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Abstract: Precise knowledge of the phase center location of the global navigation satellite system
(GNSS) antenna is a prerequisite for precise orbit determination (POD) of the low Earth orbit (LEO)
satellite. The phase center offset (PCO) and phase center variation (PCV) values for the LEO antenna
obtained from ground calibration cannot reflect the error sources encountered in the actual spacecraft
environment. PCV corrections are estimated by ionosphere free (IF) carrier phase post-fit residuals of
reduced dynamic orbit determination. Ambiguity resolution (AR) plays a crucial role in achieving the
best orbit accuracy. The single receiver AR concept is realized using wide-lane (WL) and narrow-lane
(NL) bias products. Single difference (SD) observations between satellites are applied to remove
the receiver dependent phase bias. SD AR and traditional double difference (DD) AR methods
are applied to fix the ambiguities. The recovered SD and DD IF ambiguities are taken as pseudo-
observations to constrain the undifferenced IF ambiguity parameters in the POD process. The LEO
orbits based on float ambiguity (FA), SD, AR, and DD AR are investigated. One year’s data collected
by the Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) mission and GPS precise
products provided by the Center for Orbit Determination in Europe (CODE) were analyzed. Precise
orbit generated by the Jet Propulsion Laboratory (JPL), independent satellite laser ranging (SLR),
and K-band ranging (KBR) measurements were utilized to assess the orbit accuracy. More than 98%
of SD WL and 95% of SD NL ambiguities are fixed, which confirms the good quality of the bias
products and correctness of the SD AR method. With PCV corrections, the average phase residuals
of DD and SD AR solutions are 0.13 and 0.41 mm, which indicates improved consistency between
applied models and observations. Compared with JPL’s orbit, the SD AR orbits achieve the accuracy
of 6.0, 6.2, and 5.1 mm in along-track, cross-track, and radial directions. The SD AR solutions show
an average improvement of 18.3% related to the FA orbits while 6.3% is gained by the DD AR
approach. The root mean squares (RMSs) of SLR residuals for FA, DD AR, and SD AR solutions are
11.5, 10.2, and 9.6 mm, which validate the positive effect of AR on POD. Standard deviation (STD)
of KBR residuals for SD AR orbits is 1.8 mm while 0.9 mm is achieved by the DD AR method. The
explanation is that the phase bias products used for SD AR are not free of errors and the errors may
degrade the KBR validation. In-flight PCV calibration and ambiguity resolution improve the LEO
orbit accuracy effectively.

Keywords: single receiver ambiguity resolution; phase center variation (PCV) calibration; precise
orbit determination; GRACE-FO satellites

1. Introduction

Low Earth orbit (LEO) satellites are considered as key technologies for space missions
due to their advantages of flexibility, redundancy, efficiency, and low cost. To fulfill scientific
mission requirements, precise absolute or relative positions are required. The precise orbit
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determination (POD) capability, based on spaceborne Global Positioning System (GPS)
observations, has been successfully verified on the TOPEX/Poseidon satellite [1,2]. The
reduced dynamic POD technique [3,4] combined with the strength of GPS observations
has shown its advantages in sampling rate and accuracy. Since then, more GPS receivers
have been deployed on LEO satellites to meet the needs of various scientific missions for
high precision orbit.

The quality of global navigation satellite system (GNSS) derived LEO orbits has
steadily improved thanks to numerous improvements in the GNSS orbit and clock products
provided by the International GNSS Service (IGS) [5], in the dynamic background models,
and in modeling the carrier phase observations. LEO orbit accuracy of 1–3 cm can be
fulfilled with float ambiguity (FA) [6,7]. With GPS precise orbit and clock products provided
by IGS, CHAMP orbit calculated with ionosphere free (IF) observations achieves the
accuracy of centimeter level [8]. GRACE orbit determined using GPS has been proven
by independent satellite laser ranging (SLR) and K-band ranging (KBR) data, and 1 cm
radial orbit accuracy has been achieved [9]. JASON’s GPS derived orbit is evaluated based
on SLR residuals, dynamic orbit produced by SLR/DORIS data, and altimeter crossover
tests [10,11], and the sub-centimeter radial accuracy is verified. Similar results are also
obtained in other LEO satellite missions, such as GOCE [12,13], Sentinel [14,15], TerraSAR-
X [7], HY [16], and FY-3 [17,18] satellites. Ambiguity resolution (AR) and in-flight antenna
phase center variation (PCV) calibration are essential to fully exploit the precision of GPS
observations for POD.

In order to fix the carrier phase ambiguities, a Kalman filter modeling the relative
spacecraft dynamics has been developed for the GRACE mission and the double difference
(DD) ambiguities are resolved to fully exploit the inherent measurement accuracy. Finally,
the resulting GRACE orbit matches the KBR measurements with an accuracy of 1 mm [19].
A GRACE POD based on undifferenced and doubly differenced GPS data is studied [6].
Different baselines, including the space baseline between two GRACE satellites, the space-
ground baselines consisting of LEO satellites and ground stations, and both types of
baselines together, are processed. Results show that fixing of the GPS DD ambiguities has a
significant impact on the space baseline [6]. With the orbit solution constrained by resolved
DD ambiguities, a GRACE baseline accuracy of 2 mm is also achieved [20].

The double difference ambiguity resolution (DD AR) approach requires two satellites
to construct the baseline. Several methods have been developed to resolve the integer
ambiguity for the single receiver user. The idea of a single receiver integer ambiguity
resolution forms the basis of PPPRTK. Taking the ionospheric delay as the unknown pa-
rameter, the common clock model [21,22] and distinct clocks model [23,24] are proposed to
perform the single receiver ambiguity resolution. For IF formulation, the integer recovery
clock (IRC) model [25,26], decoupled satellite clock (DSC) model [27], and uncalibrated
phase delay (UPD) or fractional cycle bias (FCB) model [28,29] are presented. The S-system
theory is applied by Teunissen to establish the linkage among different PPP-RTK meth-
ods [30,31]. Their differences are shown to lie (a) in the choice of S-basis; (b) in the choice
of parameterization; (c) in the choice of whether or not to eliminate the ionospheric delay.

With wide-lane (WL) and phase biases provided by the Jet Propulsion Laboratory
(JPL), the single receiver AR of GRACE and JASON-2 satellites is realized [32]. GRACE
baseline accuracy is improved from 6 mm of float ambiguity solution to 2 mm of ambiguity
fixed solution. Based on GPS orbit, clock, and WL bias products provided by Centre
National d’Études Spatiales (CNES) [26], single receiver AR is also employed to generate
the orbit of Sentinel-3A satellite and the root mean square (RMS) of SLR residuals decreases
from 9 to 5 mm [15]. Using the observation specific bias (OSB) products provided by the
Center for Orbit Determination in Europe (CODE), AR is applied to the POD of GRACE
and Sentinel-3 satellites [33]. Ambiguity fixing improves the orbit quality with validation
of KBR and SLR residuals, as well as the internal consistency between the reduced dynamic
and kinematic orbits. With UPDs estimated via a global distributed network, kinematic
orbits of Sentinel-3A and Swarm-A satellites are determined with AR [34]. SLR residuals
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show an improvement of 20% for AR solution when compared with the FA solution.
Different AR solutions, including DD AR, single difference (SD) AR, and integrated SD
and DD AR solutions are investigated with GRACE data to access their effects on orbit
accuracy [35].

Another factor affecting the orbit accuracy of the LEO satellite is the phase center
position of the spaceborne GNSS antenna. Nominal antenna models obtained from ground
calibration have been made available for the antennas deployed on several space missions,
such as GRACE [36], GOCE [37], Swarm [38], and TerraSAR-X [39]. Such nominal antenna
models, however, do not reflect the influence of error sources, which are additionally
encountered in the actual spacecraft environment, e.g., the influence of near-field mul-
tipath [36]. In-flight calibration of the LEO antenna is necessary for the stringent orbit
accuracy requirement, especially for the altimeter mission. Two different approaches, the
residual approach and the direct approach, can be used to determine the empirical PCV
correction of the LEO antenna. Using the residual approach, the PCV map of JASON-1
satellite is created. The mean post-fit phase residual is decreased from 8 to 5 mm, and 1 cm
radial accuracy is demonstrated [40]. PCV correction of the GOCE satellite is determined
with 154 days of data and the consistency of reduced dynamic and kinematic orbits is
improved when applying the PCV map [37]. An error in the given phase center offset (PCO)
of Sentinel-1A antenna has been found by comparing different PCVs and different POD
approaches [14]. The influence of relative PCV on precise baseline determination (PBD) of
formation flying satellites is also studied [41]. With application of the generated relative
PCVs of GRACE and GRACE-FO satellites, the consistency of KBR measurements is im-
proved by 30%. The effects of antenna PCV on orbit determination and clock estimation
for CentiSpace-1 satellite, which served as a navigation satellite, were analyzed [42].

The twin GRACE-FO satellites (named GRCC and GRCD hereafter), designed as
a successor of GRACE, and jointly developed by the National Aeronautics and Space
Administration (NASA) and the German Research Centre for Geosciences (GFZ), were
launched from California, USA, on May 22, 2018 [43]. The main goals of GRACE-FO are
to continuously provide high resolution monthly solutions of the Earth’s gravity field,
surface mass change, and to measure the vertical temperature and humidity profiles of
the Earth’s atmosphere [44]. GRACE and GRACE-FO satellites adopt the same satellite
appearance design, and are equipped with the KBR system, GPS receiver, SLR retroreflector,
star camera assembly (SCA), and other scientific instruments [44,45]. The appearance and
instrument installation position of GRACE-FO satellites are illustrated in Figure 1 [46].

Figure 1. Appearance and instrument installation position of GRACE-FO satellites.

Effects of PCV correction on POD of GRACE-FO satellites have been explored [35,43].
However, impacts of different ambiguity resolution strategies and in-flight PCV calibration
on POD and PBD still need more investigation. In this analysis, antenna PCV models of
GRACE-FO satellites are developed to further exploit the POD accuracy. Single receiver
and double difference integer ambiguity resolution methods are investigated and realized.
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With one year of data, GRACE-FO orbits based on different AR strategies, including FA, SD
AR, and DD AR, are studied and evaluated with JPL’s orbit, SLR, and KBR measurements.

Section 2 provides details of the strategy and data adopted for GRACE-FO POD. The
antenna PCV estimation approach and related results are presented in Section 3. Section 4
introduces the GNSS observation model and focuses on the SD and DD AR. POD and PBD
results with PCV corrections and different AR methods were analyzed. The necessity of
in-flight antenna calibration and ambiguity resolution is verified. Finally, discussions are
made, followed by conclusions.

2. POD Strategy and Data Usage
2.1. POD Strategy

The reduced dynamic approach is employed to determine the orbits of GRACE-FO
satellites. The Position And Navigation Data Analyst (PANDA) software [47], developed at
the GNSS research center of Wuhan University, is modified and used for the POD process.
The POD strategy is listed in Table 1. The macro model of GRACE-FO satellites [44]
is applied to model the non-gravitational forces, which mainly result from atmospheric
drag, solar, and earth radiation pressure. The atmospheric density values required for
atmospheric drag modeling are obtained with the DTM94 model [48]. To account for
deficiencies in DTM94 and the macro model, drag coefficient is estimated freely once
per orbital revolution. Solar radiation pressure is calculated based on the satellite macro
model and a scale factor is estimated per orbit determination arc. Additionally, one cycle
per revolution (CPR) empirical accelerations in along-track and cross-track directions are
estimated to compensate for deficiencies in the adopted force models. Other estimated
parameters include receiver clock offsets and carrier phase ambiguities. The GRACE-FO
antenna PCOs are applied according to the VGN1B product [44]. PCV corrections for IF
carrier phase observations are calculated using the method described in Section 3.1.

Table 1. POD strategy of GRACE-FO satellites.

Parameter Description

Background force models

Static gravity field model EIGEN_06C (130 × 130) [49]

Solid earth and pole tides IERS Conventions 2010 [50]

Ocean tides FES2004 (30 × 30) [51]

Ocean pole tides Desai [52] (30 × 30)

Third body perturbations JPL’s DE405

General relativistic effects IERS Conventions 2010 [50]

Solar radiation pressure Macro model [44]

Atmospheric drag Macro model [44], DTM94 [48]

Input data and products

GPS Observations Undifferenced IF code and carrier phase

Sample interval 10 s

Elevation mask 0◦

GPS orbit CODE’s final GPS orbit

GPS clock and hardware bias CODE’s 5 s clock and OSB products

GPS antenna correction igs14.atx

GRACE-FO antenna correction PCO applied [44]

Phase wind-up Applied [53]
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Table 1. Cont.

Parameter Description

Gravitational bending IERS Conventions 2010 [50]

Relativistic correction IERS Conventions 2010 [50]

Estimated parameters

Initial state vector Position and velocity per satellite per arc

Atmospheric drag coefficient One per orbital resolution

Scale coefficient of solar radiation pressure One per satellite per arc

Empirical along- and cross-track accelerations 1-CPR accelerations per orbital resolution

Receiver clock errors Epoch wise

Carrier phase ambiguities One per satellite tracking pass

According to the ambiguity resolution methods, three kinds of orbits are calculated.
The first orbit is calculated with float ambiguities (donated as FA solution hereafter), the
second solution is constrained by integer DD ambiguities (DD AR solution), and the third
orbit is generated with the constraint of integer SD ambiguities (SD AR solution).

2.2. Data Usage

The twin GRACE-FO satellites fly a polar orbit with an altitude of 490 km. Over
the mission lifetime, the two satellites will remain in co-planar orbits and the along-track
separation is about 220 km. For POD, the GRACE-FO satellites are equipped with the new
generation of the GNSS space science receiver, the TriG receiver. The receiver upgrades the
capabilities offered by the BlackJack receiver, which was carried on the GRACE mission.
GPS C/A, P1, and P2 pseudoranges, and associated carrier phase observations, namely
LA, L1, and L2 can be provided by the receiver [54]. The GPS P1 and P2 pseudoranges and
L1 and L2 carrier phase observations are used in this research.

One year of data in 2019 is processed. The data can be obtained from the GRACE-FO
level 1B RL04 products, which are available at ftp://isdcftp.gfz-potsdam.de/grace-fo/
(accessed on 17 October 2021). The products also include the satellite attitude (SCA1B),
precise orbits provided by JPL (GNV1B), biased inter-satellite ranges measured by KBR
system (KBR1B), and the positions of the GPS antenna phase center (VGN1B). The GNV1B
and KBR1B data can be used to assess the orbit quality. PCOs of ionosphere free carrier
phase observations and SLR reflector positions in the science reference frame (SRF) are
listed in Table 2. CODE’s GPS final orbits and 5 s clock products are used, and the associated
OSB products are also applied to allow for SD AR [55,56].

Table 2. GPS antenna PCOs and SLR reflector Coordinates of GRACE-FO satellites.

Satellite
GPS Antenna PCO/m SLR Reflector/m

X Y Z X Y Z

GRCC 0.26023 −0.00128 −0.47697 0.60000 0.32750 0.22080

GRCD 0.26004 −0.00107 −0.47618 0.60000 0.32750 0.22080

3. Estimation of PCV Corrections
3.1. Mathematical Models

Modeling GNSS observation requires the computation of the geometric distance
between the antenna phase center location of the GNSS satellite at signal emission time and
the antenna phase center location of the receiving antenna at signal reception time. The
phase center location usually differs from the mechanical antenna reference point (ARP).
The difference vector is conventionally described by a set of phase center corrections. Such

ftp://isdcftp.gfz-potsdam.de/grace-fo/
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a set of corrections consists of a PCO vector, which defines the position of the mean antenna
phase center, with respect to the ARP and a consistent function, which models the azimuth
and zenith dependent PCVs [36].

Phase center corrections have some inherent degrees of freedom. One set of corrections
consisting of a PCO vector r0 and an azimuth and zenith dependent function φ(α, z) can be
transformed into a new set, consisting of r′0 and φ′(α, z), which gives the same result:

r′0 = r0 + ∆r
φ′(α, z) = φ(α, z)− ∆r · e + ∆φ

(1)

where α and z are azimuth and zenith angles, ∆φ is an arbitrary offset and cannot be
separated from the receiver clock. The unit vector e denotes the direction from the receiver
to the satellite. The offset vector ∆r can be chosen arbitrarily. Preferably, PCVs should
not induce a PCO and ∆r should be zero. In that case, the mean antenna phase center is
explicitly defined by the PCO. This convention is particularly important if one would only
apply PCO and no PCV [14].

Taking computational burden into consideration, residual approach is employed in
this research. The antenna PCV is represented as piecewise linear function with respect to
the zenith and azimuth angles in the antenna fixed coordinate system. The model assumes
that PCV is composed of different grids, and zenith and azimuth angles are equally divided.
When the observation is at the point of P within the grid ABCD, its PCV value can be
linearly interpolated:

∆PCV,P = (1− γ)(1− β)∆PCV,A + γ(1− β)∆PCV,B + γβ∆PCV,C + (1− γ)β∆PCV,D
γ = (α− α1)/(α2 − α1), β = (z− z1)/(z2 − z1)

(2)

where ∆PCV,P is the PCV at point P and is observation, ∆PCV,i(i = A, B, C, D) are the PCVs
at points A, B, C, D are parameters to be estimated. γ and β are combination coefficients,
α and z are azimuth and zenith angles of P, α1 is the azimuth of point A and D, α2 is the
azimuth of B and C, z1 is the zenith of A and B, z2 is the zenith of C and D.

3.2. Results

The PCOs of GRACE-FO satellites provided in the VGN1B product are introduced
as fixed and only the PCVs are estimated. Residual approach [36] is employed with three
iterations to obtain the PCV maps. Resolutions in azimuth and zenith are 5◦. Two kinds of
PCV maps are created—one is generated with the phase residuals from DD AR solution
and the other is derived from the SD AR solution.

Figure 2 are PCV maps of GRACE-FO satellites produced from the DD AR solution.
The azimuth of 0◦ points into the direction of flight. A similarity exists between the PCVs
of GRCC and GRCD satellites, especially in the azimuth ranges of 90◦–180◦ and 270◦–360◦.
The absolute maximum PCV of GRCC satellite is −14.56 mm with azimuth angle 185◦ and
elevation angle 25◦. For the GRCD satellite, the absolute maximum PCV is −14.95 mm
with azimuth angle 190◦ and elevation angle 30◦.

Figure 3 presents the PCV maps produced from the SD AR solution. The absolute
maximum PCV of GRCC satellite is −12.57 mm with azimuth angle 185◦ and elevation
angle 25◦, while the GRCD satellite is −12.15 mm with azimuth angle 185◦ and elevation
angle 30◦. The PCV maps generated from DD AR and SD AR solutions have similar patterns
when comparing Figure 2a with Figure 3a and comparing Figure 2b with Figure 3b. The
PCVs made from the SD AR solution have less maximum values.
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Figure 2. The 5◦ × 5◦ PCV corrections of (a) GRCC and (b) GRCD satellites based on ionosphere free
carrier phase residuals from the DD AR solution.

Figure 3. The 5◦ × 5◦ PCV corrections of (a) GRCC and (b) GRCD satellites based on ionosphere free
carrier phase residuals from SD AR solution.

PCV maps in Figures 2 and 3 are used to correct the carrier phase observations and
then to perform the POD. All available carrier phase residuals are averaged and Figure 4
illustrates the results of GRCC satellite. Figure 4a presents the carrier phase residuals
from the DD AR solution while Figure 4b presents the residuals from the SD AR solution.
It should be noted that the limit of the color bar is 5 mm. With application of the PCV
corrections, most of the carrier phase residuals of the DD AR solution are less than 1 mm
and the mean value is 0.13 mm. The carrier phase residuals of the SD AR solution are a bit
larger, especially in the range with azimuth of 0◦–30◦ and elevation of 30◦–60◦, the average
is 0.41 mm. Similar results are obtained for the GRCD satellite and are not shown here.
Carrier phase residuals can be used to measure the consistency between the applied models
and GPS observations. It can be induced that the application of PCV corrections improves
the orbit accuracy. The effects of PCV correction on POD and PBD will be presented in the
following sections.
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Figure 4. Carrier phase residuals of GRCC satellite derived from (a) DD AR solution and (b) SD AR
solution with application of PCV corrections.

4. POD with Ambiguity Resolution

The GNSS observation model and the methods employed to resolve the SD and DD
ambiguities are introduced in this part. FA, DD AR, and SD AR schemes are applied to
calculate the GRACE-FO orbits. The generated orbits are assessed with JPL’s orbit, SLR,
and KBR data. Effects of PCV corrections on POD and PBD are also analyzed.

4.1. Mathematical Models
4.1.1. GNSS Observation Model

GNSS code and carrier phase observations between a satellite and a receiver are
usually described by the following equations [35,57]:

Ps
r,j = ρs

r + c(dtr − dts) + Is
r,j + br,j − bs

j
Ls

r,j = ρs
r + c(dtr − dts)− Is

r,j + λj(Ns
r,j + Br,j − Bs

j ) + λjω
s
r

(3)

where Ps
r,j and Ls

r,j are code and carrier phase observations in meters, r and s represent the
receiver and GNSS satellite, j is the signal frequency, ρs

r is the geometry distance between
receiver and satellite, c is the speed of light, dtr and dts are receiver and satellite clock
errors, Is

r,j is ionospheric delay [58], br,j and bs
j are receiver and satellite hardware biases of

pseudorange, Br,j and Bs
j are hardware biases of the carrier phase observation, λj is signal

wavelength and Ns
r,j is the integer ambiguity. ωs

r is the phase wind-up error and can be
corrected by model [53], in the remaining part, this item will be omitted.

Both ionosphere free and ionosphere float models can be used for POD. The first order
ionospheric delay can be eliminated by the ionosphere free model, while in the ionosphere
float model, the ionospheric delay is estimated as an unknown parameter. The ionosphere
free approach eliminates the ionospheric delay twice and leads to smaller redundancy. The
ionosphere free method owns fewer unknown parameters and it also has the drawback of
lacking flexibility for further model strengthening [59]. In this investigation, the ionosphere
free model is employed.

Following the IGS convention, the IF pseudorange biases will be assimilated into the
receiver and satellite clock offsets. IF observations can be formulated as:

Ps
r,IF = ρs

r + c(dtr − dts)

Ls
r,IF = ρs

r + c(dtr − dts) + λ1Ns
r,IF

Ns
r,IF = Ns

r,IF + (Br,IF − br,IF/λ1)− (Bs
IF − bs

IF/λ1)

(4)

where Ps
r,IF and Ls

r,IF are IF code and carrier phase observations, dtr and dts are receiver
and satellite clock errors, including the pseudorange hardware biases. br,IF and bs

IF are
the IF pseudorange hardware biases while Br,IF and Bs

IF are the carrier phase biases. λ1
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is the wavelength of L1. Ns
r,IF is the IF ambiguity, which includes the hardware biases in

both pseudorange and carrier phase observations, Ns
r,IF is a combination of integer L1 and

L2 ambiguities.
In order to fix the ambiguities, Blewitt presents a sequential integer ambiguity resolu-

tion method to resolve the DD ambiguities of long baseline. The integer DD WL ambiguities
are firstly determined with a combination of pseudorange and carrier phase observations.
Then the DD narrow-lane (NL) ambiguities are fixed using the estimated IF ambiguities
and already fixed integer WL ambiguities [57]. For a single receiver integer ambiguity
resolution, GNSS satellites SD observations are used to cancel the receiver based phase bias.
Guo et al. provide a detailed description about the model to realize single receiver AR [35].
These methods are employed in this contribution to fix the SD and DD ambiguities.

4.1.2. Single Receiver Ambiguity Resolution

The float IF ambiguity can be rewritten as the combination of integer WL and float NL
ambiguities as the following [57]:

Ns
r,IF = f1 f2

f 2
1− f 2

2
Ns

r,WL +
f1

f1+ f2
Ns

r,NL

Ns
r,WL = Ns

r,1 − Ns
r,2

Ns
r,NL = Ns

r,NL + dr,NL − ds
NL

(5)

where Ns
r,WL and Ns

r,NL are integer WL and NL ambiguities, Ns
r,NL is float NL ambiguity,

dr,NL and ds
NL are the NL FCBs of the receiver and satellite.

The integer WL and NL ambiguities are fixed with two steps. Firstly, the WL ambiguity
is resolved using the Hatch–Melbourne–Wübbena combination [60–62]:

Ns
r,WL = (

f1Ls
r,1 − f2Ls

r,2

f1 − f2
−

f1Ps
r,1 + f2Ps

r,2

f1 + f2
)/λWL = Ns

r,WL + dr,WL − ds
WL (6)

where dr,WL and ds
WL are receiver and satellite WL FCBs, λWL is WL wavelength. After

correction of the WL FCBs, the integer WL ambiguity can be determined. Then integer NL
ambiguity can be derived with the fixed WL ambiguity, the estimated float IF ambiguity,
and the associated NL FCBs using Equation (5).

Once the WL and NL ambiguities are resolved, the IF ambiguity can be reconstructed
according to Equation (5). Usually satellite dependent WL and NL FCBs can be estimated
with ground network stations or provided by GNSS analysis institutions [26,55,63]. How-
ever, receiver dependent FCBs are not available and cannot be removed from Equations (5)
and (6). SD operation between satellites is suggested to cancel the receiver FCBs. The SD
integer WL and NL ambiguities can be calculated using Equation (7):

∆Ns1,s2
r,WL = ∆Ns1,s2

r,WL + ∆ds1,s2
WL

∆Ns1,s2
r,NL = ∆Ns1,s2

r,NL + ∆ds1,s2
NL

(7)

where ∆ is single difference operator, ∆Ns1,s2
r,WL and ∆Ns1,s2

r,NL are float SD WL and NL ambi-
guities of satellite s1 and s2 while ∆Ns1,s2

r,WL and ∆Ns1,s2
r,NL are integer ambiguities. ∆ds1,s2

WL and
∆ds1,s2

NL are SD hardware biases between satellites. Once SD WL and NL ambiguities are
fixed, the SD IF ambiguity can be recovered as follows:

∆Ns1,s2
r,IF =

f1 f2

f 2
1 − f 2

2
∆Ns1,s2

r,WL +
f1

f1 + f2
(∆Ns1,s2

r,NL − ∆ds1,s2
NL ) (8)

The recovered SD IF ambiguity is taken as pseudo-observation to constrain the undif-
ferenced IF ambiguity parameters in the POD estimation using Equation (9):

∆Ns1,s2
r,IF = Ns1

r,IF − Ns2
r,IF, Ws1,s2

r (9)
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where Ws1,s2
r is the weight of the pseudo-observation and will be assigned with a large

value to put a strong confidence.

4.1.3. Double Difference Ambiguity Resolution

With regard to the DD ambiguity, both receiver and satellite FCBs can be removed. The
WL and NL DD ambiguities are theoretically integers according to Equations (5) and (6).
The DD IF ambiguity can be reconstructed by:

∆∇Ns1,s2
r1,r2,IF =

f1 f2

f 2
1 − f 2

2
∆∇Ns1,s2

r1,r2,WL +
f1

f1 + f2
∆∇Ns1,s2

r1,r2,NL (10)

where ∆∇ is double difference operator, r1 and r2 denote a receiver pair. The DD IF
ambiguity then is also treated as a pseudo-observation to constrain the undifferenced
IF ambiguities.

∆∇Ns1,s2
r1,r2,IF = Ns2

r2,IF − Ns1
r2,IF − Ns2

r1,IF + Ns1
r1,IF, Ws1,s2

r1,r2 (11)

Ws1,s2
r1,r2 is the weight of the pseudo-observation. The precision of the DD and SD IF ambigui-

ties is set to be 1 × 10−4 L1 cycles (about 0.02 mm) to impose strong constraints.

4.1.4. Integer Ambiguity Validation

Several integer ambiguity resolution methods have been proposed including the
integer rounding, integer bootstrapping, integer least squares, and partial ambiguity
resolution methods [64]. The integer rounding approach is used in this research to resolve
the WL and NL ambiguities. The ambiguity validation procedure is presented here for
clearness. The reader can refer to [65] for more details.

Let b be the float WL or NL ambiguities and it is assumed that the probability density
function for b is:

P(b|n ) = 1

(2π)1/2σ
exp[− (b− n)2

2σ2 ] (12)

where n is the true integer ambiguity, σ is the formal uncertainty from the adjustment. Let
I be the nearest integer of b. In the ambiguity rounding procedure, it should be determined
whether to fix the ambiguity to I or leave it as float. The deviation

x = b− I (13)

must fall in the interval [−0.5, 0.5]. If the true integer ambiguity n is not equal to the
nearest integer I, the probability of wrong ambiguity resolution can be calculated using
Equation (14):

Q0 =
∞

∑
m=1

[
er f c(

m− x√
2σ

)− er f c(
m + x√

2σ
)

]
≤ α (14)

er f c(x) =
2√
π

∫ ∞

x
e−t2

dt (15)

where α is the allowable rate of wrongly fixed ambiguity, er f c is the complementary error
function. In order to eliminate some extremes, a decision function is defined:

d(x, σ) = T/Q0 (16)

T =

{
0, |x| ≥ T1orσ ≥ T2

(1− |x|T1
)(3T2 − 3σ), otherwise

(17)

where T1 is the limit for the deviation x and T2 is the limit for σ. In this analysis, T1 and
T2 are both 0.25 cycles for WL ambiguity resolution, and are 0.15 cycles for NL ambiguity
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resolution. When d(x, σ) is greater than 1000, the ambiguity will be fixed to the nearest
integer [28,66].

4.2. Results

One year of data in 2019 collected by GRACE-FO satellites were analyzed; 38 days
were excluded due to large satellite maneuvers or data gaps. The method introduced
in Section 4.1.2 is used to resolve the SD WL and NL ambiguities, and the method in
Section 4.1.3 is adopted to fix the DD ambiguities. Firstly, the residuals and fixing rates of
WL and NL ambiguities are presented. Then the absolute orbit accuracy of each satellite
and baseline accuracy between two satellites are evaluated.

4.2.1. Ambiguity Resolution Results

Ambiguity resolution performance is evaluated in terms of the residual and fixing rate.
Ambiguity residual is the difference between the float ambiguity and its nearest integer.
After removing the satellite and receiver FCBs, the float SD WL and NL ambiguities should
be close to the integers. For DD ambiguities, the FCBs of the receiver and satellite are
cancelled, which leads to an integer nature. As illustrated by Teunissen [67], the distribution
of the ambiguity residuals is non-Gaussian. It is symmetric and the point of symmetry is
the origin, which implies that the mean of the ambiguity residuals is zero. The distribution
will become more peaked when the estimated float ambiguity is more precise. Figure 5a,b
are residual distributions of SD WL and NL ambiguities while Figure 5c,d are distributions
of DD ambiguities. Blue bars in the figures are percentages of the related residuals. The
mean values of SD and DD WL and NL residuals are all less than 0.01 cycles and verify the
symmetry of distribution. The standard deviations (STDs) of SD WL and NL residuals are
0.10 cycles and 0.07 cycles and validate the high quality of the estimated float ambiguities.
For DD WL and NL ambiguities, the STDs are both 0.06 cycles. The smaller STDs of DD
ambiguity residuals confirm the effectiveness of the DD operation to cancel the receiver
and satellite FCBs.

Figure 5. Residual distributions of (a) SD WL, (b) SD NL, (c) DD WL, and (d) DD NL ambiguities of
GRACE-FO satellites.
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The ambiguity fixing rate is the number of fixed ambiguities divided by the total
number of ambiguities. Figure 6 illustrates the daily ambiguity fixing rates of SD and DD
ambiguities. Figure 6a is for SD ambiguities while Figure 6b is for DD ambiguities. The
upper and lower panels of Figure 6a are results of GRCC and GRCD satellites. Blue and
red dots in Figure 6 are fixing rates of WL and NL ambiguities. For the GRCC satellite, one
year average fixing rates of SD WL and NL ambiguities are 98.5% and 95.8%. A similar
performance is observed for the GRCD satellite; the fixing rates are 98.4% and 96.5%. The
excellent fixing rates confirm the good quality of applied phase bias products. For the DD
case, higher fixing rates are obtained for WL and NL ambiguities, which are 99.1% and
96.7%. Gaps in day of year (DOY) 32–51, 146–149, 205–211, and 299–302 are because of
data missing.

Figure 6. Fixing rates of (a) SD WL and NL ambiguities of GRCC and GRCD satellites and (b) DD WL and NL ambiguities.

4.2.2. Single Satellite Orbit Validation

JPL’s precise orbit of GRACE-FO satellites is also included in the level 1B product.
The orbit is calculated with single receiver ambiguity resolution [32,44] and can be used to
assess the orbits generated in this investigation. The effect of PCV correction on POD is first
evaluated. Figure 7 presents the along-track orbit differences between SD AR solution and
JPL’s orbit. The upper panel is for GRCC satellite and lower part is for GRCD satellite. The
red dots are daily RMSs of differences of the orbit determined with PCV corrections while
blue dots are RMSs without PCV corrections. Using created PCV maps, the RMS of the
GRCC satellite decreases from 7.2 to 6.0 mm, and from 6.4 to 5.9 mm for the GRCD satellite.
The detailed results for three components of SD AR and DD AR orbits can be found in
Table 3. The average improvements in along-track, cross-track, and radial direction are
12.2%, 1.6%, and 1.0% for SD AR solution, and are 10.3%, 1.5%, and 3.5% for DD AR
solution. The improvement of along-track orbit accuracy is the most significant, which
validates the necessity of PCV calibration, especially for PBD.
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Figure 7. Daily RMSs of along-track orbit differences between JPL’s orbit and SD AR solution with
(red dots) and without (blue dots) PCV corrections. The upper panel is for the GRCC satellite and
lower panel is for the GRCD satellite.

Table 3. Orbit improvements with application of PCV maps for SD AR and DD AR solutions.

Solution Satellite Orbit No PCV/mm With PCV/mm Improvement

SD AR
Solution

GRCC
Along-track 7.2 6.0 16.7%

Cross-track 6.2 6.2 0

Radial 5.2 5.1 1.9%

GRCD
Along-track 6.4 5.9 7.8%

Cross-track 6.3 6.1 3.2%

Radial 5.1 5.1 0

DD AR
Solution

GRCC
Along-track 9.5 8.3 12.6%

Cross-track 6.5 6.4 1.5%

Radial 5.8 5.6 3.4%

GRCD
Along-track 8.8 8.1 8.0%

Cross-track 6.4 6.3 1.6%

Radial 5.7 5.5 3.5%

RMSs on DOY 100, 141, and 159 of GRCC satellite, and RMSs on DOY 204 and 290 of
GRCD satellite are larger than other days. It has been found that sometimes, in these days,
fewer GPS satellites are available, which leads to a decrease in orbit accuracy.

Orbit accuracy with different AR methods is also evaluated. Figure 8 presents the
RMSs of along-track orbit differences of FA, DD AR, and SD AR solutions with JPL’s orbit.
For GRCC satellite, the along-track RMS of the FA solution is 8.8 mm, the RMS is improved
to 8.3 mm with DD AR and further achieves 6.0 mm by using the SD AR method. Results
of three orbit components of the two satellites are listed in Table 4. Compared with the FA
solution, the DD AR orbit has an average improvement of 6.3% while the SD AR result has
an improvement of 18.3%. Similar to PCV correction, the along-track orbit accuracy has the
most significant improvement, which is more than 30%.
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Figure 8. Daily RMSs of along-track orbit differences of FA, DD AR, and SD AR solutions with JPL’s
orbit. The upper panel is for the GRCC satellite and the lower panel is for the GRCD satellite.

Table 4. RMSs of differences between the FA, DD AR and SD AR orbits and JPL’s orbit.

Satellite Orbit
Solutions/mm Improvement

FA DD AR SD AR DD AR SD AR

GRCC

Along-track 8.8 8.3 6.0 5.7% 31.8%

Cross-track 6.7 6.4 6.2 4.5% 7.5%

Radial 6.0 5.6 5.1 6.7% 15.0%

GRCD

Along-track 8.8 8.1 5.9 8.0% 33.0%

Cross-track 6.7 6.3 6.1 6.0% 9.0%

Radial 5.9 5.5 5.1 6.8% 13.6%

GRACE-FO satellites are equipped with SLR retroreflectors. The independent SLR data
can be used as external validation. SLR normal points from nine laser stations (Yarragadee,
Greenbelt, Haleakala, Zimmerwald, Mount Stromlo, Wettzell, Graz, Herstmonceux, and
Potsdam) are used for orbit evaluation. Residuals larger than 10 cm are rejected and an
elevation cutoff of 10◦ is applied. Figure 9 shows the RMSs of SLR residuals. Red, green,
and blue dots are RMSs of FA, DD AR, and SD AR orbits. The RMSs of the GRCC satellite
are 11.5, 10.2, and 9.6 mm, which confirms the positive impact of AR on the orbit quality.
Compared with the DD AR solution, the SD AR result has better performance, which is
also validated by JPL’s orbit.
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Figure 9. RMSs of SLR residuals derived from FA (red dots), DD AR (green dots), and SD AR
(blue dots) solutions. The upper panel is for the GRCC satellite and the lower panel is for the
GRCD satellite.

4.2.3. Baseline Validation

The GRACE-FO mission offers the possibility of validating the computed orbit, in
particular, the along-track component, with the ultra-precise KBR measurements [33,68].
Figure 10 illustrates the STDs of KBR residuals (named KBR STD hereafter) calculated
using FA, DD AR, and SD AR orbits. The effect of antenna PCV correction on PBD is also
illustrated. Figure 10a presents the KBR STDs of the SD AR orbit with PCV corrections
(blue dots), the SD AR orbit without PCV corrections (green dots), and FA orbit with PCV
corrections (red dots). PCV corrections used to calculate FA orbit are generated from the
SD AR solution. Figure 10b is the result of the DD AR solution.

Figure 10. Daily STDs of KBR residuals of (a) FA orbit with PCV corrections (red dots), SD AR orbit without PCV corrections
(green dots), and SD AR orbit with PCV corrections (blue dots); (b) FA orbit with PCV corrections (red dots), DD AR orbit
without PCV corrections (green dots), and DD AR orbit with PCV corrections (blue dots).

Both SD and the DD AR lead to a significant reduction in KBR residuals. Compared
with the FA result, the SD AR orbit improves the KBR STD from 5.9 to 3.1 mm, and the
DD AR orbit improves the STD to 1.6 mm. With PCV corrections, the KBR STD of the SD
AR solution decreases from 3.1 to 1.8 mm, and the STD of the DD AR orbit decreases from
1.6 to 0.9 mm. The baseline precision of the SD AR solution gains similar performance, as
presented by Arnold et al. [33]. The DD AR orbit achieves a sub-millimeter level as reported
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in previous research [6,19,69]. Comparisons with JPL’s orbit and SLR data show that the
SD AR solution possesses better performance, while in the KBR validation, the residual
STD of the DD AR orbit is smaller. In other words, the SD AR orbit has better absolute orbit
accuracy, while the DD AR orbit gets better relative performance. This is explained by two
facts: (a) phase bias products for SD AR are not free of errors and these errors may degrade
the KBR validation [35]; (b) both JPL’s orbit and the SD AR orbit in this investigation adopt
the single receiver ambiguity resolution method and a better consistency can be inferred.

5. Discussions

Precise knowledge of the phase center location of the GNSS antenna is a prerequisite
for high precision LEO orbit determination. PCO and PCV values of the LEO antenna
obtained from ground calibration cannot reflect the influence of error sources, which are
additionally encountered in the actual spacecraft environment. An in-flight calibration
of the LEO antenna is thus mandatory. In this analysis, antenna PCV is represented as
a piecewise linear function with respect to zenith and azimuth angles in the antenna
fixed coordinate system. A residual approach is employed to estimate the PCV correction.
Different ambiguity resolution strategies, including SD AR and DD AR, are investigated
to fully exploit the precision of GPS observations for POD. The single receiver integer
ambiguity resolution concept employed here makes use of the carrier phase biases and
clock products provided by CODE. One year of GRACE-FO data in 2019 are used to
demonstrate the effect of integer ambiguity resolution and PCV correction on POD.

PCV maps derived from SD AR and DD AR solutions have very similar patterns.
With PCV corrections, carrier phase residuals are reduced from about 10 to 1–2 mm, which
implies better consistency between the observations and applied models. The average
improvements of the SD AR solution in the along-track, cross-track, and radial directions
are 12.2%, 1.6%, and 1.0%, and for the DD AR solution, the improvements are 10.3%, 1.5%,
and 3.5%. The great enhancement in the along-track orbit accuracy validates the necessity
to calibrate the PCV errors in the relative POD.

The mean values of both SD and DD ambiguity residuals are less than 0.01 cycles
and confirm the symmetry of distribution. The fixing rates of SD WL and NL ambiguities
are more than 98% and 95%. Compared with the FA solution, DD AR orbit accuracy has
an average improvement of 6.3% while the SD AR result gains an increase of 18.3%. For
high-grade SLR stations, range residuals with RMS less than 10 mm are achieved for SD
AR orbit, which marks a 17% improvement compared to the FA result. Independent KBR
measurements are also used as external validations. KBR residuals STD of the SD AR
solution is 1.8 mm while STD of the DD AR orbit is 0.9 mm and reaches the sub-millimeter
level. The better baseline accuracy for the DD AR solution is explained by the errors in
phase bias products.

6. Conclusions

Integer ambiguity resolution plays a crucial role in achieving the best positioning or
orbit accuracy. Single receiver and double difference integer ambiguity resolution models
are introduced in this contribution. One year of GRACE-FO data were analyzed to verify
the orbit improvement with different ambiguity resolution strategies. In-flight antenna
PCV maps were developed to further exploit the POD accuracy.

With PCV corrections, along-track orbit accuracy of the SD AR solution is improved by
12.6%, and that of the DD AR solution is improved by 10.3%, which verifies the necessity
of in-flight antenna calibration. With phase biases cancelled by the double difference opera-
tion, fixing rates of DD ambiguities are more than 96.7%. Similar performance is achieved
by SD AR, which confirms the consistency of theoretical models and bias/clock products.

JPL’s orbited together with independent SLR and KBR measurements are used to
assess the results of different AR strategies. Both SD AR and DD AR solutions improve the
orbit accuracy. SD AR solution provides the best performance of absolute orbit. Compared
with JPL’s orbit, the RMS of the SD AR orbit differences is better than 6 mm and the SLR
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residual RMS is less than 10 mm. The DD AR solution realizes the highest baseline accuracy
and the STD of KBR residuals achieves 0.9 mm. In addition, sometimes there are fewer
GPS satellites available, which leads to the reduction of orbit accuracy. With the application
of multi-mode GNSS receivers and multi-GNSS phase bias products [70,71], orbit accuracy
based on single receiver ambiguity resolution can be further improved.
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