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Abstract: In the Loess Plateau (LP) of China, the vegetation degradation and soil erosion problems
have been shown to be curbed after the implementation of the Grain for Green program. In this
study, the LP is divided into the northwestern semi-arid area and the southeastern semi-humid area
using the 400 mm isohyet. The spatial–temporal evolution of the vegetation NDVI during 2000–2015
are analyzed, and the driving forces (including factors of climate, environment, and human activities)
of the evolution are quantitatively identified using the geographical detector model (GDM). The
results showed that the annual mean NDVI in the entire LP was 0.529, and it decreased from the
semi-humid area (0.619) to the semi-arid area (0.346). The mean value of the coefficient of variation
of the NDVI was 0.1406, and it increased from the semi-humid area (0.1165) to the semi-arid area
(0.1926). The annual NDVI growth rate in the entire LP was 0.0079, with the NDVI growing faster
in the semi-humid area (0.0093) than in the semi-arid area (0.0049). The largest increments of the
NDVI were from grassland, farmland, and woodland. The GDM results revealed that changes in
the spatial distribution of the NDVI could be primarily explained by the climatic and environmental
factors in the semi-arid area, such as precipitation, soil type, and vegetation type, while the changes
were mainly explained by the anthropogenic factors in the semi-humid area, such as the GDP density,
land-use type, and population density. The interactive analysis showed that interactions between
factors strengthened the impacts on the vegetation change compared with an individual factor.
Furthermore, the ranges/types of factors suitable for vegetation growth were determined. The
conclusions of this study have important implications for the formulation and implementation of
ecological conservation and restoration strategies in different regions of the LP.

Keywords: Loess Plateau; China; normalized difference vegetation index (NDVI); spatial–temporal
evolution; geographical detector model; driving forces

1. Introduction

Vegetation plays an indispensable role in regional terrestrial ecosystems, and consti-
tutes an essential link between soil, water, and atmosphere. Moreover, vegetation is the
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material basis for the survival of surface organisms [1,2]. Vegetation coverage effectively
reduces the surface soil erosion caused by exogenous forces such as wind, diminishes the
splash erosion caused by raindrops, alleviates the hydrodynamic erosion of rivers, and
improves the soil environment. Therefore, it is of crucial importance to explore the vegeta-
tion coverage changes and dynamics for the soil erosion prevention and control, ecological
environmental protection, and sustainable social and economic development [3,4]

At present, the main monitoring method used in large-scale vegetation coverage
change research is based on satellite remote sensing because of its wide spatial range
and gradually improving resolution, which effectively makes up for the shortcomings of
traditional monitoring methods [5]. The normalized difference vegetation index (NDVI) is
strongly associated with the vegetation coverage, leaf area index, biomass, and land use,
which can comprehensively reflect the vegetation’s greenness, photosynthesis intensity, and
vegetation metabolism intensity [6,7]. The NDVI can be used to quantitatively evaluate the
regional vegetation coverage and growth, which is considered to be an effective indicator
for monitoring terrestrial vegetation changes, and thus, has been widely used in research
and management in various fields, such as agriculture and ecology [8].

The growth process of vegetation is affected by multiple factors. Temperature and
precipitation are directly related to global climate change and are generally regarded as
the most important natural factors affecting vegetation growth and changes in the long-
term [9,10]. Since the 20th century, intense human activities, which are characterized by
industrialization and urbanization, have brought about rapid population and economic
growth, rapid changes in land use, and ecological and environmental problems such as
vegetation degradation and soil erosion, resulting in significant impacts on vegetation
growth and changes in the short-term [11–13].

The Loess Plateau (LP) of China is located in the semi-arid/humid zones, the local
ecological environment of which is extremely fragile. Vegetation degradation and soil
erosion have been particularly prominent in this region throughout history, making the LP
main sediment source (nearly 90%) of the Yellow River (middle and lower reaches), once
the most sand-laden river in the world [14]. Exploring the evolution of vegetation and its
driving forces on the LP cannot only help formulate strategies on ecological restoration
for this area, but also help predict the sediment and tackle the sediment related problems
(such as reservoir sedimentation and flood control) in the Yellow River. Since the 1980s,
particularly after 2000 when the Grain for Green program (GGP) was implemented in this
area, the restoration of vegetation has been witnessed, and accordingly, the expansion trend
of the soil erosion has been curbed [15]. In addition, a new stage of the GGP was launched
in 2014 to consolidate the achievements [16].

Many scholars have studied the causes of the vegetation coverage changes on the
LP. There are limitations in the existing research, which mainly include the following.
(1) Many studies used NDVI data from original Global Inventory Modeling and Mapping
Studies (GIMMS) or GIMMS NDVI data expanded from Moderate Resolution Imaging
Spectroradiometer (MODIS) and Satellite Pour l’Observation de la Terre (SPOT) Vegetation
(VGT) NDVI [6,17–19]. The spatial resolution of 8 km leads to serious mixed pixels and
insufficient detail capture, making it difficult for the results to show the actual spatial–
temporal changes in the vegetation coverage. (2) Several studies used statistical methods,
such as correlation or regression, by assuming that the vegetation growth is linearly related
to the potential factors with time, but they ignored the spatial heterogeneity [20,21]. Some
evidence has suggested that there is no strict linear correlation between the factors and
the vegetation growth under the climate change. A statistical linear correlation model
may not be able to accurately describe the internal relationship [22,23]. (3) Several studies
only considered the influences of climatic factors on vegetation coverage changes, and
they neglected other environmental factors. Actually, certain environmental factors (e.g.,
altitude, slope, and slope aspect) also have key impacts on vegetation growth and changes.
For instance, the altitude affects the temperature, precipitation, and soil, thus affecting the
vertical distribution of the vegetation. The slope aspect affects the degree to which the
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slope receives various hydrothermal conditions, which has a certain impact on the type
and distribution of the vegetation. Moreover, the steep slopes mean that there may be
serious soil erosion, which inhibits the vegetation growth. However, many environmental
factors cannot be quantified using statistical methods, which limits the exploration of the
effects of environmental factors on vegetation changes [24,25]. (4) Most previous studies
merely evaluated the individual effects of the factors without quantitatively evaluating
the interactive effects between multiple factors on vegetation changes. (5) The majority of
previous studies focused on the entire area and local area of the LP (e.g., relevant research
was carried out on Shannxi Province in the LP [26]), little comparative research has been
conducted for different climatic regions, and the research conclusions are not conducive to
guiding policymaking for different regions.

In this study, attempts were made to address the above research gaps. SPOT NDVI
products were used to evaluate the vegetation coverage and growth. The spatial–temporal
evolution of the NDVI on the LP during 2000–2015 was explained by the Geographical
Detector Model (GDM) [27]. Based on the spatial analysis of variance, the GDM was shown
to avoid linear assumption between variables and has a clear physical meaning, which
reflects the explanatory power of an individual independent variable acting alone or of
multiple independent variables interacting on a dependent variable. Moreover, the GDM
can utilize a variety of type variables such as geomorphic type, soil type, vegetation type,
and land-use type, and thus, is superior to the traditional statistical methods. The GDM is
widely adopted in the exploration of the spatial differentiation characteristics of issues in
natural and social sciences. For instance, the GDM was applied to study the explanatory
powers of different factors on vegetation changes in Shannxi, Mongolia, Sichuan, and the
Heihe River Basin [26,28–30].

The study begins by introducing the study area, method and data in Section 2. Then,
the linear regression, coefficient of variation and transfer matrix models are used to iden-
tify the spatial–temporal evolution of the NDVI on the semi-arid/humid areas of the LP
during 2000–2015 in Section 3. The influences of climatic (precipitation and temperature),
environmental (altitude, slope, slope aspect, geomorphic type, soil type, and vegetation
type), and anthropogenic factors (GDP density, population density, land-use type) on the
spatial–temporal evolution of the vegetation NDVI on the semi-arid/humid areas of the
LP are identified with the factor, interaction, risk and ecological detectors of the GDM.
Section 4 further compares the results in the semi-arid and sub-humid areas, proposes
suggestions for formulating and implementing ecological protection and restoration strate-
gies in different areas, and discusses the connections and distinctions with other studies
as well as the possible future work. Section 5 summarizes the main findings of the paper.
The achievements gained from this study will benefit policy makers and administrative
managers in their strategy development and implementation.

2. Data and Methods
2.1. Study Area

The LP is located north of central China, with a total area of 6.49 × 105 km2 (107◦54′–
114◦33′ E, 33◦41′–41◦16′ N), as shown in Figure 1. It is the transitional zone from the coastal
humid region to the inland arid region, and from forest to grassland. The terrain is generally
low in the southeast and high in the northwest, including the mountain area, the loess hilly
area, the loess tableland area, and the valley plain area. The LP has a temperate monsoon
climate, with an annual mean temperature of 3.6–14.3 ◦C and precipitation of 200–800 mm.
Both the temperature and precipitation increase from the northwest to the southeast. The
annual and daily temperature ranges are large. Furthermore, the seasonal variation of
precipitation is large. Heavy rains occur frequently during summer, resulting in the soil
erosion, floods, landslides, debris flows and other disasters. The total annual radiation is
50.2 × 104 J/cm2 to 67.0 × 104 J/cm2, with a long illumination time and high radiation.
About 200 rivers have their headwaters on the LP, including the Tao River, Zuli River,
Qingshui River, Huangfuchuan River, Kuye River, Wuding River, Beiluo River Wei River,
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Qin River, Fen River, etc. The study area includes the provinces (or autonomous regions)
of Qinghai, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, and Henan. Throughout
history, the overall vegetation coverage has been low and soil erosion has been very serious
on the LP due to the special natural and geographical environment, complex vegetation
types, and severe impacts of human activities. Since the 1980s, a series of measures for
soil and water conservation have been taken to control the soil erosion. Particularly,
after 2000, when the GGP was implemented, the regional ecological environment has
significantly improved.
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Figure 1. Study area.

The study area was divided into semi-arid and semi-humid areas using the 400 mm
isohyet (calculated using the annual mean precipitation data for the LP during 2000–2015)
to carry out the comparative analysis. It should be noted that the 400 mm isohyet is of
great significance to the physical geography and socio-economic regionalization in China,
and it coincides with the Huhuanyong Line. In addition to dividing the climatic zones, this
line divides the forest vegetation from the grassland vegetation and the densely populated
area from the sparsely populated area [31,32].

2.2. Geographical Detector Model (GDM)

The GDM is proposed based on spatial differentiation theory and geographic informa-
tion system (GIS) spatial analysis technique [27]. It is usually employed to study the factors
affecting spatial hierarchical heterogeneities and the underlying mechanisms. The model
assumes similar spatial pattern between the independent and dependent variables if these
variables are spatially correlated [33]. The GDM consists of four detectors, including the
factor, interaction, risk and ecological detectors.

(1) The factor detector can be utilized to analyze the spatial heterogeneity and to
quantify the explanatory power (measured by the q value) of different impact factors X to
dependent variable Y.

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (1)
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where q ∈ [0, 1], and with the increase in the q value, the explanatory power is expected to
be stronger; h represents the stratum of variable Y (or factor X), h ∈ [1, L]; Nh is the unit
number of stratum h; N is the unit number in all the strata; σ2

h represents the variance of
variable Y of stratum h; σ2 is the variance of variable Y of all the strata.

(2) The interaction detector can be used to determine the explanatory power of inter-
action between two factors (say X1 and X2) on the spatial heterogeneity of variable Y, and
to judge whether the interactive effect on variable Y would be enhanced or weakened. The
steps are as follows. (1) Compute the respective q value of factors X1 and X2 to variable Y
(qX1 and qX2). (2) Compute the q value of the interaction between X1 and X2 to Y (qX1&X2).
(3) Compare qX1, qX2, and qX1&X2. If max(qX1,qX2) < qX1&X2 < qX1 + qX2 is true, the factors
X1 and X2 enhance each other (bi-enhance). If qX1&X2 > qX1 + qX2 is true, the nonlinearity
of two factors is enhanced (nonlinear enhancement). The interaction criteria are presented
in Table 1.

Table 1. Definition of interaction detector.

Description Interaction

min(qX1,qX2) < qX1&X2 < max(qX1,qX2) Weaken, uni-
qX1&X2 < min(qX1,qX2) Weaken, nonlinear
qX1&X2 > max(qX1,qX2) Enhance, bi-

qX1&X2 > qX 1 + qX2 Enhance, nonlinear
qX1&X2 = qX1 + qX2 Independent

(3) The risk detector is utilized to judge the difference of significance between the
attribute mean values of two strata with the t statistic:

tyh=1−yh=2
=

Yh=1 −Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

]0.5 (2)

where Yh is the attribute mean value within stratum h; nh is the number of samples within
stratum h; Var is the variance.

(4) The ecological detector is developed to compare the explanatory powers of two
factors, X1 and X2, on variable Y with the F statistic:

F =
NX1(Nx2 − 1)SIVX1

NX2(Nx1 − 1)SIVX2
(3)

SIVX1 = ∑L1
h=1 Nhσ2

h , SIVX2 = ∑L2
h=1 Nhσ2

h (4)

where NX1 and NX2 are the sample numbers of factors X1 and X2, respectively; SIVX1 and
SIVX2 are the sum of the internal variances of the strata from factors X1 and X2, respectively;
and L1 and L2 are the strata numbers of factors X1 and X2, respectively.

2.3. Data Description

In this study, multi-source data (Table 2) were collected, mainly including the following.
(1) Vector data: The shape file data for the LP were downloaded from the Resource and

Environment Science and Data Center (RESDC), Chinese Academy of Sciences (available
from http://www.resdc.cn, accessed on 27 October 2021).

(2) Vegetation NDVI data: The SPOT NDVI data were used in this study (Figure 2),
which were obtained from the RESDC. The time span is 2000–2015, the time step is 1 year,
and the spatial resolution is 1 km × 1 km. It should be noted that the annual maximum
synthesis method was used to obtain the annual value of NDVI, and therefore, there was
no area with NDVI < 0.

http://www.resdc.cn
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Table 2. Climatic, environmental and anthropogenic factors.

Category Factor Unit Code Range/Type

Climatic
Precipitation mm X1 <250, 250 to 350, 350 to 450, 450 to 550, 550 to 650, >650
Temperature ◦C X2 <0, 0 to 3, 3 to 6, 6 to 9, 9 to 12, >12

Environmental

Altitude m X3
90 to 790, 790 to 1228, 1228 to 1611, 1611 to 2136, 2136 to 2963,

2963 to 4914
Slop degree X4 0 to 5, 5 to 10, 10 to 15, 15 to 20, 20 to 25, >25

Slope aspect type X5

no slope aspect (−1), east slope (67.5◦ to 112.5◦), west slope
(247.5◦ to 292.5◦), south slope (157.5◦ to 202.5◦), north slope (0◦

to 22.5◦ and 337.5◦ to 360◦), southeast slope (112.5◦ to 157.5◦),
northeast slope (22.5◦ to 67.5◦), southwest slope (202.5◦ to

247.5◦), and northwest slope (292.5◦ to 337.5◦)

Geomorphic type type X6
plain, platform, hill, small undulating mountain, medium

undulating mountain, large undulating mountain

Soil type type X7

alpine soil, anthropogenic soil, saline alkali soil, hydrogenetic
soil, semi-hydrogenetic soil, primary soil, desert soil, arid soil,

calcareous soil, semi-eluvial soil, and eluvial soil

Vegetation type type X8
cultivated vegetation, meadow, grass, grassland, desert, shrub,

broad-leaved forest, and coniferous forest

Anthropogenic

GDP density CNY/km2 X9 <200, 200 to 500, 500 to 1000, 1000 to 3000, 3000 to 5000, >5000
Population density population/km2 X10 <100, 100 to 200, 200 to 500, 500 to 1000, 1000 to 2000, >2000

Land-use type type X11
farmland, woodland, grassland, water bodies, construction land,

unused land
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According to [34], the NDVI of the LP was divided into 5 intervals using the equal
interval method, i.e., 0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1.0, which represent
5 types of vegetation, i.e., low, relatively low, medium, relatively high, and high vegetation
coverages, respectively.

(3) Meteorological data: The monthly mean precipitation and temperature from
101 meteorological stations on the LP and in its surrounding areas during 2000–2015 were
collected for use, which were downloaded from the China Meteorological Data Service
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Center (available from http://data.cma.cn/site/index.html, accessed on 27 October 2021).
The annual value of the data from each meteorological station was calculated. Moreover,
ANUSPLIN v4.3 was used to perform spatial interpolation of the meteorological station
data, which were divided into 6 intervals using the equal interval method. Therefore,
annual precipitation and temperature grid data (Figures 3 and 4) with the same projection
mode, spatial resolution, and time series as the NDVI data were obtained. It should be
noted that ANUSPLIN is a widely used software application for spatial interpolation, which
was developed on the basis of the thin plate smoothing splines theory. The main feature of
ANUSPLIN is that the topographic information can be used in the spatial interpolation of
the meteorological data [35].

(4) DEM data: The DEM data were downloaded from the Shuttle Radar Topography
Mission (available from http://srtm.csi.cgiar.org/, accessed on 27 October 2021). Accord-
ing to [28], the natural breakpoint method was used to divide the elevation data into
6 categories, including 90 to 790 m, 790 to 1228 m, 1228 to 1611 m, 1611 to 2136 m, 2136 to
2963 m, and 2963 to 4914 m (Figure 5a).

Based on the DEM data, the slope and slope aspect data for the study area were ex-
tracted using GIS spatial analysis tools. According to the policy of the Grain for Green [36],
the slope was divided into 6 categories, including 0◦ to 5◦, 5◦ to 10◦, 10◦ to 15◦, 15◦ to 20◦,
20◦ to 25◦, >25◦ (Figure 5b).

The slope aspect was divided into 9 categories, which are denoted as no slope aspect
(−1), east slope (67.5◦ to 112.5◦), west slope (247.5◦ to 292.5◦), south slope (157.5◦ to 202.5◦),
north slope (0◦ to 22.5◦ and 337.5◦ to 360◦), southeast slope (112.5◦ to 157.5◦), northeast
slope (22.5◦ to 67.5◦), southwest slope (202.5◦ to 247.5◦), and northwest slope (292.5◦ to
337.5◦) (Figure 5c).
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(5) Geomorphic type data: These data were obtained from the RESDC. Referring to
the Geomorphological Atlas of the People’s Republic of China (1:1 million) (2009), the
geomorphology was divided into 6 types, including plain, platform, hill, small undulating
mountain, medium undulating mountain, and large undulating mountain (Figure 5d).

(6) Soil type data: These data were downloaded from the RESDC. Referring to the
1:1 Million Soil Map of the People’s Republic of China (1995), the soil was divided into
11 types, including alpine soil, anthropogenic soil, saline alkali soil, hydrogenetic soil,
semi-hydrogenetic soil, primary soil, desert soil, arid soil, calcareous soil, semi-eluvial soil,
and eluvial soil (Figure 5e).

(7) Vegetation type data: These data were obtained from the RESDC. Referring to
the 1:1 Million Vegetation Atlas of China (2001), the vegetation was divided into 8 types,
including cultivated vegetation, meadow, grass, grassland, desert, shrub, broad-leaved
forest, and coniferous forest (Figure 5f).

(8) Socio-economic data: These data were obtained from the RESDC. The GDP den-
sity and population density data for China in 2000, 2005, 2010, and 2015 were obtained.
The GDP density and population density were divided into 6 categories, respectively
(Figures 6 and 7).

(9) Land-use type data: These data were downloaded from the RESDC. The spatial
resolution is 1 km × 1 km. There are 6 land-use types, including unused land, construc-
tion land, water bodies, grassland, woodland, and farmland (Figure 8), with a total of
36 transfer combinations.

The influences of the various factors on the spatial–temporal evolution of the NDVI on
the LP were calculated and analyzed with the GDM. The various factors were classified into
climatic, environmental, and anthropogenic aspects. For the climatic factors, precipitation,
and temperature were selected as proxy variables. For the environmental factors, altitude,
slope, slope aspect, geomorphic type, soil type, and vegetation type were selected as
proxy variables. For the anthropogenic factors, the proxy variables were the GDP density,
population density, and land-use type.
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The following points should be noted: (1) Although environmental factors do not
change in the short-term, these factors play a key role in vegetation growth and changes.
Thus, they were also considered in this study according to [37]. (2) The data for each factor
were discretized since the input of the GDM needs to be discrete data. (3) The data for the
factors were converted into grid data with the 1 km × 1 km spatial resolution (same with
the NDVI data) in order to facilitate calculation and analysis. (4) Due to the large area of
the LP, the GDM’s calculation capacity would be exceeded if all of the grid data were used.
Therefore, the sampling method was used and 32,000 sampling points were evenly selected
in space to carry out the calculations and analysis (Figure 1), and the consistency of the
results of each calculation could be ensured. (5) Two types of inputs were considered in the
analysis of the explanatory power of different factors for the spatial–temporal evolution of
the NDVI on the LP using the GDM. First, the typical annual values of 2000, 2005, 2010,
and 2015 were used to drive the GDM to analyze the influence of various factors on the
spatial distribution state of the NDVI. Second, the differences between the annual mean
values from 2000 to 2005 and those from 2010 to 2015 were calculated, which were used
to drive the GDM to analyze the influence of various factors on the spatial distribution
change of the NDVI.

3. Results
3.1. Spatial–Temporal Evolution in NDVI

(1) Grid scale area and area transfer of the NDVI and the driving forces:
The vegetation types on the LP are shown in Figure 5f. In the semi-arid area, the

vegetation types were mainly grassland, cultivated vegetation, and desert, accounting for
15.9, 7.2 and 5.0% of the total area, respectively. While in the semi-humid area, cultivated
vegetation, grassland, shrub, and broad-leaved forest were widely distributed, accounting
for 37.8, 9.2, 6.7 and 5.4% of the total area, respectively.

The grid scale area transfer matrix of the NDVI on the LP during 2000–2015 is shown
in Table 3. In 2000, over the entire LP, the coverage areas of the low, relatively low, medium,
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relatively high, and high vegetation accounted for, respectively, 10.0, 31.5, 29.3, 28.1 and
1.3% of the total area; in the semi-arid area, these types of vegetation accounted for 9.4,
16.0, 5.1, 1.2 and 0.01%, respectively; and in the semi-humid area, they accounted for
0.5, 15.5, 24.2, 26.9 and 1.3%, respectively. In 2015, over the entire LP, the coverage areas
of the low, relatively low, medium, relatively high, and high vegetation accounted for
8.7, 20.3, 22.9, 31.5 and 16.7%, respectively; in the semi-arid area, they accounted for
8.5, 14.5, 5.0, 3.3 and 0.4%, respectively; and in the semi-humid area, they accounted for
0.3, 5.8, 17.9, 28.1 and 16.3%, respectively. The proportion of the coverage areas with an
NDVI of greater than 0.6 increased significantly, and the proportions of the relatively low
vegetation converted to medium vegetation, medium vegetation converted to relatively
high vegetation, and relatively high vegetation converted to high vegetation accounted for
the largest proportions. The areas of these transitions accounted for, respectively, 10.8, 15.8
and 14.1% of the total area.

Table 3. Grid scale area transfer matrix of NDVI on Loess Plateau during 2000–2015 (km2).

2000
2015

[0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1] Total

[0, 0.2] 40,824
(6.31%)

22,376
(3.46%)

988
(0.15%)

135
(0.02%)

10
(~0.00%)

64,333
(9.95%)

[0.2, 0.4] 15,375
(2.38%)

99,000
(15.31%)

69,499
(10.75%)

19,363
(3.00%)

144
(0.02%)

203,381
(31.46%)

[0.4, 0.6] 235
(0.04%)

8792
(1.36%)

69,526
(10.75%)

102,374
(15.84%)

8322
(1.29%)

189,249
(29.27%)

[0.6, 0.8] 12
(~0.00%)

792
(0.12%)

7717
(1.19%)

81,535
(12.61%)

91,338
(14.13%)

181,394
(28.06%)

[0.8, 1] 0
(0.00%)

6
(~0.00%)

9
(~0.00%)

110
(0.02%)

8015
(1.24%)

8140
(1.26%)

Total 56,446
(8.73%)

130,966
(20.26%)

147,739
(22.85%)

203,517
(31.48%)

107,829
(16.68%)

646,497
(100%)

The land-use type on the LP during 2000–2015 is shown in Figure 8, and the grid scale
area transfer matrix is shown in Table 4. In 2000, over the entire LP, the proportions of the
farmland, woodland, grassland, water bodies, construction land, and unused land were
33.3, 14.7, 41.5, 1.4, 2.5 and 6.7%, respectively; in the semi-arid area, they were 7.1, 1.2,
16.6, 0.7, 0.8 and 5.3%, respectively; and in the semi-humid area, they were 26.2, 13.5, 24.9,
0.8%, 1.7 and 1.4%, respectively. In 2015, over the entire LP, the proportions of farmland,
woodland, grassland, water bodies, construction land, and unused land were 32.4, 15.1,
41.2, 1.5, 3.3 and 6.6%, respectively; in the semi-arid area, they were 6.9, 1.3, 16.4, 0.7, 1.1
and 5.2%, respectively; and in the semi-humid area, they were 25.4, 13.8, 24.8, 0.8, 2.1 and
1.4%, respectively. Overall, the area of the change in land-use types on the LP was not
significant, and it was mainly in the 0.94% decrease in farmland, the 0.44% increase in
woodland, and the 0.82% increase in construction land. To a certain extent, these changes
reflect the impacts of human activities in the study area, such as the implementation of the
GGP and urbanization-related development.

The difference in the NDVI of the different land-use type transfers on the LP during
2000–2015 is shown in Figure 9. It should be noted that Figure 9 was obtained by subtracting
the NDVI data for 2000 from that for 2015 on the grid scale, and the differences in the
NDVI of the different land-use type transfers were then counted. Figure 9a shows the
mean difference in the NDVI of all grids of different land-use type transfers. Most of the
transfers had a positive impact on the NDVI, except for the transfers of farmland and
water bodies to construction land, which decreased the NDVI slightly (reduction rates of
−0.0173 and −0.0016, respectively). Moreover, the largest increment of the NDVI was due
to farmland transferred into woodland (increment of 0.1411), woodland transferred into
farmland (increment of 0.1359), and unused land transferred into farmland (increment of
0.1338). Figure 9b shows the total difference in the NDVI of all grids of different land-use
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type transfers. It can be seen that the largest increments of the NDVI were due to grassland,
farmland, and woodland, and these land-use types did not change. The increments were
28,539.55, 25,545.42, and 12,450.86, respectively. The probable reasons are as follows. On the
LP, the precipitation is limited and there exists a gap between agricultural water demand
and supply. In the past, there used to be large areas of farmland that could not be irrigated
adequately and were greatly affected by the precipitation. With the implementation of the
GGP, some infertile areas of farmland that could not be irrigated adequately were returned
to the woodland or grassland, and what remained was adequately irrigated or fertile areas
of farmland that were less affected by the precipitation. Moreover, with the development
of agricultural technologies and the optimization and adjustment of planting structures,
the crop yields on the LP were continuously increased.

Table 4. Grid scale area transfer matrix of land-use type on Loess Plateau during 2000–2015 (km2).

2000
2015

Farmland Woodland Grassland Water Bodies Construction Land Unused Land Total

Farmland 207,681
(31.99%)

1667
(0.26%)

2739
(0.42%)

647
(0.10%)

3042
(0.47%)

414
(0.06%)

216,190
(33.30%)

Woodland 139
(0.02%)

94,495
(14.56%)

328
(0.05%)

66
(0.01%)

263
(0.04%)

82
(0.01%)

95,373
(14.69%)

Grassland 1455
(0.22%)

1696
(0.26%)

262,300
(40.40%)

330
(0.05%)

1676
(0.26%)

1607
(0.25%)

269,064
(41.45%)

Water bodies 317
(0.05%)

36
(0.01%)

222
(0.03%)

8312
(1.28%)

84
(0.01%)

258
(0.04%)

9229
(1.42%)

Construction land 17
(~0.00%)

15
(~0.00%)

41
(0.01%)

19
(~0.00%)

15,777
(2.43%)

10
(~0.00%)

15,879
(2.45%)

Unused land 448
(0.07%)

337
(0.05%)

1631
(0.25%)

211
(0.03%)

4189
(0.06%)

40,413
(6.23%)

43,458
(6.69%)

Total 210,057
(32.36%)

98,246
(15.13%)

267,261
(41.17%)

9585
(1.48%)

21,260
(3.27%)

42,784
(6.59%)

649,193
(100%)

(2) Spatial changes in the NDVI on the grid scale:
The spatial changes in the NDVI on the grid scale on the LP during 2000–2015 are

shown in Figure 10. Figure 10a indicates that the annual mean value of the NDVI on the LP
was 0.529, with an uneven spatial distribution, i.e., decreasing from the southeastern to the
northwestern areas. The high and low values were mainly distributed in the semi-humid
and semi-arid areas, with annual mean values of 0.619 and 0.346, respectively.

Figure 10b shows that the mean value of the coefficient of variation of the NDVI was
0.1406 on the LP, with an uneven spatial distribution, i.e., increasing from the southeastern
semi-humid area (mean value of 0.1165) to the northwestern semi-arid area (mean value
of 0.1926). There was 7.0% of the total area with 0 < CV < 0.05, mainly distributed in the
eastern and southern regions. The area with 0.05 ≤ CV < 0.1 accounted for 25.9% of the
total area. The area with 0.1 ≤ CV < 0.15 accounted for 25.7% of the total area. Moreover,
there was 41.4% of the total area with 0.15 ≤ CV < 0.2 and CV ≥ 0.2, mainly distributed in
the semi-arid area as well as the junction of the semi-arid/humid areas.
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Figure 10c,d show that of the total area, the positive area accounted for 91.5% while
the negative area accounted for 8.5%, which was obtained by subtracting the NDVI in 2000
from that in 2015. The NDVI in most areas of the LP (92.8% of the total area) increased
from 2000 to 2015, indicating that the ecological environment in the region significantly
improved. In addition, 70.0% of the area passed the significance test (p < 0.05); and 68.6% of
the area increased significantly, while 1.4% of the area decreased significantly. The decrease
in the NDVI was mainly concentrated in the semi-arid area as well as the urban area with
rapid economic development and a large population concentration.
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(3) Temporal changes in the NDVI on the regional scale:
The temporal changes in the NDVI on the regional scale on the LP during 2000–2015

are shown in Figure 11. The NDVI on the LP exhibited a fluctuating upward trend. The
annual NDVI growth rates of the entire LP, the semi-arid area, and the semi-humid area
were 0.0079, 0.0049, and 0.0093, respectively, indicating that the growth rate of the NDVI in
the semi-humid area was higher than in the semi-arid area after the GGP was implemented.
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3.2. Individual Effects of Factors on NDVI

(1) Results of typical years:
Using the typical annual values of 2000, 2005, 2010, and 2015 to drive the factor

detector, the individual effects of the factors (represented by the q value) could be obtained,
as shown in Figure 12.

For the entire LP, the order of the annual mean q values was precipitation (q = 0.5985) >
vegetation type (q = 0.4790) > soil type (q = 0.3346) > land-use type (q = 0.2697) > geomorphic
type (q = 0.2341) > temperature (q = 0.1469) > altitude (q = 0.1203) > population density
(q = 0.1132) > slope (q = 0.0649) > GDP density (q = 0.0411) > slope aspect (q = 0.0012).

For the semi-arid area, the order of the annual mean q values was precipitation
(q = 0.4796) > vegetation type (q = 0.3906) > soil type (q = 0.3409) > land-use type (q = 0.2368)
> geomorphic type (q = 0.2013) > temperature (q = 0.1851) > altitude (q = 0.1695) > popu-
lation density (q = 0.0954) > slope (q = 0.0774) > GDP density (q = 0.0110) > slope aspect
(q = 0.0019).

For the semi-humid area, the order of the annual mean q values was geomorphic
type (q = 0.2597) > vegetation type (q = 0.2466) > precipitation (q = 0.2250) > land-use
type (q = 0.2053) > soil type (q = 0.1637) > temperature (q = 0.0965) > population density
(q = 0.0783) > slope (q = 0.0541) > altitude (q = 0.0512) > GDP density (q = 0.0397) > slope
aspect (q = 0.0086).

(2) Results of annual mean differences:
Using the differences between the annual mean values from 2000 to 2005 and those

from 2010 to 2015 to drive the factor detector, the individual effects of the factors (repre-
sented by the q value) could be obtained, as shown in Figure 13.

For the entire LP, the order of the q values was soil type (q = 0.1287) > vegetation type
(q = 0.1142) > land-use type (q = 0.0729) > temperature (q = 0.0680) > geomorphic type
(q = 0.0532) > precipitation (q = 0.0508) > GDP density (q = 0.0463) > altitude (q = 0.0357) >
population density (q = 0.0224) > slope (q = 0.0020) > slope aspect (q = 0.0010).

Remote Sens. 2021, 13, 4380 16 of 30 
 

 

 
Figure 11. Temporal change in NDVI on regional scale on Loess Plateau during 2000–2015. 

3.2. Individual Effects of Factors on NDVI 
(1) Results of typical years: 
Using the typical annual values of 2000, 2005, 2010, and 2015 to drive the factor de-

tector, the individual effects of the factors (represented by the q value) could be obtained, 
as shown in Figure 12. 

For the entire LP, the order of the annual mean q values was precipitation (q = 0.5985) 
> vegetation type (q = 0.4790) > soil type (q = 0.3346) > land-use type (q = 0.2697) > geo-
morphic type (q = 0.2341) > temperature (q = 0.1469) > altitude (q = 0.1203) > population 
density (q = 0.1132) > slope (q = 0.0649) > GDP density (q = 0.0411) > slope aspect (q = 0.0012). 

For the semi-arid area, the order of the annual mean q values was precipitation (q = 
0.4796) > vegetation type (q = 0.3906) > soil type (q = 0.3409) > land-use type (q = 0.2368) > 
geomorphic type (q = 0.2013) > temperature (q = 0.1851) > altitude (q = 0.1695) > population 
density (q = 0.0954) > slope (q = 0.0774) > GDP density (q = 0.0110) > slope aspect (q = 0.0019). 

For the semi-humid area, the order of the annual mean q values was geomorphic type 
(q = 0.2597) > vegetation type (q = 0.2466) > precipitation (q = 0.2250) > land-use type (q = 
0.2053) > soil type (q = 0.1637) > temperature (q = 0.0965) > population density (q = 0.0783) 
> slope (q = 0.0541) > altitude (q = 0.0512) > GDP density (q = 0.0397) > slope aspect (q = 
0.0086). 

 
(a) 

Figure 12. Cont.



Remote Sens. 2021, 13, 4380 17 of 30Remote Sens. 2021, 13, 4380 17 of 30 
 

 

 
(b) 

 
(c) 

Figure 12. Effects of individual factors derived from the factor detector with inputs of typical annual 
values. (a) Entire area. (b) Semi-arid area. (c) Semi-humid area. 

(2) Results of annual mean differences: 
Using the differences between the annual mean values from 2000 to 2005 and those 

from 2010 to 2015 to drive the factor detector, the individual effects of the factors (repre-
sented by the q value) could be obtained, as shown in Figure 13. 

For the entire LP, the order of the q values was soil type (q = 0.1287) > vegetation type 
(q = 0.1142) > land-use type (q = 0.0729) > temperature (q = 0.0680) > geomorphic type (q = 
0.0532) > precipitation (q = 0.0508) > GDP density (q = 0.0463) > altitude (q = 0.0357) > pop-
ulation density (q = 0.0224) > slope (q = 0.0020) > slope aspect (q = 0.0010). 

For the semi-arid area, the order of the q values was precipitation (q = 0.1476) > soil 
type (q = 0.1373) > vegetation type (q = 0.1353) > land-use type (q = 0.0864) > temperature 
(q = 0.0500) > geomorphic type (q = 0.0417) > altitude (q = 0.0358) > GDP density (q = 0.0202) 
> population density (q = 0.0195) > slope aspect (q = 0.0030) > slope (q = 0.0010). 

For the semi-humid area, the order of the q values was GDP density (q = 0.1583) > 
geomorphic type (q = 0.1101) > soil type (q = 0.0999) > altitude (q = 0.0955) > land-use type 
(q = 0.0761) > temperature (q = 0.0705) > population density (q = 0.0520) > precipitation (q = 
0.0452) > vegetation type (q = 0.0227) > slope aspect (q = 0.0049) > slope (q = 0.0040). 

Figure 12. Effects of individual factors derived from the factor detector with inputs of typical annual
values. (a) Entire area. (b) Semi-arid area. (c) Semi-humid area.

Remote Sens. 2021, 13, 4380 18 of 30 
 

 

 
Figure 13. Effects of individual factors derived from the factor detector with inputs of differences between annual mean 
values. 

In summary, the explanatory powers of the factors on the spatial distribution state of 
the NDVI in typical years and the spatial distribution change of the NDVI during 2000–
2015 were different. In addition, the explanatory powers were different for the entire LP, 
and for the semi-arid/humid areas. With respect to the spatial distribution state of the 
NDVI in typical years, the decisive climatic factor was precipitation, the decisive environ-
mental factors were geomorphic type, soil type, and vegetation type, and the decisive an-
thropogenic factor was land-use type. With respect to the spatial distribution change of 
the NDVI during 2000–2015, in the semi-arid area, the climatic and environmental factors 
were the decisive factors, including precipitation, soil type, and vegetation type; the im-
pacts of anthropogenic factors, such as the GDP density, land-use type, and population 
density, were more significant in the semi-humid area. 

3.3. Interactive Effects between Factors on NDVI 
(1) Results of typical years: 
Using the typical annual values of 2000, 2005, 2010, and 2015 to drive the interaction 

detector, the interactive effects of the factors (represented by the q value) could be ob-
tained, as shown in Figure 14. For the entire LP and the semi-arid/humid areas, the inter-
active effects between factors were greater than their individual effects, indicating that 
none of the factors acted independently, but they had a certain enhancement effect, in-
cluding nonlinear enhancement and bi-enhancement. 

For the entire LP, 26.4% of the interactive factor combinations exhibited nonlinear 
enhancement and 73.6% exhibited bi-enhancement. The interactive effect between precip-
itation and vegetation type was the strongest (mean annual⎯q = 0.7034), followed by pre-
cipitation and soil type (mean annual⎯q = 0.6987). 

For the semi-arid area, 32.3% of the interactive factor combinations exhibited nonlin-
ear enhancement and 67.7% exhibited bi-enhancement. The interactive effect between pre-
cipitation and soil type was the strongest (mean annual⎯q = 0.6375), followed by precipi-
tation and vegetation type (mean annual⎯q = 0.6235). 

For the semi-humid area, 44.1% of the interactive factor combinations exhibited non-
linear enhancement and 55.9% exhibited bi-enhancement. The interactive effect between 
precipitation and geomorphic type was the strongest (mean annual⎯q = 0.3961), followed 
by precipitation and vegetation type (mean annual⎯q = 0.3701). 

Figure 13. Effects of individual factors derived from the factor detector with inputs of differences between annual
mean values.



Remote Sens. 2021, 13, 4380 18 of 30

For the semi-arid area, the order of the q values was precipitation (q = 0.1476) > soil
type (q = 0.1373) > vegetation type (q = 0.1353) > land-use type (q = 0.0864) > temperature
(q = 0.0500) > geomorphic type (q = 0.0417) > altitude (q = 0.0358) > GDP density (q = 0.0202)
> population density (q = 0.0195) > slope aspect (q = 0.0030) > slope (q = 0.0010).

For the semi-humid area, the order of the q values was GDP density (q = 0.1583) >
geomorphic type (q = 0.1101) > soil type (q = 0.0999) > altitude (q = 0.0955) > land-use type
(q = 0.0761) > temperature (q = 0.0705) > population density (q = 0.0520) > precipitation
(q = 0.0452) > vegetation type (q = 0.0227) > slope aspect (q = 0.0049) > slope (q = 0.0040).

In summary, the explanatory powers of the factors on the spatial distribution state
of the NDVI in typical years and the spatial distribution change of the NDVI during
2000–2015 were different. In addition, the explanatory powers were different for the entire
LP, and for the semi-arid/humid areas. With respect to the spatial distribution state of
the NDVI in typical years, the decisive climatic factor was precipitation, the decisive
environmental factors were geomorphic type, soil type, and vegetation type, and the
decisive anthropogenic factor was land-use type. With respect to the spatial distribution
change of the NDVI during 2000–2015, in the semi-arid area, the climatic and environmental
factors were the decisive factors, including precipitation, soil type, and vegetation type; the
impacts of anthropogenic factors, such as the GDP density, land-use type, and population
density, were more significant in the semi-humid area.
3.3. Interactive Effects between Factors on NDVI

(1) Results of typical years:
Using the typical annual values of 2000, 2005, 2010, and 2015 to drive the interaction

detector, the interactive effects of the factors (represented by the q value) could be obtained,
as shown in Figure 14. For the entire LP and the semi-arid/humid areas, the interactive
effects between factors were greater than their individual effects, indicating that none of the
factors acted independently, but they had a certain enhancement effect, including nonlinear
enhancement and bi-enhancement.

For the entire LP, 26.4% of the interactive factor combinations exhibited nonlinear
enhancement and 73.6% exhibited bi-enhancement. The interactive effect between pre-
cipitation and vegetation type was the strongest (mean annual?q = 0.7034), followed by
precipitation and soil type (mean annual?q = 0.6987).

For the semi-arid area, 32.3% of the interactive factor combinations exhibited nonlinear
enhancement and 67.7% exhibited bi-enhancement. The interactive effect between precipi-
tation and soil type was the strongest (mean annual?q = 0.6375), followed by precipitation
and vegetation type (mean annual?q = 0.6235).

For the semi-humid area, 44.1% of the interactive factor combinations exhibited non-
linear enhancement and 55.9% exhibited bi-enhancement. The interactive effect between
precipitation and geomorphic type was the strongest (mean annual?q = 0.3961), followed
by precipitation and vegetation type (mean annual?q = 0.3701).

(2) Results of annual mean differences:
Using the differences between the annual mean values from 2000 to 2005 and those

from 2010 to 2015 to drive the interaction detector, the interactive effects of the factors
(represented by the q value) could be obtained, as shown in Figure 15.
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Figure 14. Effects of interactive factors derived from the interaction detector with inputs of typical
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arid area. (c) Semi-humid area.

For the entire LP, 90.9% of the interactive factor combinations exhibited nonlinear
enhancement and 9.1% exhibited bi-enhancement. The interactive effect between soil type
and temperature was the strongest (q = 0.2194), followed by soil type and vegetation type
(q = 0.2164).

For the semi-arid area, 83.6% of the interactive factor combinations exhibited non-
linear enhancement and 16.4% exhibited bi-enhancement. The interactive effect between
precipitation and soil type was the strongest (q = 0.2438), followed by soil type and land-use
type (q = 0.2379).

For the semi-humid area, 61.8% of the interactive factor combinations exhibited non-
linear enhancement and 38.2% exhibited bi-enhancement. The interactive effect between
GDP density and geomorphic type was the strongest (q = 0.2470), followed by GDP density
and soil type (q = 0.2300).
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3.4. Ranges or Types of Factors for NDVI

Using the typical annual values for 2000, 2005, 2010, and 2015 to drive the risk detector,
the ranges or the types of factors for the NDVI could be obtained, as shown in Figure 16.
The ranges or the types of factors for the NDVI were different in different years in the
entire LP, and in the semi-arid/humid areas.

For the entire LP, the suitable precipitation range for the NDVI was greater than
650 mm (as the precipitation increased, the NDVI increased), the temperature range was
smaller than 0 ◦C (as the temperature increased, the NDVI decreased first and then in-
creased), the altitude ranged from 90 to 790 m or from 2963 to 4914 m (as the altitude
increased, the NDVI decreased first and then increased), the slope ranged from 15◦ to
20◦, the slope aspect was no slope aspect, the geomorphic type was large undulating
mountain, the soil type was eluvial soil, the vegetation type was broad-leaved forest, the
GDP density ranged from 500 to 1000 CNY/km2, the population density ranged from 200
to 500 people/km2, and the land-use type was woodland.

For the semi-arid area, the suitable precipitation for the NDVI ranged from 450 to 550 mm,
the temperature range was smaller than 0 ◦C, the altitude ranged from 2963 to 4914 m, the
slope ranged from 20◦ to 25◦, the slope aspect was no slope aspect, the geomorphic type was
large undulating mountain, the soil type was anthropogenic soil, the vegetation type was
cultivated vegetation, the GDP density ranged from 500 to 1000 CNY/km2, the population
density ranged from 200 to 500 people/km2, and the land-use type was farmland.

For the semi-humid area, the suitable precipitation range for the NDVI was greater
than 650 mm, the temperature range was smaller than 0 ◦C, the altitude ranged from 2963
to 4914 m, the slope ranged from 15◦ to 20◦, the slope aspect was no slope aspect, the
geomorphic type was large undulating mountain, the soil type was eluvial soil, the vegetation
type was broad-leaved forest, the GDP density ranged from 3000 to 5000 CNY/km2, the
population density ranged from 200 to 500 people/km2, and the land-use type was woodland.
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3.5. Differences of Significance between Factors on NDVI

Using the typical annual values for 2000, 2005, 2010, and 2015 to drive the ecological
detector, the differences of significance between factors for the NDVI could be obtained,
as shown in Table 5. For the entire LP, the differences were not significant between the
precipitation and other factors in the different years (i.e., relatively certain). The significant
differences between the soil type and the other factors did not vary in the different years
(i.e., relatively certain). The soil type showed no significant differences with precipitation,
GDP density, population density, and land-use type, but it exhibited significant differences
with other factors. The differences of significance varied between the other pairs of factors
in the different years (i.e., relatively uncertain).

Table 5. Statistical significance of factors derived from the ecological detector with inputs of typical annual values.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1
X2 N
X3 N N
X4 N N N
X5 N N N/Y N
X6 N Y Y Y Y
X7 N Y Y Y Y Y
X8 N Y N/Y Y Y Y Y
X9 N N N/Y N/Y N/Y N/Y N N
X10 N N/Y N/Y N/Y N/Y N/Y N N N/Y
X11 N Y Y Y Y Y N N Y Y

Note: Y indicates that there is a significant difference in the effect of two factors on NDVI (confidence is 95%); N indicates no significant
difference; N/Y indicates that there is (or is no) significant difference across different years.
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4. Discussion
4.1. Comparison between Semi-Arid and Semi-Humid Areas

Climatic factors influence the environmental conditions of the LP; while environmental
factors determine the range and intensity of the human activities. The three types of factors
are not independent of each other, and they interact with each other to influence the spatial
distribution of the NDVI and its evolution over time on the LP. Based on the above results,
there were significant spatial differences in the NDVI and its driving forces on both sides
of the 400 mm isohyet on the LP.

For the semi-arid area to the northwest of the 400 mm isohyet, a number of obser-
vations were made. (1) The analysis of the spatial–temporal evolution revealed that the
precipitation is relatively small and the temperature is relatively low, with annual mean
values of 294 mm and 7.6 ◦C, respectively. The geomorphic types are mainly hills and
plains (accounting for 12.3 and 11.0%, respectively). The soil types are mainly primary soil
and arid soil (accounting for 11.1 and 8.0%, respectively). The main vegetation types are
grassland, cultivated vegetation, and desert (accounting for 15.9, 7.2 and 5.0%, respectively).
The grassland and farmland are the main land-use types (accounting for 16.4% and 6.9%
in 2015, respectively). Moreover, the GDP density is relatively small (772 CNY/km2 in
2015). The population density is relatively small (96 people/km2 in 2015). The vegetation
coverage is relatively low (annual mean NDVI of 0.346), and the coefficient of variation is
relatively large (mean value of 0.1926). The growth rate of the NDVI was 0.0049/a after
2000 when the GGP was implemented. (2) The analysis based on the GDM revealed the
following: The individual factors that determine the changes in the spatial distribution of
the NDVI are the climatic and environmental factors, such as precipitation (q = 0.1476), soil
type (q = 0.1373), vegetation type (q = 0.1353), temperature (q = 0.0500), and geomorphic
type (q = 0.0417). The main interactive factors are precipitation and soil type (q = 0.2438),
and soil type and land-use type (q = 0.2379). The suitable precipitation for the NDVI ranged
from 450 to 550 mm, the temperature range was smaller than 0 ◦C, the altitude ranged
from 2963 to 4914 m, the slope ranged from 20◦ to 25◦, the slope aspect was no slope aspect,
the geomorphic type was large undulating mountain, the soil type was anthropogenic
soil, the vegetation type was cultivated vegetation, the GDP density ranged from 500
to 1000 CNY/km2, the population density ranged from 200 to 500 people/km2, and the
land-use type was farmland.

Observations were also made regarding the semi-humid area to the southeast of the
400 mm isohyet. (1) The analysis of the spatial–temporal evolution revealed that both the
precipitation and the temperature are relatively high, with annual mean values of 531 mm
and 8.3 ◦C, respectively. The geomorphic types are mainly hills and medium undulating
mountains (accounting for 19.4 and 13.3%, respectively). The soil types are mainly primary
soil and semi-eluvial soil (accounting for 30.9 and 14.9%, respectively). The main vegetation
types are cultivated vegetation and grassland (accounting for 37.8 and 9.2%, respectively).
The farmland and grassland are the main land-use types (accounting for 25.4 and 24.8%
in 2015, respectively). Moreover, the GDP density is relatively large (834 CNY/km2 in
2015). The population density is relatively large (212 people/km2 in 2015). The vegetation
coverage is relatively high (annual mean NDVI of 0.619), and the coefficient of variation is
relatively small (mean value of 0.1165). The growth rate of the NDVI was 0.0093/a after
the implementation of the GGP in 2000. (2) The analysis based on the GDM revealed the
following. The individual factors that determine the changes in the spatial distribution of
the NDVI are the anthropogenic factors, such as GDP density (q = 0.1583), land-use type
(q = 0.0761), and population density (q = 0.0520). The main interactive factors are GDP
density and geomorphic type (q = 0.2470), and GDP density and soil type (q = 0.2300). The
suitable precipitation range for the NDVI was greater than 650 mm, the temperature range
was smaller than 0 ◦C, the altitude ranged from 2963 to 4914 m, the slope ranged from 15◦

to 20◦, the slope aspect was no slope aspect, the geomorphic type was large undulating
mountain, the soil type was eluvial soil, the vegetation type was broad-leaved forest, the



Remote Sens. 2021, 13, 4380 26 of 30

GDP density ranged from 3000 to 5000 CNY/km2, the population density ranged from 200
to 500 people/km2, and the land-use type was woodland.

The conclusions above have important implications for ecological conservation and
restoration in the different regions. The impacts of the climatic, environmental, and
anthropogenic factors need to be comprehensively considered when formulating and
implementing policies. The NDVI is sensitive to the climatic and environmental factors
related to water changes in the semi-arid area where there is relatively little water. Therefore,
appropriate vegetation types should be selected, regional vegetation structures should
be optimized, and high water consumption vegetation should be gradually replaced by
low water consumption vegetation such as grass and drought-tolerant plants. In the semi-
humid area, the regional water conditions basically meet the needs of vegetation growth
because of the suitable climatic and natural conditions. Moreover, human activities have
a relatively large disturbance effect on the NDVI. Thus, more positive human activities
should be encouraged, including Grain for Green, afforestation, urban greening, and
agricultural modernization projects. Furthermore, negative human activities should be
controlled, including disordered urban expansion, population expansion, and overgrazing.

4.2. Connections and Distinctions with Other Studies

(1) Vegetation NDVI: In this study, it was found that the NDVI on the entire LP has
increased significantly after 2000 when the GGP was implemented, consistent with the
findings of [26,37,38].

(2) Climatic factors: In this study, it was found that among all factors, precipitation
has the greatest influence on vegetation growth in the semi-arid area of the LP, consistent
with the findings of [39–41]. In the semi-humid area, precipitation is not the decisive factor
controlling vegetation growth because of the relatively good water conditions. Several
studies have suggested that temperature is also a key factor affecting the vegetation growth.
In general, when the temperature is low, the physiological activity of the vegetation is
low. An increase in temperature promotes photosynthesis and vegetation growth, but as
the temperature increases further, the growth of vegetation is inhibited by the accelerated
evaporation and soil drying [42,43]. It was found in this study that conditions are suitable
for vegetation growth when the temperature smaller than 0 ◦C on the LP. This is the case
because the vegetation growth is influenced by many factors other than temperature. It
can be seen from Figures 2–5 and 8 that the NDVI value is large in the southwest corner
of semi-arid area of the LP, where the precipitation is large, the land-use types are mainly
woodland and grassland, and the altitude ranges from 2963 m to 4914 m (the high altitude
causes the low temperature). The finding is consistent with the results of [29]. It was
also found that compared with other factors, temperature has relatively small explanatory
power in terms of the spatial distribution and its change in the NDVI on the LP, which
agrees with the findings and results of [39].

(3) Environmental factors: In this study, it was found that the environmental factors
such as topographic types have an impact on the vegetation growth and restoration,
consistent with the findings and results of [44]. The study revealed that the explanatory
power of interactions between the factors would be increased for the spatial distribution
and its change in the NDVI, which is consistent with the practical situation. For instance,
the soil moisture is lower for steeper slopes, inhibiting vegetation growth. In this study, it
was found that the NDVI value is large when the slope is between 15◦ and 20◦, while it
decreases when the slope becomes greater.

(4) Human factors: Certain studies have suggested that the regional land-use types
have changed since the implementation of the GGP [45,46], which is not consistent with the
results of this study. The reason for this may be that the spatial resolutions of the remote
sensing data used in these studies are different. In this study, it was found that the con-
servation and restoration of the original woodland and grassland have been strengthened
since the implementation of the GGP on the LP, resulting in a significant increase in the
NDVI throughout the entire region. Additionally, many studies have used the NDVI to
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predict the grain yield because of the significant correlation between the grain yield and
the NDVI [47,48]. The LP is a dry farming area, which has been affected by the scarcity
of precipitation for a long time, resulting in a low grain yield [49]. With the agricultural
technology developing recently, the optimization and adjustment of the crop planting
structure has resulted in a continuous improvement in the grain yield on the LP. Therefore,
the NDVI has increased significantly [19].

4.3. Possible Future Work

There is further research that can be carried out, including the following. (1) The factors
affecting the spatial–temporal evolution of the NDVI are extremely complex. Due to data
limitations, certain factors are not currently considered, such as agricultural fertilization,
irrigation area, and CO2 concentration [50,51], but can be further improved with the
acquisition of new data in the future. (2) The interaction detector of the GDM only considers
the interactions between two factors. There are interactive effects involving more than two
factors. The combined impacts of multiple factors would provide insights on the evolution
of vegetation, which can be considered in the future by introducing other methods, such as
the analytical hierarchy process (AHP) and principal component analysis (PCA) [52]. (3) It
is necessary to perform further collection of data with a relatively higher resolution through
field investigations and monitoring to determine the practical situation of the surface
undulations in the study area. (4) The cumulative and time-lag effects of various factors
and indicators (e.g., standardized precipitation and evapotranspiration index, SPEI) should
also be evaluated in the future [53]. (5) It is possible for the GDM to identify the impacts
of driving forces on the evolution of vegetation from the perspective of spatial analysis
and mathematical statistics. In order to further explore the evolutionary mechanism of
vegetation, some methods from the field of landscape studies can be introduced in the
future [54].

5. Conclusions

The main conclusions of this paper include the following.
(1) The spatial–temporal evolution characteristics of the NDVI on the entire LP, and

in the semi-arid/humid areas during 2000–2015 were analyzed via the linear regression,
coefficient of variation, and transfer matrix models.

• The proportion of the total area with an NDVI of greater than 0.6 increased significantly,
and the proportions of relatively low vegetation (NDVI of 0.2 to 0.4) converted to
medium vegetation (NDVI of 0.4 to 0.6), medium vegetation converted to relatively
high vegetation (NDVI of 0.6 to 0.8), and relatively high vegetation converted to high
vegetation (NDVI of 0.8 to 1.0) accounted for the largest proportions.

• The annual mean value of the NDVI on the LP was 0.529, decreasing from the south-
eastern semi-humid area (0.619) to the northwestern semi-arid area (0.346). The mean
value of the NDVI coefficient of variation was 0.1406 on the LP, increasing from the
southeastern semi-humid area (0.1165) to the northwestern semi-arid area (0.1926).

• The NDVI on the LP exhibited an upward trend. The annual growth rate of the NDVI
in the entire LP was 0.0079, and the growth rate in the semi-humid area (0.0093) was
higher than in the semi-arid (0.0049) area after the GGP was implemented.

• The area of the change in land-use types on the LP was not significant. Overall, a
positive impact on the NDVI was found by the changes in the land-use type. The
largest increments of the NDVI were due to grassland, farmland, and woodland, and
these land-use types did not change.

(2) The GDM was adopted to quantitatively identify the impact of multiple factors on the
spatial–temporal evolution of the NDVI on the entire LP, and in the semi-arid/humid areas.

• Using the factor detector, it was found that in the semi-arid area, the climatic and
environmental factors were the decisive factors influencing the spatial distribution
changes of the NDVI during 2000–2015, including precipitation, soil type, and vegeta-
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tion type. The impacts of anthropogenic factors, such as the GDP density, land-use
type, and population density, were more significant in the semi-humid area.

• Using the interaction detector, it was found that the explanatory power of interactions
between factors were greater than their individual effects, exhibiting two types of
nonlinear enhancement and bi-enhancement. For the semi-arid area, 83.6% of the
interactive factor combinations exhibited nonlinear enhancement and 16.4% exhibited
bi-enhancement. The interactive effect between precipitation and soil type was the
strongest. For the semi-humid area, 61.8% of the interactive factor combinations ex-
hibited nonlinear enhancement and 38.2% exhibited bi-enhancement. The interactive
effect between GDP density and geomorphic type was the strongest.

• Using the risk and ecological detectors, the ranges or types of various factors that are
suitable for vegetation growth and the differences of significance between factors for
the NDVI on the LP were determined.

The conclusions of this study have important implications for policy makers and
administrative managers in terms of the formulation and implementation of ecological
conservation and restoration strategies in the different regions. In the semi-arid area,
appropriate vegetation types should be selected, regional vegetation structures should
be optimized, and high water consumption vegetation should be gradually replaced by
low water consumption vegetation such as grass and drought-tolerant plants. In the semi-
humid area, more positive human activities should be encouraged, including Grain for
Green, afforestation, urban greening, and agricultural modernization projects. Furthermore,
negative human activities should be controlled, including disordered urban expansion,
population expansion, and overgrazing.
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