Since DCAE in an unsupervised learner, generating the augmented
DCAEs would unlikely improve its operational abilities, as we cannot exploit supervised
fusers to aggregate the original and perturbed models’ predictions. The issue of augmenting
and ensembling unsupervised models therefore, requires, further research attention—our
preliminary experiments showed that averaging the predictions (the mean ensemble) of
the original and augmented 1D-DCAEs did not result in visible improvements. As in
HSI classification, introducing perturbed models significantly boosted the generalization
capabilities of 1D-CNNs for both datasets and enabled us to elaborate well-generalizing
ensembles based on very weak learners. It indicates that ensemble learning backed up with
our model augmentation may help accelerate the adoption of CNN unmixing models for
emerging use cases, in which the amount of ground-truth data is small and obtaining new
training samples is costly or infeasible in practice. Our previous observations concerning
the training and inference times of the proposed ensembles are confirmed in Table 17—
delivering the prediction over unseen test sets remains very fast for various numbers of
contaminated 1D-CNN models included in the unmixing ensemble. It indicates that one
can improve the quality of HU by building such ensembles while minimally affecting the
non-functional capabilities of the algorithms.
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Table 16. The results obtained using a single 1D-CNN model (1D) and using the ensembles with different numbers of augmented 1D-CNNs (# copies) with all fusers (Mean, RF, DT,
and SVR); each ensemble always contains one original 1D-CNN. Note that the augmented models were generated by injecting noise into the weights of the original model, and the number
of such contaminated (augmented) copies may be freely updated. We report the results for both datasets: Ur and JR. The best results for each row are bold, the second best are underlined,
and the worst are grayed. We multiplied RMSE and rmsAAD by 100.

# Copies→ 1 Copy 2 Copies 4 Copies 8 Copies 16 Copies

Metric↓ 1D Mean RF DT SVR Mean RF DT SVR Mean RF DT SVR Mean RF DT SVR Mean RF DT SVR

U
r RMSE 6.76 8.26 6.58 8.47 9.46 8.11 6.55 8.50 9.41 8.31 6.48 8.46 9.35 8.12 6.43 8.42 9.31 8.23 6.40 8.54 9.27

rmsAAD 23.63 27.67 23.81 30.44 30.27 27.17 23.73 30.57 30.12 27.49 23.52 30.39 29.97 26.71 23.32 30.22 29.85 26.87 23.22 30.71 29.74

JR

RMSE 11.95 12.58 9.79 11.72 12.20 12.45 9.56 11.72 12.02 12.73 9.46 11.57 11.97 12.78 9.40 11.56 11.96 12.92 9.25 11.66 11.88
rmsAAD 29.88 31.46 25.00 30.11 30.00 31.07 24.49 30.22 29.52 31.73 24.18 29.79 29.36 31.63 24.07 29.84 29.33 31.87 23.72 30.18 29.17

Table 17. Training and prediction (test) times (in seconds, the test times are reported for the entire test sets) for the investigated ensembles containing a given number of 1D-CNN copies
(# copies), for all supervised fusers (RF, DT, and SVR, together with the mean fusion), and for a single 1D-CNN (1D).

# Copies→ 1 Copy 2 Copies 4 Copies 8 Copies 16 Copies

Time.↓ 1D Mean RF DT SVR Mean RF DT SVR Mean RF DT SVR Mean RF DT SVR Mean RF DT SVR

U
r Train 6.21 4.20 5.89 5.58 9.87 4.56 5.25 4.79 4.86 5.09 6.12 5.99 5.63 20.29 8.43 8.21 7.72 12.19 16.83 14.44 13.95

Test 0.39 0.37 0.56 0.26 0.55 0.57 0.69 0.40 0.75 0.97 0.94 0.64 1.17 1.98 1.49 1.18 2.03 5.06 2.48 2.27 3.81

JR

Train 4.01 3.60 3.94 4.52 4.95 3.89 4.65 4.80 5.61 4.57 5.65 4.97 5.82 6.16 7.13 7.95 6.98 10.03 13.66 13.22 12.99
Test 0.09 0.15 0.06 0.04 0.04 0.22 0.07 0.05 0.05 0.40 0.08 0.06 0.08 0.90 0.12 0.10 0.11 2.93 0.19 0.16 0.17
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4. Conclusions

Deep learning approaches have become an established tool in both hyperspectral
image data classification and unmixing, but the lack of ground-truth data is an important
obstacle, which hampers the adoption of such large-capacity learners and makes their
generalization abilities questionable in practical applications. We introduced the deep
ensembles for HSI analysis that not only benefit from different deep architectural advances
capturing spectral and spectral-spatial characteristics within the input HSI but also from
supervised learners acting as efficient fusers of base models. Additionally, we introduced
the model augmentation technique, which allows us to synthesize deep models by injecting
noise into the original network’s weights. The experiments performed for HSI classifi-
cation and unmixing indicated that our deep ensembles coupled with supervised fusers
significantly outperform base learners and classical fusing schemes (and also the classi-
cal techniques for hyperspectral data unmixing), and the model augmentation approach
notably boosts the ensembles’ generalization over the unseen test data. It is worth men-
tioning that the suggested ensemble approaches are independent of the underlying base
models, hence including other, perhaps more efficient state-of-the-art deep architectures
(for both hyperspectral data classification and unmixing), could help further improve their
operational capabilities.

The research reported in this paper constitutes an interesting departure point for
further research in hyperspectral image analysis using ensemble learning. In the work
reported here, we suggested building ensembles that can benefit from either exploiting
various architectural advances (if the convolutional neural networks are utilized), or from
the models that are perturbed through the noise contamination of their weights. However,
the problem of selecting appropriate base models to form the final ensemble needs further
investigation, as rejecting low-quality models could be beneficial in this context [23]. Fur-
thermore, it might be useful to increase the impact of the original (uncontaminated) model
on the final output of the ensemble, by either increasing the number of copies of this model
or appropriately weighting its output in the fusing scheme. Addressing these issues could
ultimately lead us to fully-automated and data-driven techniques capable of automatically
elaborating well-generalizing ensemble models for specific hyperspectral image analysis
tasks. As the amount of labeled training data (especially hyperspectral image data) is com-
monly limited in emerging use cases, ensuring the high-quality classification and unmixing
performance of large capacity supervised learners (e.g., 3D CNNs) is of high practical
importance, as such models are able to capture fine-grained spectral and spatial features.
Here, several possible approaches exist, and they include—among others—effective data
augmentation [49,80] or transfer learning [85,86]. Finally, developing lightweight models
that could be efficiently run on-board satellites in hardware-constrained execution environ-
ments is currently attracting research and industry attention [87,88], because it could allow
us to process highly-dimensional hyperspectral imaging in orbit; therefore, it would be
possible to transfer the results of this processing back to Earth, rather than raw image data.
It, in turn, would increase the practical utility of such imagery by delivering specific value
from the image data much faster.
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The following abbreviations are used in this manuscript:

AVIRIS Airborne Visible/Infrared Imaging Spectrometer
BA Balanced accuracy
CNN Convolutional neural network
DCAE Deep convolutional autoencoder
DT Decision tree
HSI Hyperspectral image
HU Hyperspectral unmixing
IP Indian Pines
JR Jasper Ridge (dataset)
OA Overall accuracy
PU Pavia University
ReLU Rectified linear unit
RF Random forest
ROSIS Reflective Optics System Imaging Spectrometer
SV Salinas Valley
SVM Support vector machine
SVR Support vector regressor
Ur Urban (dataset)
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