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Abstract: Hyperspectral Image (HSI) can continuously cover tens or even hundreds of spectral
segments for each spatial pixel. Limited by the cost and commercialization requirements of remote
sensing satellites, HSIs often lose a lot of information due to insufficient image spatial resolution.
For the high-dimensional nature of HSIs and the correlation between the spectra, the existing
Super-Resolution (SR) methods for HSIs have the problems of excessive parameter amount and
insufficient information complementarity between the spectra. This paper proposes a Multi-Scale
Feature Mapping Network (MSFMNet) based on the cascaded residual learning to adaptively learn
the prior information of HSIs. MSFMNet simplifies each part of the network into a few simple yet
effective network modules. To learn the spatial-spectral characteristics among different spectral
segments, a multi-scale feature generation and fusion Multi-Scale Feature Mapping Block (MSFMB)
based on wavelet transform and spatial attention mechanism is designed in MSFMNet to learn the
spectral features between different spectral segments. To effectively improve the multiplexing rate
of multi-level spectral features, a Multi-Level Feature Fusion Block (MLFFB) is designed to fuse the
multi-level spectral features. In the image reconstruction stage, an optimized sub-pixel convolution
module is used for the up-sampling of different spectral segments. Through a large number of
verifications on the three general hyperspectral datasets, the superiority of this method compared
with the existing hyperspectral SR methods is proved. In subjective and objective experiments, its
experimental performance is better than its competitors.

Keywords: multi-scale feature; attention mechanism; image super-resolution (SR); hyperspectral
image

1. Introduction

The development of aerospace technology and remote sensing technology has pro-
moted the application of hyperspectral image (HSI) based on remote sensing satellite [1–4],
such as land monitoring [5,6], urban planning [7], road network layout [8], agricultural
yield estimation [9] and disaster prevention and control [10]. However, due to the volume
limitation of the imaging system and the need for system stability and time resolution,
the acquisition of a large amount of spectral band information of hyperspectral images
is often at the expense of spatial resolution [11]. Common methods to enhance spatial
resolution are primarily studied from the aspects of hardware and process control. It not
only challenges the current engineering technology but also violates the design concept of
commercialization and miniaturization of remote sensing satellites.

In the field of image Super Resolution (SR), from the perspective of high-frequency
detail similarity, researchers examine various ways to obtain more low-resolution image
structure information and reconstruct high-quality HSI with detailed information. This
technology is able to produce high-quality remote sensing images at a low cost with-
out changing the existing hardware level. It has high research value and commercial
prospects in the field of remote sensing data processing, and can immediately promote the
development of commercial remote sensing satellites.
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The concept of image super-resolution reconstruction originated from the research
of Harris and Goodman [12,13] in 1964. The basic concept and method of image super-
resolution were established by extrapolating the band limited signal. The early SR methods
mainly include the interpolation-based method, reconstruction-based method and learning-
based method.

Classical interpolation-based methods chiefly include zero-order interpolation (nearest
neighbor interpolation), first-order interpolation (bilinear interpolation), and high-order
interpolation (bicubic interpolation, cubic spline interpolation, and Lanczos interpolation),
which will lead to blurred edges and artifacts. Considering the uneven distribution of image
features, Duanmu et al. [14] and Zhang et al. [15], from the perspectives of Sobel operator
and rational fractal interpolation, adopted distinct sampling methods for homogeneous
regions and texture regions to overcome the blurring of edges. Furthermore, combined with
a series of theories such as Discrete Wavelet Transform (DWT) [16], Whittaker filtering [17],
partial Least squares method [18], Trilateral filter [19], high boost operator [20], etc., the
interpolation method imbibed many aspects of optimization.

Given the defect that the interpolation algorithm cannot make full use of the abstract
information of the image, starting from the Bayesian learning framework, the researchers
prefer combining the process of the image degradation model with prior knowledge of the
image to implement a reconstruction-based method [21–24].

Pickup et al. [25] marginalized potential parameters, such as geometric and photo-
metric registration and image point spread function, to achieve a more realistic image
prior distribution. To fuse high-resolution HSIs with low-resolution HSIs, Akhtar et al. [26]
proposed a general Bayesian sparse coding strategy that merges combines Bayesian dictio-
naries for reconstructing the image. Based on the Bayesian framework, Zheng et al. [27]
used a degenerate distribution method to derive an estimate of the analytical solution
from enhancing the robustness of the algorithm. Irmak et al. [28] converted the ill-posed
SR reconstruction problem in the spectral domain of HSIs into a secondary optimization
problem in the abundance map domain based on the energy minimization method of the
Markov random field.

Early learning-based methods are primarily to comprehend the mapping relationship
between high-resolution images and low-resolution images. Drawing lessons from the
sparse representation-based SR method proposed by Yang [29], Şimşek et al. [30] proposed
an over-complete dictionary suitable for hyperspectral images to realize the learning of
image mapping relations. Dong et al. [31] trained a variety of super-complete dictionaries
based on different types of image blocks to effectively enhance the performance of the
algorithm. Shao et al. [32] proposed a sparse autoencoder (CSAE) to effectively understand
the mapping relationship between LR images and HR images.

In recent years, Convolutional Neural Network (CNN) has exhibited its powerful
processing performance for various image tasks, such as image restoration [33], which
continues the development of the natural image SR method based on the CNN network.
Through supervised learning of the feature mapping relationship between the pairs of
high-resolution (HR) images and low-resolution (LR) images, the SR method based on the
CNN network can efficiently reconstruct high-quality images with rich details. Classical
SR methods for natural images primarily include VDSR [34], EDSR [35], D-DBPN [36], and
SAN [37]. The outstanding performance of these algorithms has inspired researchers to
apply these methods to hyperspectral image reconstruction.

Due to the strong feature correlation between the adjacent bands of hyperspectral
images, when CNNs are applied to the SR task of hyperspectral images, 3D convolution
is required for feature extraction. Based on this, some classic algorithms have also been
designed. For example, Mei et al. [38] used a 3D Fully Convolutional Network (3D-
FCNN) to reconstruct images on a larger scale, thereby solving the problem of spectral
information distortion while using traditional 2D convolution SR that is directly applied to
hyperspectral images. Li et al. [39] used 2D units and 3D units to share spatial information
in the image reconstruction process, which alleviated the problem of structural redundancy
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and led to a preliminary exploration of the lightweight hyperspectral models. Xie et al. [40]
divided different spectral segments into multiple subsets, selected the key spectral segments
of each subset for reconstruction, and guided the reconstruction of all spectral bands in
the subsets, thereby achieving multiple reconstructions through asymptotic reconstruction.
Different from the method of classifying and processing spatial and spectral information,
Hu et al. [41] designed a spectral difference module, a parallel convolution module, and
a fusion module for simultaneous super-resolution reconstruction of spatial and spectral
information, which also enhances the generalization of the network. Li et al. [42] used
MCNet based on the 2D/3D hybrid convolution module to further extract the potential
features of the spectral image, but its complex 2D/3D conversion module still failed to
mitigate the computational complexity.

At present, there are still many problems in the CNN-based SR method:

(1) The parameters of the CNN model for hyperspectral images are still one or even
several orders of magnitude higher than those of the CNN model for natural images
at the same depth. Hence, the design of a network model with good performance
with limited computing resources is the key to the practical application of the SR
algorithm.

(2) Most existing SR methods are learning for single-scale spectral features, which leads to
the limited mining of spatial spectral information, making it impossible to reconstruct
high-quality HR images for all the spectral segments.

(3) Existing SR networks primarily focus on the impact of depth of the network on the
overall performance and do not fully consider the further mining of the spectral
feature information at each stage in the existing model.

Focusing on the problem of fully mining the prior knowledge of remote sensing
images, and based on the SR method of classic CNN model, a variety of simple and
effective CNN modules with different functions is designed from image feature extraction,
feature nonlinear mapping, and image reconstruction.

Considering the above ideas, this paper proposes a Multi-Scale Feature Mapping
Network (MSFMNet) for hyperspectral image super-resolution reconstruction. Using
depthwise separable convolution, the multi-scale structure module based on wavelet trans-
form and attention mechanism is designed, which can efficiently learn the prior knowledge
of global and local features with a small number of model parameters. Therefore, the
network model based on multi-scale structure can obtain more similar image feature in-
formation from low-resolution remote sensing image blocks. In each Multi-Scale Feature
Mapping Block (MSFMB), the network can adaptively learn spectral features from each
spatial scale and spectral band. Using four distinct evaluation indicators, the experimental
results on three datasets demonstrate that the SR performance of the proposed MSFMNet
for hyperspectral images is better than that of the existing hyperspectral SR methods. In
this paper, the key contributions are as follows:

1. The Multi-Scale Feature Mapping Block (MSFMB) is composed of up-sampling and
down-sampling modules with depthwise separable convolution. After that, the
spatial attention mechanism based on wavelet transform is integrated with the multi-
scale module to generate features of different scales.

2. In the nonlinear mapping stage of network features, a Multi-Level Feature Fusion
Block (MLFFB) with few parameters is designed. After fusing the output features of
each module, the self-attention mechanism based on pixel domain is used for linear
weighting, and the feature information is used to assist the final image reconstruction.

3. In the final stage of image reconstruction, the adaptive sub-pixel convolution is
designed for the multi-channel characteristics of the hyperspectral image, addressing
the problem that the effect of image reconstruction is limited by the limited-expression
ability of nonlinear mapping in the reconstruction stage.

4. A large number of experiments are carried out based on benchmark datasets, and
the experimental results signify that the proposed method is superior to the existing
methods.
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2. Proposed Method

In this section, to better introduce the proposed work, the overall framework of
MSFMNet is first briefed, which is shown in Figure 1. Different from the super-resolution
task of ordinary images, hyperspectral remote sensing images have the characteristics of
many spectral bands and large data amount of a single image. It is impossible to fully mine
the spatial and spectral information of images only by using cascaded convolution to learn
the features of local pixel regions. To solve the above problems, we designed several simple
and effective networks in MSFMNET to extract and reconstruct spectral features from the
two perspectives of feature nonlinear mapping and spectral segment reconstruction, which
make the better reconstruction of spectral details of HSI. MSFMNet is chiefly composed
of three parts: Feature Extraction Network (HFE), Feature Nonlinear Mapping Network
(HMSFMB), and Image Reconstruction Network (HUP).

Figure 1. Whole architecture of the proposed MSFMNet. Colored boxes of the same color represent the corresponding
relationship. The above structure is described in detail later.

Let ILR ∈ RH×W×B denote the LR image and ISR ∈ R(αH)×(αW)×B represent the
reconstructed HR hyperspectral image, where B is the number of spectral bands, H and
W, respectively, denote the length and the width of the image block, and α denotes the
SR factor.

The HFE mainly uses the standardized operation to balance the distribution of the
data. To preserve the geometric structure of the spectral image to the maximum extent,
only 3D convolution is used to map the image features to a higher-dimensional feature
space, and the initial feature F0 ∈ RC×B×H×W is obtained. In the HMSFMB, considering the
up-sampling structure as the entry point, the cascaded MSFMB module is used to realize
the residual feature extraction from various receptive fields.

The multi-level feature fusion network with a simple structure is simultaneously used
for long-term and short-term memory to better improve the feature nonlinearity. Consider-
ing the characteristics of multi-spectral reconstruction in the HUP, the sub-pixel convolution
network is optimized based on the sub-pixel convolution design to better capture the in-
formation of spatial spectral characteristics and reconstruct the hyperspectral image by
preserving rich details. More detailed information on each part is mentioned below.

2.1. Data Standardization

To reduce the difference between the data, the data demand standardization. Better
data input can boost the convergence speed of the convolutional neural network and
improve the image reconstruction effect of the overall network [43]. This method primarily
uses zero-mean standardization (Z-score) for the data standardization process of the image
feature extraction stage, which is a data standardization method that performs linear
mapping on the basis of the mean and standard deviation of the data itself. First, stack the
average values of the pixels of each band of the hyperspectral remote sensing image I to
obtain the mean vector, and then use the obtained mean vector µ to continue to solving the
standard deviation vector σ of each band.
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During the network training, all input images are standardized, and the mathematical
formula for specific implementation is specified in Equation (1):

x∗ =
x− µ

σ
(1)

After zero-mean normalization, the data between different bands will be densely
distributed around 0 mean, and the variance is 1.

After performing the image reconstruction, inverse normalization is performed ac-
cording to the known standard deviation vector µ and mean vector σ, and a reconstructed
high-resolution remote sensing image is obtained eventually.

2.2. Multi-Scale Residual Feature Network

To better protect the integrity of the spectral information and simplify the learning
objectives and shortcomings of the spectral features, the network structure of RCAN [44] is
used as a reference. The main body of the network adopts the jump connection method for
residual learning, among which are several cascaded MSFMBs.

(1) Multi-scale Feature Fusion: The design of the MSFMB mainly draws on the the-
oretical and experimental derivations of CNF [45] and DBPN [36]. The size of the image
features remains fixed in the depth direction of the overall network structure. Meanwhile,
In MSFMB, up-sampling and down-sampling operations are carried out in the spatial
domain with a scale factor of m, and three transformed features are fused to learn feature in-
formation of different scales, which can effectively prevent the loss of network performance
caused by oversampling.

It can be observed from Figure 2 that when performing feature mapping in the MSFMB
module, image features are primarily categorized into three paths, namely, lower_rout,
standard_rout, and upper_rout. First, the input feature Fin ∈ RC×B×H×W is subjected to
the same-scale feature mapping through standard depthwise separable 3D convolution
of standard_rout to obtain the Fstd. In the upper_rout, the Fstd is passed through the up-
sampling module to obtain the feature F0

up ∈ RC×B×mH×mW , and then the down-sampling
module is used to bring it back to the original size, that is, feature Fup ∈ RC×B×H×W .
Similarly, in the lower_rout, Fstd is passed through the down-sampling module to obtain
the feature F0

down ∈ RC×B×(H/m)×(W/m), and it is restored to its original size through
the up-sampling module to obtain Fdown ∈ RC×B×H×W . Eventually, after concatenating
the Fstd, Fup, and Fdown and using the standard depthwise separable 3D convolution to
achieve feature fusion and channel reduction, the output feature Fout ∈ RC×B×H×W with
the channel C is derived. The mathematical representation of the MSFMB module is
mentioned below.

Fstd = f [wp ∗ f (wd ∗ Fin)] (2)

Fup = g↓[g↑(Fstd)] (3)

Fdown = g↑[g↓(Fstd)] (4)

Fout = f
{

wp ∗ f [wd ∗ C(Fstd, Fup, Fdown)]
}

(5)

where wd represents the convolution kernel of depthwise convolution with a size of
3 × 3 × 3, group is set to C, wp denotes the convolution kernel of a pointwise convo-
lution with a size of 1 × 1 × 1, f indicates the LeakyReLU activation function, * represents
the convolution, C(·) stands for the concatenation operation, and g↓ and g↑ denote the
up-sampling module and the down-sampling module.
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Figure 2. Architecture of the MSFMB. © represents the concatenation operation.

Compared to multi-level up-sampling and down-sampling structure in LapSRN [46]
and the alternate up-sampling and down-sampling feature extraction structure in DBPN [36],
this module not only focuses on large-scale or small-scale feature information in the depth
direction, but also considers the characteristics of three kinds of feature information to
greatly enrich the prior knowledge that can be obtained by feature extraction. Meanwhile,
since only the single-stage up-sampling and down-sampling is performed, information
loss caused by excessive noise introduced during the sampling process can be substan-
tially avoided.

(2) Feature multi-scale transformation: The structure based on the self-attention
mechanism is widely used in natural image SR methods. For the complex characteristics of
spectral features, when performing multi-scale feature nonlinear mapping, a novel spatial
attention structure based on DWT is proposed for detailed feature extraction.

The design of the wavelet-based spatial attention mechanism is highlighted in Figure 3.
First, for the spectral feature Fin ∈ RC×B×H×W , the scale transformation with a sam-
pling factor of m is performed through the depthwise separable convolution to obtain
F ∈ RC×B×mH×mW , and then the four-layer image feature comprising FLL, FLH , FHL, and
FHH is obtained after the DWT is performed. Since the low-frequency information FLL
contains less detailed information, only FLH , FHL, and FHH are used for feature guidance
when performing feature fusion. Since the spatial scales of the features obtained by DWT
and the original features may be different, it is mandatory to use interpolation to restore
to the original size, and use standard 3D convolution for feature dimension fusion. The
standard 3D convolution kernel is 1 × 1 × 1, and the output features are determined as
FFusion. After that, Global Max Pooling and Global Average Pooling are performed to obtain
the two single-layer feature Fw

avg ∈ R1×B×H×W and Fw
max ∈ R1×B×H×W , and the standard

convolution is used for fusion to generate two-dimensional features. After Sigmoid activa-
tion function, the weight coefficient Mw ∈ R1×B×H×W is obtained, which is applied to F
for feature optimization. The mathematical expression of the spatial attention sampling
module based on DWT can be expressed by the following formula:

F = f [wp ∗ f (wd ∗ Fin)] (6)

FLL, FLH , FHL, FHH = DWT(F) (7)

FFusion = w3d1 ∗ I[C(FLH , FHL, FHH)] (8)

Mw(F) = σ[w3d1 ∗ C(Fw
avg, Fw

max)]⊗ F
= σ{w3d1 ∗ C[AvgPool(FFusion), Maxpool(FFusion)]} ⊗ F

(9)

where DWT(·) denotes the discrete wavelet transform, w3d1 stands for standard 3D convo-
lution with a convolution kernel size of 1 × 1 × 1, I represents the sampling to a sampling
operation consistent with the spatial size of the feature F, σ denotes the sigmoid activation
function, and⊗ represents the matrix point multiplication. For the down-sampling module,
wd represents a depthwise convolution with a size of 3× 3× 3, Group is set to C, and stride



Remote Sens. 2021, 13, 4180 7 of 19

is set as 2. For the up-sampling module, wd represents a depthwise transposed convolution
with a size of 3 × 3 × 3, Group is set to C, and stride is set as 2.

Figure 3. Architecture of the up/down block.

2.3. Multi-Level Feature Fusion Block

In the earlier densely connected structures, such as DenseNet [47] and SRDenseNet [48],
the output results of each level of convolution or modules are directly added or concate-
nated as the input of the next level. In order to better integrate the output results of all levels
of modules to assist in the reconstruction of the final features, when the bypass connection
is established, inspired by PAN [49], we propose the Multi-Level Feature Fusion Block
(MLFFB) based on the spatial attention mechanism, which can generate more detailed
features. The network structure of the MLFFB is illustrated in Figure 4.

Figure 4. Architecture of the MLFFB.

Assuming that there are a total of n MSFMB in the feature nonlinear mapping stage
of the network, in the MLFFB, first take the output Fi ∈ RCin×B×H×W of the first n − 1
modules for stacking, where i ∈ [1, . . . , n− 1]. The convolution kernel w3d1 with a size of
1 × 1 × 1 performs the dimensionality reduction processing of the channel dimension to
obtain Ff usion ∈ RCin×B×H×W . Then, according to the channel down-sampling factor q, the
convolution kernel w3d1 with kernel dimension of 1 × 1 × 1 performs channel-dimensional
down-sampling to obtain Fdown ∈ R(Cin/q)×B×H×W . After that, we use the convolution
kernel w↑3d1 and the kernel of 1× 1× 1 to perform the channel-dimensional up-sampling to
obtain Fup ∈ RCin×B×H×W . Finally, a sigmoid activation function is used to normalize Fup
and generate attention weight coefficients, which can apply to linearly weight the Ff usion
features to obtain the auxiliary feature Fout:

Ff usion = w↓3d1 ∗ C(I1, I2, . . . , In−1) (10)

Fout = Ff usion ∗ σ[w↑
3d1
∗ (w↓

3d1
∗ Ff usion)] (11)

The multi-level feature extraction module optimizes and improves the information
reuse rate of the feature maps at each level by introducing a self-attention mechanism
based on the pixel domain, and significantly improves the performance of feature mapping
in the nonlinear mapping stage.

2.4. Image Reconstruction

Common image reconstruction modules in the SR method include deconvolution [50]
and 2D sub-pixel convolution [51]. Aiming at the problem of multi-band feature reconstruc-
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tion of remote sensing hyperspectral images, we optimize the sub-pixel convolution, and
propose a 3D-based sub-pixel convolution method for the image reconstruction network of
MSFMNet. The structure is shown in Figure 5d. Through experiments, we have proved
that its effect is better than other structures of Figure 5.

Figure 5. Architecture of various the image reconstruction networks. The first parameter of con-
volution means the kernel size, the second parameter of convolution means the output channel.
(a) Commonly used 3D convolution reconstruction structure (b) Sub-pixel convolution in 2D form.
(c) Sub-pixel convolution in 3D form. (d) Optimized sub-pixel convolution in 3D form.

The 3D-based sub-pixel convolution is primarily divided into three parts: feature
fusion, channel compression and pixel rearrangement. The input feature FFusion in the
feature reconstruction stage is obtained by summing the output FFea of the feature extraction
stage, the fusion feature FAssist of the auxiliary module, and the output Fmap of the network
nonlinear mapping stage. To ensure the reconstruction effect after channel compression,
further fusion for FFusion is required through 3D convolution, whose kernel is w′3d3 and its
size is 3 × 3 × 3.

Before the pixelshuffle operation, channel compression of features is performed by
using a 3D convolution kernel w′3d3, where the size of whom is 3 × 3 × 3 and the output
channel is the square of the reconstruction factor s. Eventually, the pixelshuffle operation
h↑ps(·) and the inverse normalization is used to achieve reconstruction of the SR spectral
image. The specific formula is as follows:

Fsr = h↑ps{w′′3d3 ∗ [w
′
3d3 ∗ (FFea + FAssist + Fmap)]} (12)

Isr = Fsr ∗ σ + µ (13)

The L1 norm is applied to the network as a loss function for network training, and its
mathematical expression is mentioned in the following formula:

LMAE(Ihr, Isr) =
1
N

N

∑
i=1

∣∣∣Ii
hr − Ii

sr

∣∣∣ (14)

where ISR represents the reconstructed spectral image, Ihr is the original spectral image,
and N stands for the number of training samples.

3. Experiments

To verify the performance of the proposed MSFMNet, in this section, we first introduce
three common datasets. Then, the specific implementation details and evaluation indexes is
mentioned. Finally, we compare the performance of MSFMNet with the existing algorithms.



Remote Sens. 2021, 13, 4180 9 of 19

3.1. Experimental Settings

(1) Datasets: Three widely used HSI datasets are used here to evaluate the model
performance of the MSFMNet method. When generating the training set, Isr is generated
based on the requirements of specific up-sampling factor, and the Ihr and Isr are cropped
according to the fixed stride and side length.

CAVE: The CAVE dataset is a 400 nm–700 nm hyperspectral dataset collected by a
Cooled CCD camera. A total of 31 bands are collected at an interval of 10 nm each. The
dataset contains 32 hyperspectral images with a size of 512 × 512 × 31. For HSIs, 7 images
are selected as the test set and the remaining 25 as the training set.

Pavia Center and Pavia University: The Pavia Center dataset (Pavia) and the Pavia
University (PaviaU) dataset are collected by ROSIS sensors over the city of Pavia in northern
Italy, with a wavelength range of 430 nm–860 nm. Among them, the size of the Pavia
dataset is 715 × 1096 × 102, and the size of the PaviaU dataset is 610 × 340 × 103. For the
two datasets, the 144 × 144 spectral image with the upper left corner as the origin is used
as the test set, and the other parts are used as the training set.

The main difference: the number of bands in the CAVE dataset is significantly smaller
than that of Pavia and PaviaU, but the number of scenes is much larger than that of Pavia
and PaviaU. The number of bands of Pavia and PaviaU is similar, but the picture size is
very different. Compared with a single spectrum, the size of Pavia is almost four times that
of PaviaU, so in the training phase, PaviaU has the fastest training speed.

(2) Implementation Details: According to different hyperspectral datasets, the spectral
bands B of the model is set as the spectral bands of datasets. In the MSFMNet, the DWT
uses Gabor wavelet for multi-direction feature extraction, and the number of feature layers
is set to 64, that is, the channel C is 64. In the feature nonlinear mapping network, in
order to better achieve feature extraction, a total of four MSFMB are used in series, so
a total of three groups of features are cascaded as the input of MLFFB. In MLFFB, the
down-sampling factor q in the pixel domain attention mechanism is set to 8. In MSFMB,
both the up-sampling and down-sampling factors of the feature are set to 2.

All the experiments and test processes are run in MATLAB and Pytorch environments,
and the hardware configuration is four NVIDIA RTX2080Ti graphics cards with 11 GB
of memory.

When setting the training-related hyperparameters, the Adam method is selected as
the network optimization method to optimize and update the parameters. The algorithm in
this paper sets the exponential decay rate of Adam’s biased first-order moment estimation
and biased second-order moment estimation to 0.9 and 0.999, respectively. The value of the
correction factor is set to 108, and the step size is set to 0.001. In network training, the initial
learning rate is set to 104, the attenuation coefficient is 0.1 for every 120 rounds, and a total
of 400 rounds are trained. At the beginning of network training, Pyotrch’s weight_norm
function is used to initialize the weights. To maintain the spatial size of the feature after
convolution, zero padding is used in all the convolution layers.

(3) Evaluation Metrics: The performance differences of different methods are primarily
evaluated from subjective and objective indicators. In order to be more in line with the
subjective perception of the human eye, RGB images and error images are provided for
visual comparison.

To qualitatively measure the proposed MSFMNet, four evaluation methods are em-
ployed to verify the effectiveness of the algorithm, including Peak Signal-to-Noise Ratio
(PSNR), Mean Peak Signal-to-Noise Ratio (MPSNR), Structural Similarity (SSIM), and
Spectral Angle Mapping (SAM). They are defined as:

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

[X(i, j)−Y(i, j)]2 (15)

PSNR = 10× log10

(
[2Bits − 1]

2
/MSE

)
(16)
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MPSNR =
10
B

B

∑
i=1

log10

(
2Bits − 1

)2MN
M
∑

i=1

N
∑

j=1
(X(i, j)−Y(i, j))

2 (17)

where X and Y denote the reconstructed image Isr and the original image Ihr, M and N
stand for the image length and width, respectively, the MSE represents mean square error,
Bits denotes the image pixel depth, and B stands for HSI spectral bands.

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µx2 + µy2 + C1

)(
σx2 + σy2 + C2

) (18)

where µx and µy represent the mean of Isr and Ihr, σx and σy denote the variance of Isr and
Ihr, and C1 and C2 are both minimum that prevent division by zero.

θ(z∗, zh) = cos−1(
zT

h z∗

(‖zh‖)(‖z∗‖)
) = cos−1(

zT
h z∗√

(z∗)Tz∗
√

zT
h zh

) (19)

SAM =
1

HW

H

∑
i=0

W

∑
j=0

θ(X(i, j), Y(i, j)) (20)

where z∗ represents the pixel vector of Isr, zh represents the pixel vector of Ihr, and θ stands
for the spectral angle mapping of a single pixel vector.

3.2. Results and Analysis

To evaluate the performance of the MSFMNet method as comprehensively as possible,
several popular SR methods are used for comparison, including four commonly used algo-
rithms, namely Bicubic, VDSR, EDSR, ERCSR, and MCNet. The subjective and objective
test results of the three HSI datasets are mentioned below.

(1) CAVE Dataset: In Figure 6, the 26th, 17th, and 9th bands are served as the R-
G-B channels to visualize the test RGB images of the photo_and_face_ms in the CAVE
dataset that are generated by different methods with a scale factor of 8. It can be obviously
observed that the details of the hyperspectral reconstructed images obtained by Bicubic,
VDSR, EDSR, MCNet, and ERCSR are quite different from the original images, especially
those obtained by Bicubic and VDSR. In addition, due to the lack of learning between
spectral features, the face part of the image generated by EDSR is very blurry. Although
MCNet and ERCSR utilizes spectral features based on 2D/3D convolution, there is still
a slight spatial distortion in the bright region. From the perspective of visual effects,
MSFMNet is superior to other methods. Figure 7 displays the pixel absolute difference
images between the image reconstructed by various methods and the original image. For
MLFFB is used for multi-level feature fusion, the reconstruction effect of MSFMNet on the
edge of the photo frame and the face part is much closer to the original image.

Figure 6. The reconstructed images and detailed comparison images of the photo_and_face_ms using various algorithms.
Reconstructed images with spectral bands 26-17-9 as R-G-B channel with a scale factor of 8.
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Figure 7. Absolute error map comparisons for photo_and_face_ms of various algorithms with a scale factor of 8. The
sharper the edge of the image, the larger the absolute residual and the worse the effect. The same is true for the residual
graph below.

To further demonstrate our superiority in the reconstruction of spectral information,
the reflectivity of pixels in the photo_and_face_ms image in different spectral bands is
randomly selected in Figure 8. It is obvious that the spectral information generated by
MSFMNet is closest to the HR image. The first few bands contain less bright informa-
tion, and it is difficult to reflect the difference in algorithm performance. As the spectral
wavelength increases, the detailed information of the band gradually accumulates, and the
difference in the detail reconstruction ability of different algorithms becomes prominent. At
the same time, due to the use of data standardization, the proposed method is also sensitive
to the small number of features in the first few bands, which also helps to reconstruct the
overall details of HSI.

Figure 8. The reconstructed images of test images in the Pavia Centre dataset using various algorithms. Reconstructed
images with spectral bands 60-35-13 as R-G-B channel with a scale factor of 4.

For quantitative evaluation in a wider range of scenarios and indicators, Table 1 lists
the results of four performance indicators in CAVE datasets with scale factors of 2, 4, and 8,
with the optimal results represented in bold font. It is clear from the quantitative results of
the four indicators that MSFMNet has achieved the best results of all the methods. Due
to the use of depthwise separable 3D convolution and multi-scale feature mapping, our
method realizes the fusion of feature information of different spatial sizes while mining the
relevant information between spectral segments. In this way, MSFMNET can estimate the
height of HSIs containing a lot of spatial spectral information.

(2) Pavia Dataset: Figure 8 shows the comparison of reconstruction effects of different
methods in the Pavia dataset when the scale factor is 4. Among them, the 13th, 35th,
and 60th bands are used for color image generation. It can be seen that the Bicubic,
EDSR, MCNet, and ERCSR estimates are fuzzy and lack enough details, while the VDSR
overfits, resulting in too sharp texture. Only MSFMNet can reconstruct the real details
without distortion.

As the error images in Figure 9 shows, for a complex environment with a large number
of details, Bicubic could not recover details well, while VDSR, EDSR, ERCSR, and MCNet
and ERCSR could only recover details of the part street. The difference between the
street details generated by the MSFMNet and the original image was smaller. This proves
that MSFMNet has a very good performance in the reconstruction of complex structural
information. In terms of spectrum, we select pixels randomly from the image, and plot the
reflectance of different bands in Figure 9. It is obvious that the reflectance of the proposed
method is the closest to the original image, which demonstrates the superiority of the
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MSFMNet method in spectrum generation. Due to the normalization of the input and the
use of 3D sub-pixel convolution for image reconstruction, our method is more stable in
terms of spatial spectral consistency.

Table 1. Quantitative evaluation on the cave dataset of state-of-the-art hyperspectral image sr
algorithms: average psnr/mpsnr/ssim/sam for scale factors 2, 4, and 8.

Scale Methods PSNR ↑ MPSNR ↑ SSIM ↑ SAM ↓
Bicubic 40.330 39.500 0.9820 3.311
VDSR 44.456 43.531 0.9895 2.866

×2 EDSR 45.151 44.207 0.9907 2.606
MCNet 45.878 44.913 0.9913 2.588
ERCSR 45.972 45.038 0.9914 2.544

MSFMNet 46.015 45.039 0.9917 2.497

Bicubic 34.616 33.657 0.9388 4.784
VDSR 37.027 36.045 0.9591 4.297

×4 EDSR 38.117 37.137 0.9626 4.132
MCNet 38.589 37.679 0.9690 3.682
ERCSR 38.626 37.738 0.9695 3.643

MSFMNet 38.733 37.814 0.9697 3.676

Bicubic 30.554 29.484 0.8657 6.431
VDSR 32.184 31.210 0.8852 5.747

×8 EDSR 33.416 32.337 0.9002 5.409
MCNet 33.607 32.520 0.9125 5.172
ERCSR 33.624 32.556 0.9113 5.116

MSFMNet 33.675 32.599 0.9136 5.084
Bold values represent the best result and underlined values represent the second best.

Figure 9. Absolute error map comparisons for test images in the Pavia Centre dataset of various algorithms with a scale
factor of 4.

Table 2 lists the quantitative performance of all methods on the test set with scale
factors of 2, 4, and 8. The results show that the performance of the proposed method is
superior to other algorithms on three scales. Meanwhile, different from CAVE dataset,
because the dataset of Pavia scene is small, this experiment also proves that MSFMNet has
a better processing effect on a small dataset.

(3) PaviaU Dataset: Figure 10 shows the RGB images of all the methods with a scale
factor of 8. It can be seen from the figure that most of the methods, such as Bicubic,
EDSR, and VDSR cannot reconstruct the road details very well. The road details generated
by MCNet and ERCSR are relatively vague, and some road details are missing, so it is
impossible to reconstruct the real road details. MSFMNet can effectively carry out detailed
reconstruction of the road. Figure 11 shows the error images of different methods on the
PaviaU dataset. Obviously, the error of HSIs reconstructed by the proposed method is
the smallest. Table 3 displays the quantitative analysis results. From the perspective of
reconstruction of spatial information and reduction of distortion of spectral information,
MSFMNet is obviously superior to other methods. In conclusion, it can be seen from the
experimental results and analysis that the MSFMNet method shows superior performance
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in HSI SR tasks. In the next section, further analysis is given to verify that the performance
in each part of the model is from multiple aspects.

Table 2. Quantitative evaluation on the Pavia dataset of state-of-the-art hyperspectral image sr
algorithms: average psnr/mpsnr/ssim/sam for scale factors 2, 4, and 8.

Scale Methods PSNR ↑ MPSNR ↑ SSIM ↑ SAM ↓
Bicubic 32.406 31.798 0.9036 4.370
VDSR 35.392 34.879 0.9501 3.689

×2 EDSR 35.160 34.580 0.9452 3.898
MCNet 35.124 34.626 0.9455 3.865
ERCSR 35.602 35.099 0.9506 3.683

MSFMNet 35.678 35.200 0.9506 3.656

Bicubic 26.596 26.556 0.7091 7.553
VDSR 28.328 28.317 0.7707 6.514

×4 EDSR 28.649 28.591 0.7782 6.573
MCNet 28.791 28.756 0.7826 6.385
ERCSR 28.862 28.815 0.7818 6.125

MSFMNet 28.920 28.873 0.7863 6.300

Bicubic 24.464 24.745 0.4899 7.648
VDSR 24.526 24.804 0.4944 7.588

×8 EDSR 24.854 25.067 0.5282 7.507
MCNet 24.877 25.096 0.5391 7.429
ERCSR 24.965 25.190 0.5382 7.834

MSFMNet 25.027 25.257 0.5464 7.449
Bold values represent the best result and underlined values represent the second best.

Figure 10. The reconstructed images of test images in the Pavia University dataset using various algorithms. Reconstructed
images with spectral bands 60-35-13 as R-G-B channel with a scale factor of 8. The more obvious parts are framed by red
boxes, and we can see that the best way to reconstruct the edge of the highway is our method.

Figure 11. Absolute error map comparisons for test images in the Pavia University dataset of various algorithms with a
scale factor of 8. As the box in the figure shows, our method has the smallest residual and better edge information recovery,
so it looks closer to dark blue.
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Table 3. Quantitative evaluation on the PaviaU dataset of state-of-the-art hyperspectral image sr
algorithms: average psnr/mpsnr/ssim/sam for scale factors 2, 4, and 8.

Scale Methods PSNR ↑ MPSNR ↑ SSIM ↑ SAM ↓
Bicubic 30.509 30.497 0.9055 3.816
VDSR 33.988 34.038 0.9524 3.258

×2 EDSR 33.943 33.985 0.9511 3.334
MCNet 33.695 33.743 0.9502 3.359
ERCSR 33.857 33.910 0.9520 3.220

MSFMNet 34.807 34.980 0.9582 3.160

Bicubic 29.061 29.197 0.7322 5.248
VDSR 29.761 29.904 0.7854 4.997

×4 EDSR 29.795 29.894 0.7791 5.074
MCNet 29.889 29.993 0.7835 4.917
ERCSR 30.049 30.164 0.7899 4.865

MSFMNet 30.140 30.283 0.7948 4.861

Bicubic 26.699 26.990 0.5936 7.179
VDSR 26.737 27.028 0.5962 7.133

×8 EDSR 27.182 27.467 0.6302 6.678
MCNet 27.201 27.483 0.6254 6.683
ERCSR 27.288 27.548 0.6276 6.611

MSFMNet 27.334 27.586 0.6356 6.615
Bold values represent the best result and underlined values represent the second best.

3.3. Ablation Study

(1) Component Analysis: In this section, we analyze whether sufficient experiments
are conducted, including a study of the MSFMB module and ablation study analysis.
To make a simple and fair comparison, we analyze the results for a scale factor of 2 are
analyzed on the PaviaU dataset.

Table 4 reflects the impact of ablation research on the multi-scale module, attention
mechanism, wavelet transform, multi-level feature extraction module, adaptive sub-pixel
convolution, and MeanShift. Different component combinations are set to analyze the
performance of the proposed MSFMNet. To make a fair comparison, a network with seven
modules has been chosen here to conduct the ablation surveys.

Table 4. Ablation study results on evaluating the efficiency of the network structure.

1 2 3 4 5 6 7

MSFMB
√ √ √ √ √ √ √

SA ×
√ √ √ √ √ √

DWT × ×
√ √ √ √ √

MLFFB × × ×
√

× ×
√

PixelShuffle × × × ×
√

×
√

MeanShift × × × × ×
√ √

PSNR 34.113 34.151 34.215 34.558 34.461 34.525 34.807

First, when the network does not contain multi-scale modules, multi-level feature
extraction modules, and adaptive sub-pixel convolution, MeanShift, which only contains
3D units produces the worst performance. It chiefly lacks sufficient learning of effective
features, which also signifies that spectral and spatial features cannot be extracted properly
without these components. Therefore, these components are mandatory for the suggested
network. Then, MSFMB is added to the baseline. Moreover, the PSNR showed that the
model performance was improved. Then, two of these components are added to the
baseline. Compared to the previous evaluations, the evaluation indicators have produced
relatively better results. In short, experiments prove that each component can significantly
enhance the performance of the network. This suggests that each component plays a
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key role in making the network easier to train. Finally, the other three components are
individually attached to the baseline. The table highlights that the results of the three
components are significantly better than the performance of only one component, which
demonstrates the effectiveness and benefits of the suggested components.

(2) Image reconstruction network: In this section, the PaviaU dataset has been used to
perform reconstruction with a scale factor of 2 and compare the four reconstruction struc-
tures. The specific objective index results are enlisted in Table 5. It can be observed from the
comparison results that the reconstruction performance of different reconstruction modules
is quite different. Compared to the original 2D sub-pixel convolution, the improved 3D
sub-pixel convolution improves the PSNR index by almost 0.13 dB. Meanwhile, Table 5
validates the overall parameters of the four types of structures. From the comparison, it
can be noticed that the parameter is not the only factor that determines the performance of
the image reconstruction. The Optimized 3D sub-pixel convolution effectively reconstructs
the detailed information of HSI.

Table 5. Comparison of different reconstruction modules under the same network structure in the
Pavia dataset with a scale factor of 2.

3D Conv 2D Sub-Pixel 3D Sub-Pixel Optimized 3D
Sub-Pixel

PSNR 35.641 35.545 35.648 35.678
MPSNR 35.171 35.077 35.153 35.200

SSIM 0.9502 0.9495 0.9502 0.9506
SAM 3.703 3.718 3.710 3.656

Parm (×105) 1.9 1.8 0.069 1.1

(3) The influence of the type of convolution: To choose a better convolution method, the
similarities and differences between the depthwise separable convolution and the standard
3D convolution, the amount of convolution kernel parameters, and the network training
duration will be compared in detail. This experiment focuses on the actual performance of
the two types of convolution in the network and explores the basic convolution unit suitable
for this algorithm. In this experiment, the CAVE dataset was used as the experimental
dataset and the comparison of two-fold super-resolution reconstruction was executed.

Figure 12 is a line chart showing explaining the convergence process of different
convolutions based on the MSFMNet network structure. From the line chart of performance
comparison, it can be seen noticed that due to the small parameter amount of the depthwise
separable convolution, it has the characteristics of greater depth, based on the depth
separability. The convergence effect of the convolutional network model is always better
than that of the standard convolutional network model.

Tables 6 and 7, respectively, highlight the overall algorithm performance and network
size of the two convolutional networks. As compared to the standard convolution, the
depthwise separable convolution improves the PSNR index of the CAVE test set by about
0.19 dB, while the total network parameters are only 53.8% of the former.

Table 6. Comparison of the network performance between the standard convolution and depthwise
separable convolution under the cave dataset with a scale factor of 2.

Evaluation Index PSNR MPSNR SSIM SAM

3D Conv 45.821 44.871 0.9911 2.512
DS Conv 46.015 45.039 0.9917 2.497
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Table 7. Comparison of the global network parameters and training time for different convolutions.

Evaluation Index Para (×106) Training Time (Second/Epoch)

3D Conv 5.1 2878
DS Conv 2.7 1523

By comparing the two kinds of convolutional networks from different aspects, the overall
performance of the depthwise separable convolutional network algorithm is demonstrated.

Figure 12. The network loss of the same structure model with different convolution types on the
CAVE dataset and the PSNR value change process of the test set. The data sampling interval is once
every five rounds.

4. Conclusions

In this article, a MSFMNet method for super-resolution of HSIs is proposed. This
method has exhibited outstanding performance and generalization ability on different
datasets. MSFMNet chiefly designed several relatively simple and effective networks to
better learn the detailed information of the spectrum and space in HSI. To extract more
spectral details from the perspective of multiple receptive fields, a Multi-Scale Feature
Mapping Block (MSFMB) is designed, which uses depthwise separable convolution to
perform efficient feature scale transformation. The DWT attention mechanism in MSFMB
implements linear weighting in the feature space domain to obtain detailed residual
spectral features. Moreover, a Multi-Level Feature Fusion Block (MLFFB) is designed, and
a simple pixel-domain attention mechanism is used to achieve the fusion of multi-level
feature information and to assist the fusion of the final spectral features. Furthermore, an
optimized 3D sub-pixel convolution module is proposed to realize efficient information
exchange between spectra and reconstruction of each spectral band.

Based on the results of a large number of experiments, the effectiveness of the proposed
MSFMNet method is proved. In subjective and objective experiments, its experimental
performance is better than that of competitors.

Author Contributions: Conceptualization, J.Z. and M.S.; methodology, J.Z. and M.S.; software, J.Z.,
M.S., Z.W. and Y.L.; validation, M.S. and Z.W.; formal analysis, J.Z.; investigation, M.S. and Z.W.;
resources, J.Z.; data curation, M.S. and Z.W.; writing—original draft preparation, M.S.; writing—
review and editing, J.Z., M.S. and Z.W.; visualization, M.S. and Z.W.; supervision, Y.L.; project
administration, J.Z. and Y.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by the Natural Science Foundation of China under Grant
61801359, Grant 61571345.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2021, 13, 4180 17 of 19

References
1. Son, S.; Wang, M. Ice Detection for Satellite Ocean Color Data Processing in the Great Lakes. IEEE Trans. Geosci. Remote Sens.

2017, 55, 6793–6804. [CrossRef]
2. Song, J.; Jeong, J.-H.; Park, D.-S.; Kim, H.-H.; Seo, D.-C.; Ye, J.C. Unsupervised Denoising for Satellite Imagery Using Wavelet

Directional CycleGAN. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6823–6839. [CrossRef]
3. Lee, J.H.; Lee, S.S.; Kim, H.G.; Song, S.K.; Kim, S.; Ro, Y.M. MCSIP Net: Multichannel Satellite Image Prediction via Deep Neural

Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2212–2244. [CrossRef]
4. Liu, X.; Wang, M. Super-Resolution of VIIRS-Measured Ocean Color Products Using Deep Convolutional Neural Network. IEEE

Trans. Geosci. Remote Sens. 2021, 59, 114–127. [CrossRef]
5. Jalal, R.; Iqbal, Z.; Henry, M.; Franceschini, G.; Islam, M.S.; Akhter, M.; Khan, Z.T.; Hadi, M.A.; Hossain, M.A.; Mahboob, M.G.;

et al. Toward Efficient Land Cover Mapping: An Overview of the National Land Representation System and Land Cover Map
2015 of Bangladesh. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3852–3861. [CrossRef]

6. Zhang, P.; Wang, N.; Zheng, Z.; Xia, J.; Zhang, L.; Zhang, X.; Zhu, M.; He, Y.; Jiang, L.; Zhou, G.; et al. Monitoring of drought
change in the middle reach of Yangtze River. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) 2018, 2018, 4935–4938. [CrossRef]

7. Goetzke, R.; Braun, M.; Thamm, H.P.; Menz, G. Monitoring and modeling urban land-use change with multitemporal satellite
data. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) 2008, 4, 510–513.

8. Darweesh, M.; Mansoori, S.A.; Alahmad, H. Simple Roads Extraction Algorithm Based on Edge Detection Using Satellite Images.
In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing, ICIVC, Xiamen, China, 5–7 July
2019; pp. 578–582.

9. Kussul, N.; Shelestov, A.; Yailymova, H.; Yailymov, B.; Lavreniuk, M.; Ilyashenko, M. Satellite Agricultural Monitoring in Ukraine
at Country Level: World Bank Project. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium,
Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1050–1053.

10. Di, Y.; Xu, X.; Zhang, G. Research on secondary analysis method of synchronous satellite monitoring data of power grid wildfire.
Proceedings of 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA,
Chongqing, China, 6–8 November 2020; pp. 706–710.

11. Liu, H.; Gu, Y.; Wang, T.; Li, S. Satellite Video Super-Resolution Based on Adaptively Spatiotemporal Neighbors and Nonlocal
Similarity Regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8372–8383. [CrossRef]

12. Harris, J.L. Diffraction and Resolving Power. J. Opt. Soc. Am. 1964, 54, 931–936. [CrossRef]
13. Goodman, J.W. Introduction to Fourier Optics: McGraw-Hill Physical and Quantum Electronics Series; McGraw-Hill Book Company:

New York, NY, USA, 1968.
14. Duanmu, C.; Zhao, D. A new super-resolution algorithm by interpolation in homogeneous areas. In Proceedings of the 2016 5th

International Conference on Computer Science and Network Technology, ICCSNT, Changchun, China, 10–11 December 2016;
pp. 716–719.

15. Zhang, Y.; Fan, Q.; Bao, F.; Liu, Y.; Zhang, C. Single-Image Super-Resolution Based on Rational Fractal Interpolation. IEEE Trans.
Image Process. 2018, 27, 3782–3797.

16. Shivagunde, S.; Biswas, M. Single image super-resolution based on modified interpolation method using MLP and DWT. In
Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI, Tirunelveli, India, 23–25 April 2019;
pp. 212–219.

17. Cherifi, T.; Hamami-Metiche, L.; Kerrouchi, S. Comparative study between super-resolution based on polynomial interpolations
and Whittaker filtering interpolations. In Proceedings of the CCSSP 2020—1st International Conference on Communications,
Control Systems and Signal Processing, El Oued, Algeria, 16–17 May 2020; pp. 235–241.

18. Zhang, L.; Sun, Y.; Xie, X.; Tian, Z.; Xing, Y.; Chen, F. Image restoration based on Partial Least Squares regression and Wavelet
Bi-cubic ratio interpolation. In Proceedings of the 2013 6th International Congress on Image and Signal Processing, CISP,
Hangzhou, China, 16–18 December 2013; Volume 1, pp. 379–383.

19. Chang, T.A.; Lee, K.T.; Chen, G.C.; Chiu, S.H.; Yang, J.F. Super resolution using trilateral filter regression interpolation. In
Proceedings of the 2017 IEEE 2nd International Conference on Signal and Image Processing, ICSIP, Singapore, 4–6 August 2017;
pp. 86–89.

20. Thanakitivirul, P.; Khetkeeree, S.; Charnsamorn, C.; Charnsamorn, C. Using High Boost Bi-cubic Interpolation to Upscale and
Enhance the Medical Image Details. In Proceedings of the 17th International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, ECTI-CON, Phuket, Thailand, 24–27 June 2020; pp. 702–705.

21. Polatkan, G.; Zhou, M.; Carin, L.; Blei, D.; Daubechies, I. A Bayesian Nonparametric Approach to Image Super-Resolution. IEEE
Trans. Pattern Anal. Mach. Intell. 2015, 37, 346–358. [CrossRef]

22. Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Total variation super resolution using a variational approach. In Proceedings of the
International Conference on Image Processing, ICIP, San Diego, CA, USA, 12–15 October 2008; pp. 641–644.

23. Wan, J.; Wang, C.; Shen, P.; Fu, H.; Zhu, J. Robust and Fast Super-Resolution SAR Tomography of Forests Based on Covariance
Vector Sparse Bayesian Learning. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [CrossRef]

24. He, L.; Qi, H.; Zaretzki, R. Beta process joint dictionary learning for coupled feature spaces with application to single image
super-resolution. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Portland, OR, USA, 23–28 June 2013; pp. 345–352.

http://doi.org/10.1109/TGRS.2017.2734079
http://doi.org/10.1109/TGRS.2020.3025601
http://doi.org/10.1109/TGRS.2019.2955538
http://doi.org/10.1109/TGRS.2020.2992912
http://doi.org/10.1109/JSTARS.2019.2903642
http://doi.org/10.1109/IGARSS.2018.8517595
http://doi.org/10.1109/TGRS.2020.2987400
http://doi.org/10.1364/JOSA.54.000931
http://doi.org/10.1109/TPAMI.2014.2321404
http://doi.org/10.1109/LGRS.2021.3060829


Remote Sens. 2021, 13, 4180 18 of 19

25. Pickup, L.C.; Capel, D.P.; Roberts, S.J.; Zisserman, A. Bayesian methods for image super-resolution. Comput. J. 2009, 52, 101–113.
[CrossRef]

26. Akhtar, N.; Shafait, F.; Mian, A. Bayesian sparse representation for hyperspectral image super resolution. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3631–3640.

27. Zheng, W.; Deng, F.; Mo, S.; Jin, X.; Qu, Y.; Zhou, J.; Zou, R.; Shuai, J.; Xie, Z.; Long, S.; et al. Image super-resolution reconstruction
algorithm based on Bayesian theory. In Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications,
ICIEA, Wuhan, China, 31 May–2 June 2018; pp. 1934–1938.

28. Irmak, H.; Akar, G.B.; Yuksel, S.E. A MAP-Based Approach for Hyperspectral Imagery Super-Resolution. IEEE Trans. Image
Process. 2018, 27, 2942–2951. [CrossRef]

29. Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19,
2861–2873. [CrossRef] [PubMed]
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