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Abstract: Precipitation nowcasting by radar echo extrapolation using machine learning algorithms 

is a field worthy of further study, since rainfall prediction is essential in work and life. Current 

methods of predicting the radar echo images need further improvement in prediction accuracy as 

well as in presenting the predicted details of the radar echo images. In this paper, we propose a two-

stage spatiotemporal context refinement network (2S-STRef) to predict future pixel-level radar echo 

maps (deterministic output) more accurately and with more distinct details. The first stage is an 

efficient and concise spatiotemporal prediction network, which uses the spatiotemporal RNN mod-

ule embedded in an encoder and decoder structure to give a first-stage prediction. The second stage 

is a proposed detail refinement net, which can preserve the high-frequency detailed feature of the 

radar echo images by using the multi-scale feature extraction and fusion residual block. We used a 

real-world radar echo map dataset of South China to evaluate the proposed 2S-STRef model. The 

experiments showed that compared with the PredRNN++ and ConvLSTM method, our 2S-STRef 

model performs better on the precipitation nowcasting, as well as at the image quality evaluating 

index and the forecasting indices. At a given 45dBZ echo threshold (heavy precipitation) and with 

a 2 h lead time, the widely used CSI, HSS, and SSIM indices of the proposed 2S-STRef model are 

found equal to 0.195, 0.312, and 0.665, respectively. In this case, the proposed model outperforms 

the OpticalFlow method and PredRNN++ model. 
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1. Introduction 

Nowcasting convective precipitation, which refers to the methods for near-real-time 

prediction of the intensity of rainfall in a particular region, has long been a significant 

problem in weather forecasting for its strong relation with agricultural and industrial pro-

duction, as well as daily life [1–3]. It can issue citywide rainfall alerts to avoid casualties, 

provide weather guidance for regional aviation to enhance flight safety, and predict road 

conditions to facilitate drivers [4]. High precision and high promptness of the nowcasting 

precipitation leads to early prevention of major catastrophe, which means the core task of 

the problem is to improve the accuracy and to accelerate the prediction process [5,6]. Due 

to the inherent complexities of the atmosphere and relevant dynamical processes, as well 

as higher forecasting resolution requirement than with respect to other traditional fore-

casting tasks like weekly average temperature prediction, the precipitation nowcasting 

problem is quite challenging and has emerged as a hot research topic [7–9]. 

Methods to solve the problem of precipitation nowcasting can be divided into two 

categories [2], including methods based on the numerical weather prediction (NWP) 
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model, and methods based on radar echo reflectivity extrapolation. Methods based on 

NWP calculate the prediction using massive and various meteorological data, through a 

complex and meticulous simulation of the physical equations in the atmosphere [10]. 

However, unsatisfactory prediction results are obtained if inappropriate initial states are 

set. For nowcasting purposes, NWP-based models are quite ineffective, especially if high-

resolution and large domains are needed. Moreover, NWP-based approaches do not take 

full advantage of the vast amount of existing historical observation data [11,12]. Since ra-

dar echo reflectivity maps can be converted to rainfall intensity maps through the Mar-

shall–Palmer relationship, Z(radar reflectivity)-R(precipitation intensity) relationship, 

and some other methods [13], nowcasting convective precipitation can be accomplished 

by the faster and more accurate radar echo reflectivity extrapolation [9]. The radar echo 

reflectivity dataset in this paper is provided by Guangdong Meteorological Bureau. An 

example of a radar echo reflectivity image acquired in the south China with the study area 

framed is shown in Figure 1. This is the radar CAPPI (Constant Altitude Plan Position 

Indicator) reflectivity image, which is taken from an altitude of 3km and covers a 300km 

× 300km area centered in Guangzhou City. It is obtained from seven S-band radars, which 

are located at Guangzhou, Shenzhen, Shaoguan, etc. Radar echo reflectivity intensities are 

colored corresponding to the class thresholds defined in Figure 1. 

 

Figure 1. An example of radar echo image in the Southern China (around Guangzhou City) at 6 

March 2021 00:00(UTC). 

Traditional radar echo extrapolation includes centroid tracking [13], tracking radar 

echoes by cross-correlation (TREC) [14], and the optical flow method [15–17]. The centroid 

tracking method is mainly suitable for the tracking and short-term prediction of heavy 

rainfall with strong convection. TREC is one of the most classical radar echo tracking al-

gorithms, which calculates the correlation coefficient of radar echo in the first few mo-

ments and obtains the displacement of echo to predict the future radar echo motion. In-

stead of computing the maximum correlation to obtain the motion vector like TREC, the 

McGill Algorithm for Precipitation nowcasting using Lagrangian Extrapolation (MAPLE 

[18,19]) employs the variational method to minimize a cost function to define the motion 
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field that then advects the radar echo images for nowcasting [20]. The major drawback of 

the extrapolation-based nowcasting is that capturing the growth and decay of the weather 

system and the displacement uncertainty is difficult [20]. To overcome this issue, blending 

techniques are applied to improve nowcasting systems, such as the Short-Term Ensemble 

Prediction System (STEPS [21]). In [20], a blending system is formed by synthesizing the 

wind information from the model forecast with the echo extrapolation motion field via a 

variational algorithm to improve the nowcasting system. The blending scheme performed 

especially well after a typhoon made landfall in Taiwan [20]. Moreover, some nowcasting 

rainfall models based on the advection-diffusion equation with non-stationary motion 

vectors are proposed in [22] to obtain smoother rainfall predictions for lead times and 

increase skill scores. The motion vectors are updated in each time step by solving the two-

dimensional (2-D) Burgers’ equations [22]. The optical flow-based methods are proposed 

and widely utilized by various observatory stations [17]. The well-known Pysteps [23] 

supplies many optical flow-based methods, such as Extrapolation nowcast using the Lu-

cas–Kanade tracking approach and Deterministic nowcast with S-PROG (Spectral Prog-

nosis) [21]. In the S-PROG nowcast method, the motion field is estimated using the Lucas–

Kanade optical flow and then is used to generate a deterministic nowcast with the S-PROG 

model, which implements a scale filtering approach in order to progressively remove the 

unpredictable spatial scales during the forecast [23]. The optical flow-based methods first 

estimate the convective precipitation cloud movements from the observed radar echo 

maps and then predict the future radar echo maps using semi-Lagrangian advection [9]. 

However, two key assumptions limit its performance: (1) the total intensity remains con-

stant; (2) the motion contains no rapid nonlinear changes and is very smooth [24,25]. Ac-

tually, the radar echo intensity may vary over time and the motion is highly dynamic in 

the radar echo map extrapolation. Moreover, the radar echo extrapolation step is sepa-

rated from the flow estimation step, and then the model parameters are not easy to deter-

mine to obtain good prediction performance. Furthermore, many optical flow-based 

methods do not only make the most of abundant historical radar echo maps in the data-

base, but also utilize the given radar echo map sequence for prediction. 

With the improvement of computing power, machine learning algorithms have 

boosted great interest in radar echo extrapolation [26–29], which is essentially a spatio-

temporal sequence forecasting problem [30,31]. The sequences of past radar echo maps 

are input, and the future radar echo sequences are output. Recurrent neural network 

(RNN) and especially long short-term memory (LSTM) encoder-decoder frameworks in 

[32–34] are proposed to capture the sequential correlations and provide new solutions to 

solve the sequence-to-sequence prediction problem. Klein et al. [35] proposed a “dynamic 

convolutional layer” for extracting spatial features and forecasting rain and snow. 

To capture the spatiotemporal dependency and predict radar echo image sequence, 

Shi et al. [9] developed conventional LSTM and designed convolutional LSTM (ConvLSTM), 

which can capture the dynamic features among the image sequence. Additionally, they 

further proposed the trajectory gated recurrent unit (TrajGRU) model [4], which is more 

flexible than ConvLSTM by the location-variant recurrent connection structure and out-

performs on the grid-wise precipitation nowcasting task. Wang et al. [36] presented a pre-

dictive recurrent neural network (PredRNN) and utilized a unified memory pool to mem-

orize both spatial appearances and temporal variations. PredRNN++ [37] further intro-

duced a gradient unit module to capture the long-term memory dependence and achieved 

better performance than the previous TrajGRU and ConvLSTM methods. In addition, hy-

brid methods combine the effective information of observation data (radar echo data and 

other meteorological parameters) and numerical weather prediction (NWP) data to fur-

ther enhance the prediction accuracy. A Unet-based model on the fusion of rainfall radar 

images and wind velocity produced by a weather forecast model is proposed in [7] and 

improves the prediction for high precipitation rainfalls. Moreover, the dual-input dual-

encoder network structures are also proposed to extract simulation-based and observa-

tion-based features for prediction [38,39]. The limitation of the existing deep learning 
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models lies in the defect of the extracting ability of spatiotemporal characteristics. More-

over, detailed information loss in the long-term extrapolation often occurs, which leads to 

blurry prediction images [40–43]. To further enhance the prediction accuracy and preserve 

the sharp details of predicted radar echo maps, we propose a new model, the two-stage 

spatiotemporal context refinement network for precipitation nowcasting (2S-STRef), in 

this work. The proposed model generates first-stage prediction using a spatiotemporal 

predictive model, then it refines the first-stage results to obtain higher accuracy and more 

details. We use a real-world radar echo map dataset of South China to evaluate 2S-STRef, 

which outperforms the traditional optical flow method and two representative deep learn-

ing models (ConvLSTM as well as and PredRNN++) in both image and forecasting evalu-

ation metrics. 

The remainder of this paper is organized as follows. Section 2 introduces the problem 

statement and details the proposed 2S-STRef framework, followed by descriptions of the 

dataset, the evaluation index, and the performance evaluation of real-world radar echo 

experiments in Section 3. Section 4 is a general conclusion to the whole research. 

2. Methods 

The short-term precipitation prediction algorithms based on radar echo images need 

to extrapolate a fixed length of the future radar echo maps in a local region from the pre-

viously observed radar image sequence first [44], and then obtain the short-term precipi-

tation prediction according to the relationship between the echo reflectivity factor and 

rainfall intensity value. In practical applications, the radar echo maps are usually sampled 

from the weather radar every 6 or 12 min in China (5 min in some public datasets [23]) 

and forecasting is usually done for lead times from 5, 6, or 12 min to 2 h [9,23], i.e., to 

predict the 10 frames ahead in this work (one frame every 12 min). The reviewed methods 

of spatiotemporal series prediction have limited ability of extracting spatiotemporal fea-

tures and the fine-level information can be lost, which leads to unsatisfactory prediction 

accuracy. To achieve fine-grained spatiotemporal feature learning, this paper designs a 

two-stage spatiotemporal context refinement network. 

In general, there are three main innovation ideas: 

 A new two-stage precipitation prediction framework is proposed. On the basis of the 

spatiotemporal sequence prediction model capturing the spatiotemporal sequence, a 

two-stage model is designed to refine the output. 

 An efficient and concise prediction model of the spatiotemporal sequence is con-

structed to learn spatiotemporal context information from past radar echo maps and 

output the predicted sequence of radar echo maps in the first stage. 

 In the second stage, a new structure of the refinement network (RefNet) is proposed. 

The details of the output images can be improved by multi-scale feature extraction 

and fusion residual block. Instead of predicting the radar echo map directly, our Ref-

Net outputs the residual sequence for the last frame, which further improves the 

whole model’s ability to predict the radar echo maps and enhances the details. 

In this section, the precipitation nowcasting problem will be formulated and a two-

stage prediction and refinement model will be proposed. 

2.1. Formulation of Prediction Problem 

Weather radar is one of the best instruments to monitor the precipitation system. The 

intensity of radar echo is related to the size, shape, state of precipitation particles, and the 

number of particles per unit volume. Generally, the stronger the reflected signal is, the 

stronger the precipitation intensity is. Therefore, the intensity and distribution of precipi-

tation in a weather system can be judged by the radar echo map. 

The rainfall rate values (mm/h) can be calculated by the radar reflectivity values us-

ing the Z–R relationship. Z is the radar reflectivity values and R is the rain-rate level. 
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It means that if we can predict the following radar echo images by inputting the pre-

vious frames, we can achieve the goal of precipitation nowcasting. 

In this work, the 2-D radar echo image at every timestamp is divided into tiled non-

overlapping patches, whose pixels are measurements. The short-term and temporary pre-

cipitation nowcasting naturally becomes capturing the spatiotemporal features and ex-

trapolating the sequences of future radar echo images. The observation image can be rep-

resented as a tensor �� ∈ ��×�×�, representing the image at time t, where R denotes the 

observed feature domain, � refers to the channel number of feature maps, and � and 

� represent the width and height of the state and input tensors, respectively. ��� is used 

to represent the predicted radar echo image at time t. Therefore, the problem can be de-

scribed as (1): 

�����  … , ����� = argmax
����,…,����

�(����, … , ����|�������, �������, … , ���), (1)

The main task is to predict the most likely length-K radar echo maps �����  … , ����� 

based on the previous J observations including the current one (�������, �������, … , ���) and 

make them as close as possible to the real observations ����, … , ���� for the next time 

slots. In this paper, 10 frames are put into the network and the next 10 frames are expected 

to be output, i.e., � = 10, � = 10 in (1). 

2.2. Network Structure 

Figure 2 illustrates the overall architecture of 2S-STRef. The network framework is 

composed of two stages. 

The first stage, named the spatiotemporal prediction network (STPNet), is an en-

coder-decoder structure based on the spatiotemporal recurrent neural network (ST-RNN), 

which is inspired by ConvLSTM [9] and TrajGRU [4] and has convolutional structures in 

both the input-to-state and state-to-state transitions. We input the previous radar echo 

observation sequence into the encoder of STPNet and obtain n layers of RNN states, then 

utilize another n layers of RNNs to generate the future radar echo predictions based on 

the encoded status. The prediction is the first-stage result and is an intermediate result. 

The second stage, named the detail refinement stage, proposed in this paper acts as 

a defuzzification network for the predicted radar echo images, and also improves the abil-

ity of spatial and temporal feature extraction for echo image detail information. We input 

the first-stage prediction into the detail refinement stage to acquire a refined prediction, 

which is also the final result with improvement of the radar echo image quality and pro-

motion of precipitation prediction precision. 

Two stages will be introduced in detail in the following subsections. 

2.2.1. First Stage: Spatiotemporal Prediction Net 

Inspired by the models [4,9,35], an end-to-end spatiotemporal prediction network 

(STPNet) based on the encoder-decoder network frame is designed to compensate the 

translation invariance of convolution when capturing spatiotemporal correlations. For 

moving and scaling in the precipitation area, the local correlation structure should be 

changed with different timestamp and spatial locations. STPNet can effectively represent 

such a location–variant connection relationship, whose structure is shown in the dotted 

box with a yellow background of Figure 2. 
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Figure 2. The overall architecture of our 2S-STRef network, which is composed of two stages including the spatiotemporal 

prediction stage and detail refinement stage. Detailed structure parameters can be found in Tables 1 and 2. 

ST-RNN. The precipitation process based on radar echo maps will naturally have 

random rotation and elimination. In ConvLSTM, location-invariant filters are used by the 

convolution operation to the input, which is thus inefficient. We designed ST-RNN, which 

employs the current input and the state of the previous step to obtain a local neighborhood 

set of each location at each timestamp. A set of continuous flows is used to represent the 

discrete and non-differentiable location indices. The specific formula of ST-RNN is given 

in Equation (2): 

��, �� = �(��, ℋ���)

�� = � ���� ∗ �� + ∑  �
��� ���

� ∗ ��ℋ���, ��,�, ��,���

�� = � ���� ∗ �� + ∑  �
��� ���

� ∗ ��ℋ���, ��,�, ��,���

��� = tanh ���� ∗ �� + ∑  �
��� ���

� ∗ ��ℋ���, ��,�, ��,���

�� = �� ∘ ���� + �� ∘ ���

�� = � ���� ∗ �� + ∑  �
��� ���

� ∗ ��ℋ���, ��,�, ��,���

ℋ� = �� ∘ tanh (��)

, (2)

In the formula, ‘*’ is the convolution operation and ‘∘’ is the Hadamard product. � 

is the sigmoid activation function. L is the number of links and ��, �� ∈ ℝ�×�×� are the 

flow fields storing local connections, whose generating network is �. ���
� , ���

�  , ���
� , ���

�  

refers to the weights for projecting the channels. Function �(ℐ, �, �) is used to generate 

location information from ��, ��  by double linear sampling [4]. We represent ℳ =

�(ℐ, �, �), where ℳ, ℐ ∈ ℝ�×�×� and �, � ∈ ℝ�×�, which can be stated as Equation (3): 

ℳ�,�,� = �  

�

���

�  

�

���

ℐ�,�,� × ����0,1 − �� + ��,� − ��� (3)
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                      × ����0,1 − �� + ��,� − ���   

The connection topology can be obtained from the parameters of the subnetwork �, 

whose input is the concatenation of �� and ℋ���. The subnetwork � adopts a simple con-

volutional neural network and nearly no additional computation cost is added. 

For our spatiotemporal sequence forecasting problem, ST-RNN net is the key build-

ing block used in the whole encoder-decoder network structure. This structure is similar 

to the predictor model in [4,9]. The encoder network (shown in Figure 3) is in charge of 

compressing the recent radar echo observation sequence [���]�������
�  into � layers of ST-

RNNs and the decoder network (shown in Figure 4) unfolds these encoder states to gen-

erate the most likely length-� predictions [���]�����
��� . Three-dimensional tensors are em-

ployed in the input and output elements to preserve the spatial information. 

�����  … , ����� = argmax
����,…,����

�(����, … , ����|�������, �������, … , ���) 

≈ ��������(��������(�������, �������, … , ���)) 

(4)

 

Figure 3. The encoder structure of STPNet, including three stacked ST-RNN layers and downsam-

pling layers. 

Encoder. The structure of the encoder, shown in Figure 3, is formed by stacking Con-

volution, ST-RNN, Down Sampling, ST-RNN, Down Sampling, and ST-RNN. The input 

sequence of radar echo images first passes through the first convolution layer to extract 

the spatial feature information of each echo image. The resolution is reduced, and the out-

put feature image size is 100 × 100. Then, the local spatiotemporal feature information of 

the echo images is extracted at a low scale through the ST-RNN layer, and the hidden state 

ℎ� is output. At the same time, the output feature map is sent to the lower sampling layer 

to extract the spatial features of high-level spatial scale, whose size is now 50 × 50. The 

second ST-RNN layer is used to extract the spatial and temporal features of mesoscale and 

output the hidden state ℎ�. The output result of the second layer ST-RNN is transferred 

to the second lower sampling layer whose size is 25 × 25. The last convolution layer ex-

tracts the spatial features of higher spatial scale, and outputs the feature map to the last 

ST-RNN layer, which outputs the hidden state ℎ�. In this paper, three stacked ST-RNN 

layers are used [4]. Few ST-RNN layers do not have strong enough representational power 

for spatiotemporal features and prediction accuracy will be affected. A large number of 

ST-RNN layers will increase the difficulty of training and the network is easy to overfit. 

 

Figure 4. The decoder structure of STPNet, including three stacked ST-RNN layers and upsampling 

layers. 
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Decoder. The structure of the decoder, shown in Figure 4, is dual to that of the en-

coder, including ST-RNN, Up Sampling, ST-RNN, Up Sampling, ST-RNN, Deconvolu-

tion, and Convolution. The order of the decoder network is reversed, where the high-level 

states capturing the global spatiotemporal representation are utilized to influence the up-

date of the low-level states. When the decoder is initialized, all ST-RNN layers receive the 

hidden states ℎ�, ℎ�, and ℎ� from the encoder, respectively. Firstly, the encoder sends ℎ� 

to the top-level ST-RNN, and transmits the output results to the upper sampling layer to 

fill in details at high scale. The output feature map size is now 50 × 50. Then, through the 

middle ST-RNN layer, the prediction is carried out on the mesoscale with the received 

hidden state ℎ�. The predicted output feature map is sent to the second upsampling layer 

to fill in the details on the mesoscale, and the size of the output feature map is 100 × 100. 

The lowest level ST-RNN layer receives the hidden state ℎ� and the mesoscale feature 

map, and makes prediction on the small scale. Finally, through the deconvolution layer, 

by combining features and filling in the small-scale image details, the first-stage radar 

echo prediction image sequence is output. 

Tables 1 and 2 show the detailed structure settings of the encoder and decoder of our 

spatiotemporal RNN model. Kernel is a matrix that moves over the input data, and per-

forms the dot product with the sub-region of input data. Stride defines the step size of the 

kernel when sliding through the image. L is the number of links in the state-to-state transition. 

Table 1. General structure of the encoder of the proposed spatiotemporal RNN model (stage 1). 

Name Kernel Stride L 
Channels 

Input/Output 

Conv1 5 × 5 3 × 3 − 1/8 

ST-RNN1 3 × 3 1 × 1 13 8/64 

Conv2 3 × 3 2 × 2 − 64/64 

ST-RNN2 3 × 3 1 × 1 13 64/192 

Conv3 3 × 3 2 × 2 − 192/192 

ST-RNN3 3 × 3 1 × 1 9 192/192 

Table 2. General structure of the decoder of the proposed spatiotemporal RNN model (stage 1). 

Name Kernel Stride L 
Channels 

Input/Output 

ST-RNN1 3 × 3 1 × 1 9 192/192 

DeConv1 4 × 4 2 × 2 − 192/192 

ST-RNN2 3 × 3 1 × 1 13 192/192 

DeConv2 4 × 4 2 × 2 − 192/192 

ST-RNN3 3 × 3 1 × 1 13 192/64 

DeConv3 5 × 5 3 × 3 − 64/8 

2.2.2. Second Stage: Detail Refinement Net 

Although the predicted images by the first-stage STPNet already perform well and 

have high prediction accuracy, the extrapolation radar echo images still seem to be blurred 

and lack details [9,45,46], as shown in Figure 5b. Therefore, the second-stage network (Ref-

Net) is proposed to further extract spatiotemporal features and refine the predicted radar 

echo sequences. 
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(a) (b) 

Figure 5. Predicted radar echo image with the lead time: 12 min (a) ground truth; (b) with the STPNet method. The radar 

echo images are of Southern China (around Guangzhou City) at 31 March 2019. 

The overall architecture of the proposed RefNet is shown in Figure 6. The details of 

the predicted radar echo images can be improved by multi-scale feature extraction and 

fusion residual block. An encoder–decoder network is utilized to implement high-fre-

quency enhancement, which serves as a feature selector for focusing on the locations full 

of tiny textures. Meanwhile, multi-level skip connection is employed between different-

scale features for feature sharing and reuse. Both local and global residual learning is in-

tegrated for preserving the low-level features and decreasing the difficulty of training and 

learning. Different hierarchical features are combined to generate finer features, which 

favor the reconstruction of high-resolution images. The widely used stride r = 2 is chosen 

in the downsampling layers and upsampling layers. Finally, a 1 ×1 convolution layer at 

the end of the RefNet outputs the residual sequence for the last frame. This operation 

could further improve the whole model’s ability to predict the radar echo map sequence 

and enhance the details. 

 

Figure 6. The overall architecture of the proposed RefNet. It mainly includes RefNet-Basic, RefNet-Att, and RefNet-Down 

modules. 
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Three subnets are defined to build up the RefNet, named RefNet-Basic (purple arrow 

in Figure 6), RefNet-Att (brown arrow in Figure 6), and RefNet-Down (red arrow in Figure 

6). The blue arrow denotes the convolution operation. Among those modules, RefNet-

Basic, shown in Figure 7a, is the basic module of the other two modules. The RefNet-Basic 

module is composed of 3-D conv layers with different depths. It generates and combines 

different hierarchical features that are useful for low-level feature learning [47]. The low-

level feature means edge, texture, and contours in images. The high-level feature means 

sematic information. Different hierarchical high-level features are fused to help the recon-

struction of low-level features. Residual connections are employed for both local and 

global feature extraction, which make the multi-scale feature information flow more effi-

ciently in the network and mitigate the difficulty of network training. 

Intuitively, the high-resolution feature maps have more high-frequency details than 

those of low-resolution feature maps [48,49]. In each RefNet-Basic module, multiple local 

features are extracted in the encode process, and then reused in the decode process. The 

fusion operation will merge multi-level feature maps from different phases into decoded 

feature maps. The operation ⨁ in Figures 6 and 7 is performed using a shortcut connec-

tion and element-wise addition. 

 

Figure 7. The structure of three subnets: (a) RefNet-Basic, (b) RefNet-Att, and (c) RefNet-Down. 

As shown in Figure 7b, RefNet-Att is a RefNet-Basic module followed by channel-

wise attention operation to preserve the discriminative features and details to the most 

extent. In this work, the SE (squeeze-and-excitation) operation [50] is incorporated as an 

attention mechanism for learning the spatio-temporal feature importance, and producing 

the importance weight matrix for input feature map sequences. In Figure 7c, the RefNet-

Down is a RefNet-Basic module followed by the max-pooling operation, which is used to 

compress the input feature map. The input feature maps are progressively downsampled 

into small-scale abstractions through successive RefNet-Down modules. Specifically, the 

RefNet-Down with stride r = 2 is utilized as the downsampling layer. In the expansive 

part, the deconvolution layers are then used to upsample the obtained abstractions back 

to the previous resolution. Therefore, the deconvolution layer with stride r = 2 is utilized 

to upsample the upper features. 

Figure 8 presents an example of predicted radar echo images with just the first-stage 

STPNet method and the whole 2S-STRef method. From Figures 5b and 8, it is clear that 

the proposed 2S-STRef method integrating the second-stage RefNet is able to produce 
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sharper predicted radar echo images with more details compared with only the first-stage 

STPNet method. 

 

Figure 8. Predicted radar echo image with the 2S-STRef method at the lead time: 12 min. The radar 

echo images are of Southern China (around Guangzhou City) at 31 March 2019. 

2.3. Loss Function 

In addition, the frequencies of different intensities of rainfall are outstandingly im-

balanced, so weighted loss is utilized to alleviate this problem. As defined in Equation (5), 

we designed different weights for different radar echo reflectivity Z (denoting different 

rainfall intensities): 

�(�) = �

1,      � < 20dBZ
2,      20dBZ ≤ � < 35dBZ
6,      35dBZ ≤ � < 45dBZ
60,     � ≥ 45dBZ

, (5)

The weighted loss function we designed is shown in Equation (6): 

ℒ =
�

�
∑  �

��� ∑  �,� ���,�,� �����,�,� − ��,�,��
�

+ ����,�,� − ��,�,��� + 1 −

SSIM(���,�,�, ��,�,�)�, 
(6)

where N represents the number of all images in the predicted sequence, and ��,�,� repre-

sents the weight of the (i, j)th pixel at the n-th frame. ��,�,� and ���,�,�  are the values of (i, 

j)th of the n-th ground-truth radar echo image and the n-th predicted image, respectively. 
�

�
∑  �

��� ∑  �,� ��,�,�����,�,� − ��,�,��
�

 can be denoted as B(Balanced)-MSE and 
�

�
∑  �

��� � ��,�,�����,�,� − ��,�,�� 
�,�

 as B-MAE. More weights are assigned to bigger radar echo 

reflectivity in the calculation of MSE and MAE to enhance the prediction performance for 

heavy precipitation. In this way, a lack of samples with heavy rain can be compensated. 

Our main goal is to learn a network to ensure that the predicted radar echo image ���,�,� is 

as close as possible to the ground truth image ��,�,�. The SSIM (structural similarity) loss 

is combined with the loss function, which can further enhance the details of the output 

images [51]. 
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2.4. Implementation 

All models are optimized using the Adam optimizer with a learning rate equal to 

10−4. These models are trained with early stopping on the sum of SSIM, B-MSE, and B-

MAE. In the ROVER, the mean of the last two flow fields is employed to initialize the 

motion field [9]. The training batch size in the RNN models is set to 4. For the STPNet and 

ConvLSTM models, a 3-layer encoding-forecasting structure is used and the numbers of 

filters for the RNNs are set to 64, 192, and 192. The kernel sizes (5 × 5, 5 × 5, 3 × 3) are used in 

the ConvLSTM models. For the STPNet model, the numbers of links are set as 13, 13, and 9. 

The implementation details of the proposed RefNet are shown in Table 3. A 3-layer 

encoding-forecasting structure is utilized and the numbers of hidden states (64, 128, 256) 

are set. The kernel sizes of all convolutional layers except that in the output operations 

(the kernel size is 1 × 1) are set as 3 × 3. Zero padding around the boundaries of radar echo 

images is performed before convolution to keep the size of the feature maps unchanged. 

All training data are randomly rotated by 30° and flipped horizontally. The model is 

trained with the Adam optimizer [52] by setting β1 = 0.9, β2 = 0.999. The minibatch size is 

4. The learning rate is initialized as 1 × 10−4 and decreased by 0.7 at every 10 epoch. 

We implemented the proposed method with the Pytorch 1.7 framework and trained 

it using NVIDIA RTX 3090 GPU and Cuda 11.0. The default weight initialization method 

in Pytorch 1.7 was used. 

Table 3. Implementation details of the proposed method. 

Hyper-Parameter Value 

numbers of hidden states 64, 128, 256 

kernel sizes 3 × 3 

Rotation angle 30° 

Optimizer Adam (β1 = 0.9, β2 = 0.999) 

Minibatch size 4 

Learning rate 1 × 10−4 

Framework Pytorch 1.7 

GPU NVIDIA RTX 3090 

3. Experiments 

3.1. Radar Echo Image Dataset 

Introduction to dataset. As shown in Equation (1), rainfall intensity can be inferred 

by radar reflectivity values. Precipitation nowcasting accomplished by deep learning 

methods needs a large number of radar echo images. In this paper, the radar echo dataset 

is a subset of the three-year weather radar echo images provided by Guangdong Meteor-

ological Bureau from 2017 to 2019. The spatial resolution is 1km and the observation area 

is Southern China. In order to reduce the cost of image storage, the region covering 300 

km × 300 km of the Pearl River Delta is selected, covering longitude ranges from 112° to 

115° E and latitude from 22° to 25° N. The observation interval of weather radar is 12 min 

and there are 120 frames per day. The size of each image is 300 × 300, with each pixel 

representing the echo intensity within one square kilometer. Figure 1 is an example of the 

radar echo image. 

Pre-process of the radar echo data. In general, most of the radar echo intensity lower 

than 10 dBZ is due to clutter caused by ground dust [53], which is noise for precipitation 

nowcasting, so that all pixel grid points lower than 10 dBZ in the image are set to 0. More-

over, to alleviate the noise impact in training and evaluation, the pixel values of some 

noisy regions are further removed by applying K-means clustering to the monthly pixel 

average [9]. Then, the original radar reflectivity factor will be linearly converted into the 

range of pixel value (0~255) in the image domain using Equation (7): 
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pixel = �255 ×
���

��
+ 0.5�, (7)

Since rainfall events occur sparsely, a lack of precipitation events is actually not con-

ducive to the network learning the spatial and temporal information of precipitation. For 

the validity of the dataset, those days on which there is rain are removed. The radar echo 

data in precipitation daily events including discontinuous rainfall in the Pearl River Delta 

from 2017 to 2019 are selected to form our dataset, including 356 precipitation events and 

42,720 radar echo images. The details are shown in Table 4. Among them, the 2017 and 

2018 datasets are used as the training set and verification set, with a ratio of 8:2. The 2019 

dataset is used as the test set. Each daily radar echo sequence is partitioned into non-over-

lapping frame blocks, from which the data instances are sliced by a 20-frame-wide sliding 

window. 

Table 4. Details of the dataset. 

Year Images Daily Event 

2017 17,400 145 

2018 13,080 109 

2019 12,240 102 

3.2. Evaluation 

Image quality evaluation index. To verify the better performance of our network on 

rendering image details, SSIM [51] is used for evaluating the results. It is used to measure 

the similarity between two images, focusing on brightness, contrast, and structure [51]. It 

is an image quality evaluation standard in line with human intuition. The formulation is 

given below in Equation (8): 

SSIM (�, �) =
�������������������

���
����

��������
����

�����
, (8)

In Equation (8), �, � represent the predicted radar echo image and the real image, 

respectively. � represents the mean value of the image; � is the standard deviation of 

the image. ���  is the covariance of � and �, and �� and �� are constants in order to 

avoid the calculation error caused by division by zero. The larger the value calculated by 

SSIM, the more the two images are similar. 

Forecasting evaluation index. The following four commonly used precipitation 

nowcasting metrics are used to evaluate the accuracy of the prediction, including the Crit-

ical Success Index (CSI), Heidke Skill Score (HSS), Probability of Detection (POD), and 

False Alarm Rate (FAR). Since our predictions are done at the pixel level, we project them 

back to radar echo intensities and calculate the rainfall at every cell of the grid [9]. These 

four evaluation indexes are similar to the classification indexes, and their main focus is 

whether the predicted location point hits within a certain threshold range. For example, if 

the threshold is 20dBz, then 19dBz will be converted to 0 and 21dBz will be converted to 

1 after binarization. After converting every pixel value in prediction and ground-truth to 

0/1, we calculate the TP (true positive, prediction = 1, truth = 1), FN (false negative, pre-

diction = 0, truth = 1), FP (false positive, prediction = 1, truth = 0), and TN (true negative, 

prediction = 0, truth = 0). Then, these four indicators can be calculated by using Equation 

(9). In this work, in order to obtain a full appreciation of the algorithm’s performance, the 

skill scores at three thresholds that correspond to different rainfall levels are calculated 

[54]. We choose 20 dBZ (0.5 mm/h), 35 dBZ (5 mm/h), and 45 dBZ (30 mm/h) as the thresh-

olds to evaluate the prediction performance: 
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CSI =
��

��������

HSS =
�×(��×�����×��)

(�����)(�����)�(�����)(�����)

POD =
��

�����

FAR =
��

�����

, (9)

For the larger CSI, HSS, and POD that are closer to 1, the higher nowcasting accuracy 

of the algorithm is obtained. This is just contrary to FAR. 

In order to depict the performance comparisons more clearly between the PredRNN++, 

STPnet method, and the proposed 2S-STRef method, an increasing rate is defined in Equa-

tion (10): 

Increasing rate (PredRNN + +) =
 Metric scores (2S − STRef) − Metric scores (PredRNN + +) 

Metric scores (PredRNN + +)
× 100%

Increasing rate (STPnet) =
 Metric scores (2S − STRef) − Metric scores (STPnet) 

Metric scores (STPnet)
× 100%

(10)

3.3. Results 

In this section, we compare our two-stage spatiotemporal context refinement net-

work (2S-STRef) with three typical optical flow-based methods (ROVER [17] and Pysteps 

[23]), and three deep learning methods (ConvLSTM [9], PredRNN++ [37], and STPNet (the 

first stage of our model)) on the image quality evaluation index SSIM, and on the forecast-

ing evaluation indexes CSI, HSS, POD, and FAR. 

ROVER (Real-time Optical flow by Variational methods for Echoes of Radar) [17] 

proposed by the Hong Kong Observatory (HKO) calculates the optical flow of consecutive 

radar maps and performs semi-Lagrangian advection on the flow field to accomplish the 

prediction [9]. The extrapolation method and deterministic nowcast method with S-PROG 

in Pysteps [23] are also implemented and tested. Pysteps [23] is a well-known open-source 

Python library for precipitation nowcasting. Extrapolation nowcast in Pysteps [23] esti-

mates the motion field using a local tracking approach (Lucas–Kanade) and is then simply 

advected along this motion field for production. The deterministic nowcast method with 

S-PROG in Pysteps [23] also estimates the motion field using the Lucas–Kanade approach 

and then generates a deterministic nowcast with the S-PROG model. ConvLSTM [9] and 

PredRNN++ [37] are two representative deep learning methods for precipitation nowcast-

ing [7,31,46]. 

The loss function curve of the proposed model during the training period is shown 

in Figure 9. It is clear that the model can effectively converge. 

 

Figure 9. Loss function curve during the training period. The model can effectively converge. 
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Experiment Analysis: Both quantitative and qualitative evaluations with well-known 

baseline approaches were conducted. Table 5 shows the SSIM results of the seven models 

on the one-hour prediction and two-hour prediction. In this table, ‘↑’ means the higher 

value is better. 

Table 5. Image quality comparisons of radar echo prediction. 

MODEL SSIM (One-Hour Prediction) ↑ SSIM (Two-Hour Prediction) ↑ 

OpticalFlow [17] (ROVER) 0.616 0.577 

Pysteps [23] (Extrapolation) 0.626 0.589 

Pysteps [23] (S-PROG) 0.678 0.645 

ConvLSTM [9] 0.634 0.579 

PredRNN++ [37] 0.676 0.648 

STPNet 0.675 0.654 

2S-STRef 0.694 0.665 

From this table, all the deep learning models outperform the optical flow-based 

ROVER algorithm [17]. Both the extrapolation method and deterministic nowcast method 

with S-PROG in Pysteps [23] also obtain a better SSIM performance than ROVER [17]. 

Note that the deterministic nowcast method with S-PROG can achieve sharp prediction 

and better SSIM performance even than some deep leaning methods. Among the deep 

learning models, the performance of ConvLSTM is unsatisfactory. The STPNet (0.675, the 

first stage of our model) achieves a similar result to the PredRNN++ model (0.676) on the 

one-hour prediction, whereas the proposed 2S-STRef performs the best and improves the 

SSIM score of PredRNN++ from 0.675 to 0.693 (increase by 2.5% on the one-hour predic-

tion), and from 0.648 to 0.665 (increase by 2.62% on the two-hour prediction). Compared 

with the STPNet, it is also 0.018 higher, increased by 2.67% on the one-hour prediction. It 

further shows that the proposed second-stage refinement model RefNet is beneficial to 

generate sharper meteorological imagery predictions with more details. 

Furthermore, the prediction accuracies by these methods were evaluated using sev-

eral widely used precipitation nowcasting metrics. To make a fair comparison and full 

appreciation of the algorithms’ performance, we also calculated CSI, HSS, POD, and FAR 

over different radar reflectivity thresholds, including 20 dBZ (about 0.5 mm/h), 35 dBZ, 

and 45 dBZ. Tables 6–8 show the precipitation nowcasting metric results for the two-hour 

prediction. � ≥  � denotes the skill score at the τ dBZ echo reflectivity threshold. 

Table 6. Skill score at R > 20 dBZ (two-hour prediction). 

MODEL CSI ↑ HSS ↑ POD ↑ FAR ↓ 

OpticalFlow [17] (ROVER)  0.490 0.563 0.627 0.322 

Pysteps [23] (Extrapolation) 0.480 0.554 0.600 0.312 

Pysteps [23] (S-PROG) 0.501 0.578 0.620 0.293 

ConvLSTM [9]  0.552 0.645 0.725 0.289 

PredRNN++ [37]  0.576 0.653 0.731 0.277 

STPNet 0.584 0.663 0.728 0.259 

2S-STRef 0.588 0.665 0.747 0.272 

Table 7. Skill score at R > 35dBZ (two-hour prediction). 

MODEL CSI ↑ HSS ↑ POD ↑ FAR ↓ 

OpticalFlow [17] (ROVER) 0.317 0.441 0.455 0.519 

Pysteps [23] (Extrapolation) 0.315 0.438 0.442 0.512 

Pysteps [23] (S-PROG) 0.326 0.452 0.458 0.502 

ConvLSTM [9]  0.352 0.508 0.602 0.510 

PredRNN++ [37]  0.378 0.513 0.611 0.516 
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STPNet 0.393 0.530 0.626 0.500 

2S-STRef 0.398 0.536 0.611 0.480 

Table 8. Skill score at R > 45 dBZ (two-hour prediction). 

MODEL CSI ↑ HSS ↑ POD ↑ FAR ↓ 

OpticalFlow [17] (ROVER) 0.129 0.212 0.207 0.772 

Pysteps [23] (Extrapolation) 0.133 0.214 0.209 0.768 

Pysteps [23] (S-PROG) 0.127 0.198 0.197 0.789 

ConvLSTM [9] 0.166 0.277 0.319 0.743 

PredRNN++ [37] 0.184 0.296 0.362 0.740 

STPNet 0.192 0.308 0.373 0.728 

2S-STRef 0.195 0.312 0.373 0.721 

In these tables, ‘↑’ means the higher value is better, and ‘↓’ means the lower value 

is better. The best result is also marked with bold face. It can be found that among the 

typical models, the OpticalFlow-based ROVER [17] method and two methods in Pysteps 

[23] (extrapolation method and deterministic nowcast with S-PROG) have relatively poor 

prediction performance, and there is a gap in the evaluation indices compared with the 

deep learning models. Moreover, the extrapolation method in Pysteps [23] can obtain a 

similar prediction performance with the OpticalFlow-based ROVER [17] method. Com-

pared with the ROVER method, deterministic nowcast with S-PROG in Pysteps [23] can 

achieve better nowcasting scores at the 20 dBZ and 35 dBZ thresholds. For the heavy pre-

cipitation (45 dBZ), its prediction performance decreases more. In deep learning ap-

proaches, the nonlinear and convolutional structure of the network is able to learn some 

complex spatiotemporal patterns in the dataset. However, updating the future flow fields 

reasonably is hard in the optical flow-based methods. Next, we focus on the three com-

petitive methods (PredRNN++, STPNet, and 2S-STRef) and compare their performances. 

It is clear that the proposed 2S-STRef or STPNet achieves better nowcasting scores than 

PredRNN++ for all the four precipitation nowcasting metrics, and especially has an obvi-

ous improvement at the 35 dBZ (5 mm/h) and 45 dBZ (30 mm/h) thresholds. At the 45 dBZ 

echo threshold, the CSI of the proposed 2S-STRef is over 0.066 higher than that of the 

OpticalFlow-based ROVER method (increase by about 51%), and also 0.011 higher than 

that of the PredRNN++ model (increase by nearly 6%). Additionally, the HSS is much im-

proved, by about 47% than that of the OpticalFlow-based ROVER method, and by over 

5.4% than that of the PredRNN++ method. It means that the proposed method has better 

prediction performance for heavy rainfall, which is usually a difficult task. In addition, 

compared with those of STPNet (the first stage of our model), besides the SSIM index, the 

four important precipitation nowcasting metric performances of the proposed 2S-STRef are 

also more excellent. It is verified that the proposed RefNet (the second stage of our model) 

effectively improves the prediction image details and enhances nowcasting accuracy. 

Furthermore, the precipitation nowcasting metric scores for the 12- to 120-min lead 

times are shown in Figure 10 for a more complete performance verification. The results in 

Figures 10 and 11 are the average scores for the whole test dataset. In this part, extrapola-

tion nowcast and deterministic nowcast with S-PROG in Pysteps [23] are also added for 

comparison. Extrapolation nowcast using a local tracking approach (Lucas–Kanade) with 

default configurations in Pysteps [23] is utilized in this paper. This configuration makes 

the performance of Pysteps (Extrapolation) similar to the OpticalFlow-based ROVER 

method. At the 20dBZ and 35dBZ thresholds, Pysteps (S-PROG) has better prediction per-

formance than Pysteps (Extrapolation) and the OpticalFlow-based ROVER method. How-

ever, its nowcasting performance degrades faster at the 45 dBZ threshold as the lead time 

increases. Moreover, from this figure, it is clear that the deep learning method outperform 

the OpticalFlow-based ROVER method [17], Extrapolation, and S-PROG nowcasts in 

Pysteps [23], as the lead time increases. 
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Figure 10. Nowcasting metric scores (CSI, HSS, FAR, POD at different thresholds) for 12- to 120-min lead times. 

The increasing rate curves comparing the proposed 2S-STRef with PredRNN++ and 

STPnet are presented in Figure 11. From this figure, the proposed 2S-STRef has significant 

accuracy improvement compared with PredRNN++, especially for the important CSI and 

HSS metrics. Moreover, the second-stage network RefNet can further enhance the fore-

casting accuracy for the 12- to 120-min lead times. 

 

Figure 11. Nowcasting metric increasing rates compared with the STPNet and PredRNN++ methods for 12- to 120-min 

lead times. 
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In addition, visualization of the comparison among the evaluated methods is shown 

in Figure 12. Although the OpticalFlow-based ROVER method [17], extrapolation now-

cast, and deterministic nowcast with S-PROG in PySteps [23] can give sharper predictions 

than the deep learning methods, they trigger more false alarms and are less precise than 

deep learning methods in general. Moreover, the small-scale details in extrapolations by 

deep learning methods are gradually lost and the boundaries become smooth as the lead 

time increases. Deep blue contours in deep learning methods are actual predicted values 

by the network and are not processed manually. The blurring effect of deep learning meth-

ods may be caused by the inherent uncertainties of the task. Since sharp and accurate pre-

dictions of the whole radar maps in longer-term predictions are quite difficult, blurring 

the predictions to alleviate the error and decrease the MAE or MSE-based loss caused by 

this type of uncertainty is utilized. Thus, more effective loss functions can be tried and 

designed to improve the quality of the nowcast images in the future work. 

 

Figure 12. The visualization comparison among the evaluated methods for 12- to 120-min lead times. The radar echo 

images are of Southern China (around Guangzhou City) at 26 May 2019. 

4. Conclusions 

In this paper, 2S-STRef was proposed for precipitation nowcasting by radar echo ex-

trapolation. The first stage is STPNet using the encoder-decoder structure, which extracts 

the dynamic spatial and temporal correlations in a sequence of radar echo images and 

outputs a first-stage prediction. In the second stage, the RefNet is proposed, employing 

multi-scale feature extraction and fusion residual block to acquire a better performance 

on details and prediction accuracy of the nowcasting radar echo images. Experimental 
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results from a real-world radar echo of South China dataset demonstrated that the pro-

posed 2S-STRef method outperforms the conventional OpticalFlow, PySteps methods, 

and ConvLSTM and PredRNN++ methods on both image quality evaluation and forecast-

ing evaluation metrics. The radar echo images predicted by the proposed network present 

more details and accomplish higher prediction accuracy. 

The challenges are that sharp and accurate predictions of the whole radar maps in 

longer-term predictions are quite difficult. 

The limitation of such a deep learning method is that: 

1. The input and output dimensions of the model are fixed, and it does not deal with 

length or dimension variant input sequences. If different input numbers or input di-

mensions of radar echo maps are input, the model must be redesigned and retrained. 

2. The lack of explainability of deep learning models should be improved. 

Future research should investigate: 

1. Developing new models to further improve the prediction accuracy as well as en-

hance the predicted details of the radar echo images, especially for heavy rainfall. 

2. Since the lifetime of radar echo is finite, the predictability of radar echoes gradually 

deteriorates over time. When the lead time exceeds the echo lifetime, it is hard to 

predict the future radar echo in the initial state only based on radar data. Other me-

teorological parameters, such as wind, should be introduced into the extrapolation 

model in the future to improve the prediction accuracy of radar echo change and 

further increase the lead time of radar extrapolation. 

3. More radar echo reflectivity images in summer and winter periods will be selected 

and used to train the proposed network separately to enhance the prediction accu-

racy, since the physics and evolution behind each type is not the same. 

4. We will also try to build an operational nowcasting system using the proposed algo-

rithm. 
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