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Abstract: Precipitation nowcasting by radar echo extrapolation using machine learning algorithms
is a field worthy of further study, since rainfall prediction is essential in work and life. Current
methods of predicting the radar echo images need further improvement in prediction accuracy as
well as in presenting the predicted details of the radar echo images. In this paper, we propose a
two-stage spatiotemporal context refinement network (2S-STRef) to predict future pixel-level radar
echo maps (deterministic output) more accurately and with more distinct details. The first stage is
an efficient and concise spatiotemporal prediction network, which uses the spatiotemporal RNN
module embedded in an encoder and decoder structure to give a first-stage prediction. The second
stage is a proposed detail refinement net, which can preserve the high-frequency detailed feature of
the radar echo images by using the multi-scale feature extraction and fusion residual block. We used
a real-world radar echo map dataset of South China to evaluate the proposed 2S-STRef model. The
experiments showed that compared with the PredRNN++ and ConvLSTM method, our 2S-STRef
model performs better on the precipitation nowcasting, as well as at the image quality evaluating
index and the forecasting indices. At a given 45 dBZ echo threshold (heavy precipitation) and with
a 2 h lead time, the widely used CSI, HSS, and SSIM indices of the proposed 2S-STRef model are
found equal to 0.195, 0.312, and 0.665, respectively. In this case, the proposed model outperforms the
OpticalFlow method and PredRNN++ model.

Keywords: precipitation nowcasting; RNN; spatiotemporal prediction; refinement network

1. Introduction

Nowcasting convective precipitation, which refers to the methods for near-real-time
prediction of the intensity of rainfall in a particular region, has long been a significant
problem in weather forecasting for its strong relation with agricultural and industrial
production, as well as daily life [1–3]. It can issue citywide rainfall alerts to avoid casualties,
provide weather guidance for regional aviation to enhance flight safety, and predict road
conditions to facilitate drivers [4]. High precision and high promptness of the nowcasting
precipitation leads to early prevention of major catastrophe, which means the core task
of the problem is to improve the accuracy and to accelerate the prediction process [5,6].
Due to the inherent complexities of the atmosphere and relevant dynamical processes, as
well as higher forecasting resolution requirement than with respect to other traditional
forecasting tasks like weekly average temperature prediction, the precipitation nowcasting
problem is quite challenging and has emerged as a hot research topic [7–9].

Methods to solve the problem of precipitation nowcasting can be divided into two
categories [2], including methods based on the numerical weather prediction (NWP)
model, and methods based on radar echo reflectivity extrapolation. Methods based on
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NWP calculate the prediction using massive and various meteorological data, through
a complex and meticulous simulation of the physical equations in the atmosphere [10].
However, unsatisfactory prediction results are obtained if inappropriate initial states are
set. For nowcasting purposes, NWP-based models are quite ineffective, especially if high-
resolution and large domains are needed. Moreover, NWP-based approaches do not take
full advantage of the vast amount of existing historical observation data [11,12]. Since radar
echo reflectivity maps can be converted to rainfall intensity maps through the Marshall–
Palmer relationship, Z(radar reflectivity)-R(precipitation intensity) relationship, and some
other methods [13], nowcasting convective precipitation can be accomplished by the faster
and more accurate radar echo reflectivity extrapolation [9]. The radar echo reflectivity
dataset in this paper is provided by Guangdong Meteorological Bureau. An example of a
radar echo reflectivity image acquired in the south China with the study area framed is
shown in Figure 1. This is the radar CAPPI (Constant Altitude Plan Position Indicator)
reflectivity image, which is taken from an altitude of 3 km and covers a 300 km × 300 km
area centered in Guangzhou City. It is obtained from seven S-band radars, which are
located at Guangzhou, Shenzhen, Shaoguan, etc. Radar echo reflectivity intensities are
colored corresponding to the class thresholds defined in Figure 1.
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echoes by cross-correlation (TREC) [14], and the optical flow method [15–17]. The centroid 
tracking method is mainly suitable for the tracking and short-term prediction of heavy 
rainfall with strong convection. TREC is one of the most classical radar echo tracking al-
gorithms, which calculates the correlation coefficient of radar echo in the first few mo-
ments and obtains the displacement of echo to predict the future radar echo motion. In-
stead of computing the maximum correlation to obtain the motion vector like TREC, the 
McGill Algorithm for Precipitation nowcasting using Lagrangian Extrapolation (MAPLE 
[18,19]) employs the variational method to minimize a cost function to define the motion 

Figure 1. An example of radar echo image in the Southern China (around Guangzhou City) at
6 March 2021 00:00(UTC).

Traditional radar echo extrapolation includes centroid tracking [13], tracking radar
echoes by cross-correlation (TREC) [14], and the optical flow method [15–17]. The centroid
tracking method is mainly suitable for the tracking and short-term prediction of heavy
rainfall with strong convection. TREC is one of the most classical radar echo tracking algo-
rithms, which calculates the correlation coefficient of radar echo in the first few moments
and obtains the displacement of echo to predict the future radar echo motion. Instead of
computing the maximum correlation to obtain the motion vector like TREC, the McGill
Algorithm for Precipitation nowcasting using Lagrangian Extrapolation (MAPLE [18,19])
employs the variational method to minimize a cost function to define the motion field
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that then advects the radar echo images for nowcasting [20]. The major drawback of the
extrapolation-based nowcasting is that capturing the growth and decay of the weather
system and the displacement uncertainty is difficult [20]. To overcome this issue, blending
techniques are applied to improve nowcasting systems, such as the Short-Term Ensemble
Prediction System (STEPS [21]). In [20], a blending system is formed by synthesizing the
wind information from the model forecast with the echo extrapolation motion field via
a variational algorithm to improve the nowcasting system. The blending scheme per-
formed especially well after a typhoon made landfall in Taiwan [20]. Moreover, some
nowcasting rainfall models based on the advection-diffusion equation with non-stationary
motion vectors are proposed in [22] to obtain smoother rainfall predictions for lead times
and increase skill scores. The motion vectors are updated in each time step by solving
the two-dimensional (2-D) Burgers’ equations [22]. The optical flow-based methods are
proposed and widely utilized by various observatory stations [17]. The well-known Pys-
teps [23] supplies many optical flow-based methods, such as Extrapolation nowcast using
the Lucas–Kanade tracking approach and Deterministic nowcast with S-PROG (Spectral
Prognosis) [21]. In the S-PROG nowcast method, the motion field is estimated using the
Lucas–Kanade optical flow and then is used to generate a deterministic nowcast with the
S-PROG model, which implements a scale filtering approach in order to progressively
remove the unpredictable spatial scales during the forecast [23]. The optical flow-based
methods first estimate the convective precipitation cloud movements from the observed
radar echo maps and then predict the future radar echo maps using semi-Lagrangian
advection [9]. However, two key assumptions limit its performance: (1) the total inten-
sity remains constant; (2) the motion contains no rapid nonlinear changes and is very
smooth [24,25]. Actually, the radar echo intensity may vary over time and the motion is
highly dynamic in the radar echo map extrapolation. Moreover, the radar echo extrapola-
tion step is separated from the flow estimation step, and then the model parameters are
not easy to determine to obtain good prediction performance. Furthermore, many optical
flow-based methods do not only make the most of abundant historical radar echo maps in
the database, but also utilize the given radar echo map sequence for prediction.

With the improvement of computing power, machine learning algorithms have
boosted great interest in radar echo extrapolation [26–29], which is essentially a spatiotem-
poral sequence forecasting problem [30,31]. The sequences of past radar echo maps are
input, and the future radar echo sequences are output. Recurrent neural network (RNN)
and especially long short-term memory (LSTM) encoder-decoder frameworks in [32–34]
are proposed to capture the sequential correlations and provide new solutions to solve
the sequence-to-sequence prediction problem. Klein et al. [35] proposed a “dynamic
convolutional layer” for extracting spatial features and forecasting rain and snow.

To capture the spatiotemporal dependency and predict radar echo image sequence,
Shi et al. [9] developed conventional LSTM and designed convolutional LSTM (ConvL-
STM), which can capture the dynamic features among the image sequence. Additionally,
they further proposed the trajectory gated recurrent unit (TrajGRU) model [4], which is
more flexible than ConvLSTM by the location-variant recurrent connection structure and
outperforms on the grid-wise precipitation nowcasting task. Wang et al. [36] presented a
predictive recurrent neural network (PredRNN) and utilized a unified memory pool to
memorize both spatial appearances and temporal variations. PredRNN++ [37] further
introduced a gradient unit module to capture the long-term memory dependence and
achieved better performance than the previous TrajGRU and ConvLSTM methods. In
addition, hybrid methods combine the effective information of observation data (radar
echo data and other meteorological parameters) and numerical weather prediction (NWP)
data to further enhance the prediction accuracy. A Unet-based model on the fusion of
rainfall radar images and wind velocity produced by a weather forecast model is pro-
posed in [7] and improves the prediction for high precipitation rainfalls. Moreover, the
dual-input dual-encoder network structures are also proposed to extract simulation-based
and observation-based features for prediction [38,39]. The limitation of the existing deep
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learning models lies in the defect of the extracting ability of spatiotemporal characteristics.
Moreover, detailed information loss in the long-term extrapolation often occurs, which
leads to blurry prediction images [40–43]. To further enhance the prediction accuracy
and preserve the sharp details of predicted radar echo maps, we propose a new model,
the two-stage spatiotemporal context refinement network for precipitation nowcasting
(2S-STRef), in this work. The proposed model generates first-stage prediction using a
spatiotemporal predictive model, then it refines the first-stage results to obtain higher
accuracy and more details. We use a real-world radar echo map dataset of South China
to evaluate 2S-STRef, which outperforms the traditional optical flow method and two
representative deep learning models (ConvLSTM as well as and PredRNN++) in both
image and forecasting evaluation metrics.

The remainder of this paper is organized as follows. Section 2 introduces the problem
statement and details the proposed 2S-STRef framework, followed by descriptions of the
dataset, the evaluation index, and the performance evaluation of real-world radar echo
experiments in Section 3. Section 4 is a general conclusion to the whole research.

2. Methods

The short-term precipitation prediction algorithms based on radar echo images need to
extrapolate a fixed length of the future radar echo maps in a local region from the previously
observed radar image sequence first [44], and then obtain the short-term precipitation
prediction according to the relationship between the echo reflectivity factor and rainfall
intensity value. In practical applications, the radar echo maps are usually sampled from
the weather radar every 6 or 12 min in China (5 min in some public datasets [23]) and
forecasting is usually done for lead times from 5, 6, or 12 min to 2 h [9,23], i.e., to predict
the 10 frames ahead in this work (one frame every 12 min). The reviewed methods of
spatiotemporal series prediction have limited ability of extracting spatiotemporal features
and the fine-level information can be lost, which leads to unsatisfactory prediction accuracy.
To achieve fine-grained spatiotemporal feature learning, this paper designs a two-stage
spatiotemporal context refinement network.

In general, there are three main innovation ideas:

• A new two-stage precipitation prediction framework is proposed. On the basis of the
spatiotemporal sequence prediction model capturing the spatiotemporal sequence, a
two-stage model is designed to refine the output.

• An efficient and concise prediction model of the spatiotemporal sequence is con-
structed to learn spatiotemporal context information from past radar echo maps and
output the predicted sequence of radar echo maps in the first stage.

• In the second stage, a new structure of the refinement network (RefNet) is proposed.
The details of the output images can be improved by multi-scale feature extraction and
fusion residual block. Instead of predicting the radar echo map directly, our RefNet
outputs the residual sequence for the last frame, which further improves the whole
model’s ability to predict the radar echo maps and enhances the details.

In this section, the precipitation nowcasting problem will be formulated and a two-
stage prediction and refinement model will be proposed.

2.1. Formulation of Prediction Problem

Weather radar is one of the best instruments to monitor the precipitation system.
The intensity of radar echo is related to the size, shape, state of precipitation particles,
and the number of particles per unit volume. Generally, the stronger the reflected signal
is, the stronger the precipitation intensity is. Therefore, the intensity and distribution of
precipitation in a weather system can be judged by the radar echo map.

The rainfall rate values (mm/h) can be calculated by the radar reflectivity values using
the Z–R relationship. Z is the radar reflectivity values and R is the rain-rate level.

It means that if we can predict the following radar echo images by inputting the
previous frames, we can achieve the goal of precipitation nowcasting.
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In this work, the 2-D radar echo image at every timestamp is divided into tiled non-
overlapping patches, whose pixels are measurements. The short-term and temporary
precipitation nowcasting naturally becomes capturing the spatiotemporal features and
extrapolating the sequences of future radar echo images. The observation image can be
represented as a tensor Xt ∈ RC×W×H , representing the image at time t, where R denotes
the observed feature domain, C refers to the channel number of feature maps, and W and
H represent the width and height of the state and input tensors, respectively. X̂t is used to
represent the predicted radar echo image at time t. Therefore, the problem can be described
as (1):

X̂t+1 . . . , X̂t+K = argmax
Xt+1,...,Xt+K

p(Xt+1, . . . , Xt+K|X̃t−J+1, X̃t−J+2, . . . , X̃t), (1)

The main task is to predict the most likely length-K radar echo maps X̂t+1 . . . , X̂t+K
based on the previous J observations including the current one (X̃t−J+1, X̃t−J+2, . . . , X̃t)
and make them as close as possible to the real observations Xt+1, . . . , Xt+K for the next
time slots. In this paper, 10 frames are put into the network and the next 10 frames are
expected to be output, i.e., K = 10, J = 10 in (1).

2.2. Network Structure

Figure 2 illustrates the overall architecture of 2S-STRef. The network framework is
composed of two stages.

The first stage, named the spatiotemporal prediction network (STPNet), is an encoder-
decoder structure based on the spatiotemporal recurrent neural network (ST-RNN), which
is inspired by ConvLSTM [9] and TrajGRU [4] and has convolutional structures in both the
input-to-state and state-to-state transitions. We input the previous radar echo observation
sequence into the encoder of STPNet and obtain n layers of RNN states, then utilize another
n layers of RNNs to generate the future radar echo predictions based on the encoded status.
The prediction is the first-stage result and is an intermediate result.

The second stage, named the detail refinement stage, proposed in this paper acts as a
defuzzification network for the predicted radar echo images, and also improves the ability
of spatial and temporal feature extraction for echo image detail information. We input the
first-stage prediction into the detail refinement stage to acquire a refined prediction, which
is also the final result with improvement of the radar echo image quality and promotion of
precipitation prediction precision.

Two stages will be introduced in detail in the following subsections.

2.2.1. First Stage: Spatiotemporal Prediction Net

Inspired by the models [4,9,35], an end-to-end spatiotemporal prediction network
(STPNet) based on the encoder-decoder network frame is designed to compensate the
translation invariance of convolution when capturing spatiotemporal correlations. For
moving and scaling in the precipitation area, the local correlation structure should be
changed with different timestamp and spatial locations. STPNet can effectively represent
such a location–variant connection relationship, whose structure is shown in the dotted
box with a yellow background of Figure 2.
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Table 1. General structure of the encoder of the proposed spatiotemporal RNN model (stage 1).

Name Kernel Stride L Channels
Input/Output

Conv1 5 × 5 3 × 3 − 1/8
ST-RNN1 3 × 3 1 × 1 13 8/64

Conv2 3 × 3 2 × 2 − 64/64
ST-RNN2 3 × 3 1 × 1 13 64/192

Conv3 3 × 3 2 × 2 − 192/192
ST-RNN3 3 × 3 1 × 1 9 192/192

Table 2. General structure of the decoder of the proposed spatiotemporal RNN model (stage 1).

Name Kernel Stride L Channels
Input/Output

ST-RNN1 3 × 3 1 × 1 9 192/192
DeConv1 4 × 4 2 × 2 − 192/192
ST-RNN2 3 × 3 1 × 1 13 192/192
DeConv2 4 × 4 2 × 2 − 192/192
ST-RNN3 3 × 3 1 × 1 13 192/64
DeConv3 5 × 5 3 × 3 − 64/8

ST-RNN. The precipitation process based on radar echo maps will naturally have
random rotation and elimination. In ConvLSTM, location-invariant filters are used by the
convolution operation to the input, which is thus inefficient. We designed ST-RNN, which
employs the current input and the state of the previous step to obtain a local neighborhood
set of each location at each timestamp. A set of continuous flows is used to represent the



Remote Sens. 2021, 13, 4285 7 of 22

discrete and non-differentiable location indices. The specific formula of ST-RNN is given
in Equation (2):

Ut,Vt =γ(Xt,Ht−1)

it =σ(Wxi ∗ Xt + ∑L
l=1 W l

hi ∗ g(Ht−1,Ut,l ,Vt,l))

ft =σ(Wx f ∗ Xt + ∑L
l=1 W l

h f ∗ g(Ht−1,Ut,l ,Vt,l))

C̃t =tan h(Wxc ∗ Xt + ∑L
l=1 W l

hc ∗ g(Ht−1,Ut,l ,Vt,l))

Ct = ft ◦ Ct−1 + it ◦ C̃t

ot =σ(Wxo ∗ Xt + ∑L
l=1 W l

ho ∗ g(Ht−1,Ut,l ,Vt,l))

Ht =ot ◦ tan h(Ct)

(2)

In the formula, ‘*’ is the convolution operation and ‘◦’ is the Hadamard product. σ is
the sigmoid activation function. L is the number of links and Ut,Vt ∈ RL×H×W are the flow
fields storing local connections, whose generating network is γ.W l

hi, W
l
h f , W l

hc,W l
ho refers

to the weights for projecting the channels. Function g(I , U, V) is used to generate location
information from Ut,Vt by double linear sampling [4]. We represent M = g(I , U, V),
whereM, I ∈ RC×H×W and U, V ∈ RH×W , which can be stated as Equation (3):

Mc,i,j =
H
∑

m=1

W
∑

n=1
Ic,m,n ×max(0, 1− |i + Vi,j −m|)

×max(0, 1− |j + Ui,j − n|)
(3)

The connection topology can be obtained from the parameters of the subnetwork
γ, whose input is the concatenation of Xt and Ht−1. The subnetwork γ adopts a simple
convolutional neural network and nearly no additional computation cost is added.

For our spatiotemporal sequence forecasting problem, ST-RNN net is the key building
block used in the whole encoder-decoder network structure. This structure is similar
to the predictor model in [4,9]. The encoder network (shown in Figure 3) is in charge
of compressing the recent radar echo observation sequence [X̃t]

t
t=t−J+1 into n layers of

ST-RNNs and the decoder network (shown in Figure 4) unfolds these encoder states to
generate the most likely length-K predictions [X̂t]

t+K
t=t+1. Three-dimensional tensors are

employed in the input and output elements to preserve the spatial information.

X̂t+1 . . . , X̂t+K = argmax
Xt+1,...,Xt+K

p(Xt+1, . . . , Xt+K|X̃t−J+1, X̃t−J+2, . . . , X̃t)

≈ gdecoder( fencoder(X̃t−J+1, X̃t−J+2, . . . , X̃t))
(4)
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Encoder. The structure of the encoder, shown in Figure 3, is formed by stacking
Convolution, ST-RNN, Down Sampling, ST-RNN, Down Sampling, and ST-RNN. The
input sequence of radar echo images first passes through the first convolution layer to
extract the spatial feature information of each echo image. The resolution is reduced,
and the output feature image size is 100 × 100. Then, the local spatiotemporal feature
information of the echo images is extracted at a low scale through the ST-RNN layer, and
the hidden state h1 is output. At the same time, the output feature map is sent to the lower
sampling layer to extract the spatial features of high-level spatial scale, whose size is now
50 × 50. The second ST-RNN layer is used to extract the spatial and temporal features of
mesoscale and output the hidden state h2. The output result of the second layer ST-RNN is
transferred to the second lower sampling layer whose size is 25 × 25. The last convolution
layer extracts the spatial features of higher spatial scale, and outputs the feature map to the
last ST-RNN layer, which outputs the hidden state h3. In this paper, three stacked ST-RNN
layers are used [4]. Few ST-RNN layers do not have strong enough representational power
for spatiotemporal features and prediction accuracy will be affected. A large number of
ST-RNN layers will increase the difficulty of training and the network is easy to overfit.

Decoder. The structure of the decoder, shown in Figure 4, is dual to that of the encoder,
including ST-RNN, Up Sampling, ST-RNN, Up Sampling, ST-RNN, Deconvolution, and
Convolution. The order of the decoder network is reversed, where the high-level states
capturing the global spatiotemporal representation are utilized to influence the update of
the low-level states. When the decoder is initialized, all ST-RNN layers receive the hidden
states h1, h2, and h3 from the encoder, respectively. Firstly, the encoder sends h3 to the
top-level ST-RNN, and transmits the output results to the upper sampling layer to fill in
details at high scale. The output feature map size is now 50× 50. Then, through the middle
ST-RNN layer, the prediction is carried out on the mesoscale with the received hidden
state h2. The predicted output feature map is sent to the second upsampling layer to fill
in the details on the mesoscale, and the size of the output feature map is 100 × 100. The
lowest level ST-RNN layer receives the hidden state h1 and the mesoscale feature map,
and makes prediction on the small scale. Finally, through the deconvolution layer, by
combining features and filling in the small-scale image details, the first-stage radar echo
prediction image sequence is output.

Tables 1 and 2 show the detailed structure settings of the encoder and decoder of
our spatiotemporal RNN model. Kernel is a matrix that moves over the input data, and
performs the dot product with the sub-region of input data. Stride defines the step size
of the kernel when sliding through the image. L is the number of links in the state-to-
state transition.

2.2.2. Second Stage: Detail Refinement Net

Although the predicted images by the first-stage STPNet already perform well and
have high prediction accuracy, the extrapolation radar echo images still seem to be blurred
and lack details [9,45,46], as shown in Figure 5b. Therefore, the second-stage network
(RefNet) is proposed to further extract spatiotemporal features and refine the predicted
radar echo sequences.



Remote Sens. 2021, 13, 4285 9 of 22
Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 21 
 

 

 
(a) (b) 

Figure 5. Predicted radar echo image with the lead time: 12 min (a) ground truth; (b) with the STPNet method. The radar 
echo images are of Southern China (around Guangzhou City) at 31 March 2019. 

The overall architecture of the proposed RefNet is shown in Figure 6. The details of 
the predicted radar echo images can be improved by multi-scale feature extraction and 
fusion residual block. An encoder–decoder network is utilized to implement high-fre-
quency enhancement, which serves as a feature selector for focusing on the locations full 
of tiny textures. Meanwhile, multi-level skip connection is employed between different-
scale features for feature sharing and reuse. Both local and global residual learning is in-
tegrated for preserving the low-level features and decreasing the difficulty of training and 
learning. Different hierarchical features are combined to generate finer features, which 
favor the reconstruction of high-resolution images. The widely used stride r = 2 is chosen 
in the downsampling layers and upsampling layers. Finally, a 1 ×1 convolution layer at 
the end of the RefNet outputs the residual sequence for the last frame. This operation 
could further improve the whole model’s ability to predict the radar echo map sequence 
and enhance the details. 

 
Figure 6. The overall architecture of the proposed RefNet. It mainly includes RefNet-Basic, RefNet-Att, and RefNet-Down 
modules. 

Figure 5. Predicted radar echo image with the lead time: 12 min (a) ground truth; (b) with the STPNet method. The radar
echo images are of Southern China (around Guangzhou City) at 31 March 2019.

The overall architecture of the proposed RefNet is shown in Figure 6. The details of the
predicted radar echo images can be improved by multi-scale feature extraction and fusion
residual block. An encoder–decoder network is utilized to implement high-frequency
enhancement, which serves as a feature selector for focusing on the locations full of tiny
textures. Meanwhile, multi-level skip connection is employed between different-scale
features for feature sharing and reuse. Both local and global residual learning is integrated
for preserving the low-level features and decreasing the difficulty of training and learning.
Different hierarchical features are combined to generate finer features, which favor the
reconstruction of high-resolution images. The widely used stride r = 2 is chosen in the
downsampling layers and upsampling layers. Finally, a 1 ×1 convolution layer at the end
of the RefNet outputs the residual sequence for the last frame. This operation could further
improve the whole model’s ability to predict the radar echo map sequence and enhance
the details.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 21 
 

 

 
(a) (b) 

Figure 5. Predicted radar echo image with the lead time: 12 min (a) ground truth; (b) with the STPNet method. The radar 
echo images are of Southern China (around Guangzhou City) at 31 March 2019. 

The overall architecture of the proposed RefNet is shown in Figure 6. The details of 
the predicted radar echo images can be improved by multi-scale feature extraction and 
fusion residual block. An encoder–decoder network is utilized to implement high-fre-
quency enhancement, which serves as a feature selector for focusing on the locations full 
of tiny textures. Meanwhile, multi-level skip connection is employed between different-
scale features for feature sharing and reuse. Both local and global residual learning is in-
tegrated for preserving the low-level features and decreasing the difficulty of training and 
learning. Different hierarchical features are combined to generate finer features, which 
favor the reconstruction of high-resolution images. The widely used stride r = 2 is chosen 
in the downsampling layers and upsampling layers. Finally, a 1 ×1 convolution layer at 
the end of the RefNet outputs the residual sequence for the last frame. This operation 
could further improve the whole model’s ability to predict the radar echo map sequence 
and enhance the details. 

 
Figure 6. The overall architecture of the proposed RefNet. It mainly includes RefNet-Basic, RefNet-Att, and RefNet-Down 
modules. 

Figure 6. The overall architecture of the proposed RefNet. It mainly includes RefNet-Basic, RefNet-Att, and RefNet-
Down modules.



Remote Sens. 2021, 13, 4285 10 of 22

Three subnets are defined to build up the RefNet, named RefNet-Basic (purple arrow in
Figure 6), RefNet-Att (brown arrow in Figure 6), and RefNet-Down (red arrow in Figure 6).
The blue arrow denotes the convolution operation. Among those modules, RefNet-Basic,
shown in Figure 7a, is the basic module of the other two modules. The RefNet-Basic module
is composed of 3-D conv layers with different depths. It generates and combines different
hierarchical features that are useful for low-level feature learning [47]. The low-level
feature means edge, texture, and contours in images. The high-level feature means sematic
information. Different hierarchical high-level features are fused to help the reconstruction
of low-level features. Residual connections are employed for both local and global feature
extraction, which make the multi-scale feature information flow more efficiently in the
network and mitigate the difficulty of network training.
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Intuitively, the high-resolution feature maps have more high-frequency details than
those of low-resolution feature maps [48,49]. In each RefNet-Basic module, multiple local
features are extracted in the encode process, and then reused in the decode process. The
fusion operation will merge multi-level feature maps from different phases into decoded
feature maps. The operation ⊕ in Figures 6 and 7 is performed using a shortcut connection
and element-wise addition.

As shown in Figure 7b, RefNet-Att is a RefNet-Basic module followed by channel-
wise attention operation to preserve the discriminative features and details to the most
extent. In this work, the SE (squeeze-and-excitation) operation [50] is incorporated as an
attention mechanism for learning the spatio-temporal feature importance, and producing
the importance weight matrix for input feature map sequences. In Figure 7c, the RefNet-
Down is a RefNet-Basic module followed by the max-pooling operation, which is used to
compress the input feature map. The input feature maps are progressively downsampled
into small-scale abstractions through successive RefNet-Down modules. Specifically, the
RefNet-Down with stride r = 2 is utilized as the downsampling layer. In the expansive
part, the deconvolution layers are then used to upsample the obtained abstractions back to
the previous resolution. Therefore, the deconvolution layer with stride r = 2 is utilized to
upsample the upper features.

Figure 8 presents an example of predicted radar echo images with just the first-stage
STPNet method and the whole 2S-STRef method. From Figures 5b and 8, it is clear that
the proposed 2S-STRef method integrating the second-stage RefNet is able to produce
sharper predicted radar echo images with more details compared with only the first-stage
STPNet method.
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2.3. Loss Function

In addition, the frequencies of different intensities of rainfall are outstandingly imbal-
anced, so weighted loss is utilized to alleviate this problem. As defined in Equation (5),
we designed different weights for different radar echo reflectivity Z (denoting different
rainfall intensities):

w(z) =


1, Z < 20 dBZ
2, 20 dBZ ≤ Z < 35 dBZ
6, 35 dBZ ≤ Z < 45 dBZ

60, Z ≥ 45 dBZ

, (5)

The weighted loss function we designed is shown in Equation (6):

L = 1
N ∑N

n=1 ∑i,j(wn,i,j((ỹn,i,j − yn,i,j)
2 + |ỹn,i,j − yn,i,j|)

+1− SSIM(ỹn,i,j, yn,i,j))
(6)

where N represents the number of all images in the predicted sequence, and wn,i,j rep-
resents the weight of the (i, j)th pixel at the n-th frame. yn,i,j and ỹn,i,j are the val-
ues of (i, j)th of the n-th ground-truth radar echo image and the n-th predicted image,
respectively. 1

N ∑N
n=1 ∑i,j wn,i,j(ỹn,i,j − yn,i,j)

2 can be denoted as B(Balanced)-MSE and
1
N ∑N

n=1 ∑i,j wn,i,j|ỹn,i,j − yn,i,j| as B-MAE. More weights are assigned to bigger radar echo
reflectivity in the calculation of MSE and MAE to enhance the prediction performance for
heavy precipitation. In this way, a lack of samples with heavy rain can be compensated.
Our main goal is to learn a network to ensure that the predicted radar echo image ỹn,i,j is
as close as possible to the ground truth image yn,i,j. The SSIM (structural similarity) loss
is combined with the loss function, which can further enhance the details of the output
images [51].
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2.4. Implementation

All models are optimized using the Adam optimizer with a learning rate equal to
10−4. These models are trained with early stopping on the sum of SSIM, B-MSE, and
B-MAE. In the ROVER, the mean of the last two flow fields is employed to initialize the
motion field [9]. The training batch size in the RNN models is set to 4. For the STPNet and
ConvLSTM models, a 3-layer encoding-forecasting structure is used and the numbers of
filters for the RNNs are set to 64, 192, and 192. The kernel sizes (5 × 5, 5 × 5, 3 × 3) are
used in the ConvLSTM models. For the STPNet model, the numbers of links are set as 13,
13, and 9.

The implementation details of the proposed RefNet are shown in Table 3. A 3-layer
encoding-forecasting structure is utilized and the numbers of hidden states (64, 128, 256)
are set. The kernel sizes of all convolutional layers except that in the output operations (the
kernel size is 1 × 1) are set as 3 × 3. Zero padding around the boundaries of radar echo
images is performed before convolution to keep the size of the feature maps unchanged. All
training data are randomly rotated by 30◦ and flipped horizontally. The model is trained
with the Adam optimizer [52] by setting β1 = 0.9, β2 = 0.999. The minibatch size is 4. The
learning rate is initialized as 1 × 10−4 and decreased by 0.7 at every 10 epoch.

Table 3. Implementation details of the proposed method.

Hyper-Parameter Value

numbers of hidden states 64, 128, 256
kernel sizes 3 × 3

Rotation angle 30◦

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Minibatch size 4
Learning rate 1 × 10−4

Framework Pytorch 1.7
GPU NVIDIA RTX 3090

We implemented the proposed method with the Pytorch 1.7 framework and trained it
using NVIDIA RTX 3090 GPU and Cuda 11.0. The default weight initialization method in
Pytorch 1.7 was used.

3. Experiments
3.1. Radar Echo Image Dataset

Introduction to dataset. As shown in Equation (1), rainfall intensity can be inferred by
radar reflectivity values. Precipitation nowcasting accomplished by deep learning methods
needs a large number of radar echo images. In this paper, the radar echo dataset is a subset
of the three-year weather radar echo images provided by Guangdong Meteorological Bu-
reau from 2017 to 2019. The spatial resolution is 1 km and the observation area is Southern
China. In order to reduce the cost of image storage, the region covering 300 km × 300 km
of the Pearl River Delta is selected, covering longitude ranges from 112◦ to 115◦ E and
latitude from 22◦ to 25◦ N. The observation interval of weather radar is 12 min and there
are 120 frames per day. The size of each image is 300× 300, with each pixel representing the
echo intensity within one square kilometer. Figure 1 is an example of the radar echo image.

Pre-process of the radar echo data. In general, most of the radar echo intensity lower
than 10 dBZ is due to clutter caused by ground dust [53], which is noise for precipitation
nowcasting, so that all pixel grid points lower than 10 dBZ in the image are set to 0.
Moreover, to alleviate the noise impact in training and evaluation, the pixel values of some
noisy regions are further removed by applying K-means clustering to the monthly pixel
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average [9]. Then, the original radar reflectivity factor will be linearly converted into the
range of pixel value (0~255) in the image domain using Equation (7):

pixel =

⌊
255× dBZ

70
+ 0.5

⌋
, (7)

Since rainfall events occur sparsely, a lack of precipitation events is actually not
conducive to the network learning the spatial and temporal information of precipitation.
For the validity of the dataset, those days on which there is rain are removed. The radar
echo data in precipitation daily events including discontinuous rainfall in the Pearl River
Delta from 2017 to 2019 are selected to form our dataset, including 356 precipitation events
and 42,720 radar echo images. The details are shown in Table 4. Among them, the 2017
and 2018 datasets are used as the training set and verification set, with a ratio of 8:2. The
2019 dataset is used as the test set. Each daily radar echo sequence is partitioned into
non-overlapping frame blocks, from which the data instances are sliced by a 20-frame-wide
sliding window.

Table 4. Details of the dataset.

Year Images Daily Event

2017 17,400 145
2018 13,080 109
2019 12,240 102

3.2. Evaluation

Image quality evaluation index. To verify the better performance of our network on
rendering image details, SSIM [51] is used for evaluating the results. It is used to measure
the similarity between two images, focusing on brightness, contrast, and structure [51]. It
is an image quality evaluation standard in line with human intuition. The formulation is
given below in Equation (8):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (8)

In Equation (8), x, y represent the predicted radar echo image and the real image,
respectively. µ represents the mean value of the image; σ is the standard deviation of the
image. σxy is the covariance of x and y, and C1 and C2 are constants in order to avoid the
calculation error caused by division by zero. The larger the value calculated by SSIM, the
more the two images are similar.

Forecasting evaluation index. The following four commonly used precipitation now-
casting metrics are used to evaluate the accuracy of the prediction, including the Critical
Success Index (CSI), Heidke Skill Score (HSS), Probability of Detection (POD), and False
Alarm Rate (FAR). Since our predictions are done at the pixel level, we project them back
to radar echo intensities and calculate the rainfall at every cell of the grid [9]. These four
evaluation indexes are similar to the classification indexes, and their main focus is whether
the predicted location point hits within a certain threshold range. For example, if the thresh-
old is 20 dBz, then 19 dBz will be converted to 0 and 21 dBz will be converted to 1 after
binarization. After converting every pixel value in prediction and ground-truth to 0/1, we
calculate the TP (true positive, prediction = 1, truth = 1), FN (false negative, prediction = 0,
truth = 1), FP (false positive, prediction = 1, truth = 0), and TN (true negative, prediction = 0,
truth = 0). Then, these four indicators can be calculated by using Equation (9). In this work,
in order to obtain a full appreciation of the algorithm’s performance, the skill scores at
three thresholds that correspond to different rainfall levels are calculated [54]. We choose
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20 dBZ (0.5 mm/h), 35 dBZ (5 mm/h), and 45 dBZ (30 mm/h) as the thresholds to evaluate
the prediction performance:

CSI =
TP

TP + FP + FN

HSS =
2× (TP× TN− FP× FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + FN)

POD =
TP

TP + FN

FAR =
FP

TP + FP

, (9)

For the larger CSI, HSS, and POD that are closer to 1, the higher nowcasting accuracy
of the algorithm is obtained. This is just contrary to FAR.

In order to depict the performance comparisons more clearly between the PredRNN++,
STPnet method, and the proposed 2S-STRef method, an increasing rate is defined in
Equation (10):

Increasing rate (PredRNN ++) = Metric scores (2S−STRef)−Metric scores (PredRNN++)
Metric scores (PredRNN++)

× 100%

Increasing rate (STPnet) = Metric scores (2S−STRef)−Metric scores (STPnet)
Metric scores (STPnet) × 100%

(10)

3.3. Results

In this section, we compare our two-stage spatiotemporal context refinement network
(2S-STRef) with three typical optical flow-based methods (ROVER [17] and Pysteps [23]),
and three deep learning methods (ConvLSTM [9], PredRNN++ [37], and STPNet (the first
stage of our model)) on the image quality evaluation index SSIM, and on the forecasting
evaluation indexes CSI, HSS, POD, and FAR.

ROVER (Real-time Optical flow by Variational methods for Echoes of Radar) [17]
proposed by the Hong Kong Observatory (HKO) calculates the optical flow of consecutive
radar maps and performs semi-Lagrangian advection on the flow field to accomplish
the prediction [9]. The extrapolation method and deterministic nowcast method with
S-PROG in Pysteps [23] are also implemented and tested. Pysteps [23] is a well-known
open-source Python library for precipitation nowcasting. Extrapolation nowcast in Pys-
teps [23] estimates the motion field using a local tracking approach (Lucas–Kanade) and is
then simply advected along this motion field for production. The deterministic nowcast
method with S-PROG in Pysteps [23] also estimates the motion field using the Lucas–
Kanade approach and then generates a deterministic nowcast with the S-PROG model.
ConvLSTM [9] and PredRNN++ [37] are two representative deep learning methods for
precipitation nowcasting [7,31,46].

The loss function curve of the proposed model during the training period is shown in
Figure 9. It is clear that the model can effectively converge.

Experiment Analysis: Both quantitative and qualitative evaluations with well-known
baseline approaches were conducted. Table 5 shows the SSIM results of the seven models
on the one-hour prediction and two-hour prediction. In this table, ‘↑’ means the higher
value is better.
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Table 5. Image quality comparisons of radar echo prediction.

MODEL SSIM (One-Hour Prediction) ↑ SSIM (Two-Hour Prediction) ↑
OpticalFlow [17] (ROVER) 0.616 0.577

Pysteps [23] (Extrapolation) 0.626 0.589
Pysteps [23] (S-PROG) 0.678 0.645

ConvLSTM [9] 0.634 0.579
PredRNN++ [37] 0.676 0.648

STPNet 0.675 0.654
2S-STRef 0.694 0.665

From this table, all the deep learning models outperform the optical flow-based
ROVER algorithm [17]. Both the extrapolation method and deterministic nowcast method
with S-PROG in Pysteps [23] also obtain a better SSIM performance than ROVER [17]. Note
that the deterministic nowcast method with S-PROG can achieve sharp prediction and
better SSIM performance even than some deep leaning methods. Among the deep learning
models, the performance of ConvLSTM is unsatisfactory. The STPNet (0.675, the first stage
of our model) achieves a similar result to the PredRNN++ model (0.676) on the one-hour
prediction, whereas the proposed 2S-STRef performs the best and improves the SSIM score
of PredRNN++ from 0.675 to 0.693 (increase by 2.5% on the one-hour prediction), and from
0.648 to 0.665 (increase by 2.62% on the two-hour prediction). Compared with the STPNet,
it is also 0.018 higher, increased by 2.67% on the one-hour prediction. It further shows
that the proposed second-stage refinement model RefNet is beneficial to generate sharper
meteorological imagery predictions with more details.

Furthermore, the prediction accuracies by these methods were evaluated using sev-
eral widely used precipitation nowcasting metrics. To make a fair comparison and full
appreciation of the algorithms’ performance, we also calculated CSI, HSS, POD, and FAR
over different radar reflectivity thresholds, including 20 dBZ (about 0.5 mm/h), 35 dBZ,
and 45 dBZ. Tables 6–8 show the precipitation nowcasting metric results for the two-hour
prediction. R ≥ τ denotes the skill score at the τ dBZ echo reflectivity threshold.

Table 6. Skill score at R > 20 dBZ (two-hour prediction).

MODEL CSI ↑ HSS ↑ POD ↑ FAR ↓
OpticalFlow [17] (ROVER) 0.490 0.563 0.627 0.322

Pysteps [23] (Extrapolation) 0.480 0.554 0.600 0.312
Pysteps [23] (S-PROG) 0.501 0.578 0.620 0.293

ConvLSTM [9] 0.552 0.645 0.725 0.289
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Table 6. Cont.

MODEL CSI ↑ HSS ↑ POD ↑ FAR ↓
PredRNN++ [37] 0.576 0.653 0.731 0.277

STPNet 0.584 0.663 0.728 0.259
2S-STRef 0.588 0.665 0.747 0.272

Table 7. Skill score at R > 35 dBZ (two-hour prediction).

MODEL CSI ↑ HSS ↑ POD ↑ FAR ↓
OpticalFlow [17] (ROVER) 0.317 0.441 0.455 0.519

Pysteps [23] (Extrapolation) 0.315 0.438 0.442 0.512
Pysteps [23] (S-PROG) 0.326 0.452 0.458 0.502

ConvLSTM [9] 0.352 0.508 0.602 0.510
PredRNN++ [37] 0.378 0.513 0.611 0.516

STPNet 0.393 0.530 0.626 0.500
2S-STRef 0.398 0.536 0.611 0.480

Table 8. Skill score at R > 45 dBZ (two-hour prediction).

MODEL CSI ↑ HSS ↑ POD ↑ FAR ↓
OpticalFlow [17] (ROVER) 0.129 0.212 0.207 0.772

Pysteps [23] (Extrapolation) 0.133 0.214 0.209 0.768
Pysteps [23] (S-PROG) 0.127 0.198 0.197 0.789

ConvLSTM [9] 0.166 0.277 0.319 0.743
PredRNN++ [37] 0.184 0.296 0.362 0.740

STPNet 0.192 0.308 0.373 0.728
2S-STRef 0.195 0.312 0.373 0.721

In these tables, ‘↑’ means the higher value is better, and ‘↓’ means the lower value is
better. The best result is also marked with bold face. It can be found that among the typical
models, the OpticalFlow-based ROVER [17] method and two methods in Pysteps [23]
(extrapolation method and deterministic nowcast with S-PROG) have relatively poor pre-
diction performance, and there is a gap in the evaluation indices compared with the deep
learning models. Moreover, the extrapolation method in Pysteps [23] can obtain a similar
prediction performance with the OpticalFlow-based ROVER [17] method. Compared with
the ROVER method, deterministic nowcast with S-PROG in Pysteps [23] can achieve bet-
ter nowcasting scores at the 20 dBZ and 35 dBZ thresholds. For the heavy precipitation
(45 dBZ), its prediction performance decreases more. In deep learning approaches, the
nonlinear and convolutional structure of the network is able to learn some complex spa-
tiotemporal patterns in the dataset. However, updating the future flow fields reasonably is
hard in the optical flow-based methods. Next, we focus on the three competitive methods
(PredRNN++, STPNet, and 2S-STRef) and compare their performances. It is clear that the
proposed 2S-STRef or STPNet achieves better nowcasting scores than PredRNN++ for all
the four precipitation nowcasting metrics, and especially has an obvious improvement at
the 35 dBZ (5 mm/h) and 45 dBZ (30 mm/h) thresholds. At the 45 dBZ echo threshold,
the CSI of the proposed 2S-STRef is over 0.066 higher than that of the OpticalFlow-based
ROVER method (increase by about 51%), and also 0.011 higher than that of the PredRNN++
model (increase by nearly 6%). Additionally, the HSS is much improved, by about 47%
than that of the OpticalFlow-based ROVER method, and by over 5.4% than that of the
PredRNN++ method. It means that the proposed method has better prediction perfor-
mance for heavy rainfall, which is usually a difficult task. In addition, compared with
those of STPNet (the first stage of our model), besides the SSIM index, the four important
precipitation nowcasting metric performances of the proposed 2S-STRef are also more
excellent. It is verified that the proposed RefNet (the second stage of our model) effectively
improves the prediction image details and enhances nowcasting accuracy.
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Furthermore, the precipitation nowcasting metric scores for the 12- to 120-min lead
times are shown in Figure 10 for a more complete performance verification. The results
in Figures 10 and 11 are the average scores for the whole test dataset. In this part, extrap-
olation nowcast and deterministic nowcast with S-PROG in Pysteps [23] are also added
for comparison. Extrapolation nowcast using a local tracking approach (Lucas–Kanade)
with default configurations in Pysteps [23] is utilized in this paper. This configuration
makes the performance of Pysteps (Extrapolation) similar to the OpticalFlow-based ROVER
method. At the 20 dBZ and 35 dBZ thresholds, Pysteps (S-PROG) has better prediction
performance than Pysteps (Extrapolation) and the OpticalFlow-based ROVER method.
However, its nowcasting performance degrades faster at the 45 dBZ threshold as the lead
time increases. Moreover, from this figure, it is clear that the deep learning method outper-
form the OpticalFlow-based ROVER method [17], Extrapolation, and S-PROG nowcasts in
Pysteps [23], as the lead time increases.
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The increasing rate curves comparing the proposed 2S-STRef with PredRNN++ and
STPnet are presented in Figure 11. From this figure, the proposed 2S-STRef has significant
accuracy improvement compared with PredRNN++, especially for the important CSI
and HSS metrics. Moreover, the second-stage network RefNet can further enhance the
forecasting accuracy for the 12- to 120-min lead times.
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In addition, visualization of the comparison among the evaluated methods is shown
in Figure 12. Although the OpticalFlow-based ROVER method [17], extrapolation nowcast,
and deterministic nowcast with S-PROG in PySteps [23] can give sharper predictions than
the deep learning methods, they trigger more false alarms and are less precise than deep
learning methods in general. Moreover, the small-scale details in extrapolations by deep
learning methods are gradually lost and the boundaries become smooth as the lead time
increases. Deep blue contours in deep learning methods are actual predicted values by the
network and are not processed manually. The blurring effect of deep learning methods may
be caused by the inherent uncertainties of the task. Since sharp and accurate predictions of
the whole radar maps in longer-term predictions are quite difficult, blurring the predictions
to alleviate the error and decrease the MAE or MSE-based loss caused by this type of
uncertainty is utilized. Thus, more effective loss functions can be tried and designed to
improve the quality of the nowcast images in the future work.
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4. Conclusions

In this paper, 2S-STRef was proposed for precipitation nowcasting by radar echo
extrapolation. The first stage is STPNet using the encoder-decoder structure, which extracts
the dynamic spatial and temporal correlations in a sequence of radar echo images and
outputs a first-stage prediction. In the second stage, the RefNet is proposed, employing
multi-scale feature extraction and fusion residual block to acquire a better performance
on details and prediction accuracy of the nowcasting radar echo images. Experimental
results from a real-world radar echo of South China dataset demonstrated that the pro-
posed 2S-STRef method outperforms the conventional OpticalFlow, PySteps methods, and
ConvLSTM and PredRNN++ methods on both image quality evaluation and forecasting
evaluation metrics. The radar echo images predicted by the proposed network present
more details and accomplish higher prediction accuracy.

The challenges are that sharp and accurate predictions of the whole radar maps in
longer-term predictions are quite difficult.

The limitation of such a deep learning method is that:

1. The input and output dimensions of the model are fixed, and it does not deal with
length or dimension variant input sequences. If different input numbers or input
dimensions of radar echo maps are input, the model must be redesigned and retrained.

2. The lack of explainability of deep learning models should be improved.

Future research should investigate:
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1. Developing new models to further improve the prediction accuracy as well as enhance
the predicted details of the radar echo images, especially for heavy rainfall.

2. Since the lifetime of radar echo is finite, the predictability of radar echoes gradually
deteriorates over time. When the lead time exceeds the echo lifetime, it is hard to
predict the future radar echo in the initial state only based on radar data. Other
meteorological parameters, such as wind, should be introduced into the extrapolation
model in the future to improve the prediction accuracy of radar echo change and
further increase the lead time of radar extrapolation.

3. More radar echo reflectivity images in summer and winter periods will be selected
and used to train the proposed network separately to enhance the prediction accuracy,
since the physics and evolution behind each type is not the same.

4. We will also try to build an operational nowcasting system using the proposed algorithm.
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