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Abstract: Remote sensing applications of change detection are increasingly in demand for many areas
of land use and urbanization, and disaster risk reduction. The Sendai Framework for Disaster Risk
Reduction and the New Urban Agenda by the United Nations call for risk monitoring. This study
maps and assesses the urban area changes of 23 Mexican-USA border cities with a remote sensing-
based approach. A literature study on existing studies on hazard mapping and social vulnerability in
those cities reveals a need for further studies on urban growth. Using a multi-modal combination
of aerial, declassified (CORONA, GAMBIT, HEXAGON programs), and recent (Sentinel-2) satellite
imagery, this study expands existing land cover change assessments by capturing urban growth
back to the 1940s. A Geographic Information System and census data assessment results reveal
that massive urban growth has occurred on both sides of the national border. On the Mexican side,
population and area growth exceeds the US cities in many cases. In addition, flood hazard exposure
has grown along with growing city sizes, despite structural river training. These findings indicate a
need for more risk monitoring that includes remote sensing data. It has socio-economic implications,
too, as the social vulnerability on Mexican and US sides differ. This study calls for the maintenance
and expansion of open data repositories to enable such transboundary risk comparisons. Common
vulnerability variable sets could be helpful to enable better comparisons as well as comparable flood
zonation mapping techniques. To enable risk monitoring, basic data such as urban boundaries should
be mapped per decade and provided on open data platforms in GIS formats and not just in map
viewers.

Keywords: aerial image; satellite imagery; change detection; land-use change; urban sprawl; decision-
support; sister-cities; Sendai Framework; New Urban Agenda; risk monitoring

1. Introduction

At the international level, the call for monitoring urban growth and monitoring disas-
ter risk led to a series of strategies in urban development and disaster risk reduction [1,2].
Findings have shown that urban areas often grow into areas of increased disaster risk, such
as coastal or fluvial hazard zones [3]. Global attention to a related topic of population
dynamics, the migration topic [4], has lately been expanded on so-called environmen-
tal drivers of migration [5]. Cross-border assessments are in demand, too, since natural
hazards such as floods do not stop at administrative boundaries [6,7]. However, human
planning and activity influence risk exposure, vulnerability, and resilience differently
within different administrative boundaries [8]. These differences often become most ap-
parent along national borders, for example, by the different extents of urban development.
However, what is missing so far are cross-border urban change assessments that combine
urban growth and natural hazard aspects. These assessments are important since hazards
such as floods, earthquakes or storms do not stop at administrative borders. However,
exposure, vulnerability and preparedness vary at national borders on each side, resulting
in different risk patterns. Understanding natural hazard and risk patterns cannot only help
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to save human lives but also can contribute to solving conflicts. For example, migration is
an additional factor to consider at national borders. In 2021, between 14–16,000 immigrants
from Haiti and other countries had to camp under a bridge at a Mexican-USA border city,
Del Rio, a major transportation and trade hub [9–11]. If a flood or tornado had occurred
during this time, that binational event would have become an additional human crisis.
Another constraint often is data availability to warn people of hazards on both sides of a na-
tional border or to include such knowledge into spatial planning. Therefore, it is important
to utilize spatial assessment capabilities to inform the public and decision-makers about
the risk of natural hazards and how this risk varies across borders and develops over time.

The Mexican-US border receives media attention due to the influx of migrants and
associated problems with it. While this cross-border region experiences urban growth, the
exposure to natural hazards such as riverine floods also may grow. All major cities covered
here are along rivers. Social vulnerability is at the highest levels in these border areas on the
US side [12], while on the Mexican side it is low to medium [13]. At segments, the Mexican-
US border is a limitrophe, where the river defines the international boundary. River courses
are subject to change due to flooding, due to natural or man-made reasons [14], which is
another reason flood monitoring along international borders is of high national interest.
Illegal border crossing and tunneling activities have modified drainage patterns during
monsoonal floods [15]. Floods do not stop at borders or even flood the areas directly
along a border wall, for example, in Nogales [16]. This has led to cross-border cooperation
between scientists developing joint assessments and cooperation between administrations
to build joint flood defenses.

Urban growth studies using remote sensing data have become a standard approach [17–19].
However, combining it with growth into natural hazard-prone areas is less common. There
is an increasing interest in multi-hazard and multi-risk assessments, utilizing demographic
data in spatial assessments for aspects of resilience [20] or vulnerability [21]. However,
aspects of urban growth that are linked to risks and vulnerabilities, such as slum ar-
eas and poorer populations, are already analysed using remote sensing at different time
intervals [22]. Another gap is the utilization of declassified satellite data for change de-
tection. There are few studies yet using such data for change detection of coastlines [23],
glacier changes [24,25], forest cover change [26], land-use change in general [27], or ur-
ban growth [18,28–30]. Some recent developments have analyzed constraints of image
interpretation by humans [29,30] and opportunities by multitemporal and multi-criteria
assessments of urban change and urban risks [31,32].

This article aims at analyzing urban growth and its dynamics along cross-border
cities as a starting point to understand and document natural hazard exposure growth.
International programs such as the Sendai Framework [2] and its related monitoring [33]
encourage disaster risk monitoring using spatial assessment. This assessment and infor-
mation may, later on, be expanded to analyze different social vulnerability and resilience
profiles and include other natural and man-made hazards, too. Remote sensing-related
international bodies such as UNSPIDER underline the demands and opportunities remote
sensing data provide for a more comprehensive risk monitoring.

Urban growth assessments using remote sensing data are widely applied for individ-
ual Mexican cities [34] or US counties [35]. However, what is novel in this article is the
assessment of all major cities along the border in one assessment. Moreover, the typical
time span covered by most studies ranges back to the earliest Landsat data, which is
expanded by this study on the range back to the 1940s using aerial imagery, and CORONA
satellite imagery starting from the 1970s, where available. In addition, the assessment also
investigates how urban growth varies between the Mexican and US sides of the border and
how this growth expands into flood hazard exposed areas differently.

The main research question guiding this article is: How did Mexican-US border cities
develop over time and concerning flood hazards?



Remote Sens. 2021, 13, 4422 3 of 27

2. State of the Art
2.1. Using Documented Search Terms

Systematic assessment of the existing literature identifies studies on this thematic
area. The focus follows the main research question above, identifying Mexican and US
cities and related studies on urban growth, usage of remote sensing in those studies,
and relations to disaster risk. Many synonyms were considered and documented in the
literature search, such as urban growth or sprawl or expansion (Table A1). Another term
with many variations identified in this local context is ‘twin cities’ of the border [36] or
‘sister cities’, ‘cross-border towns’, ‘transboundary’ urban areas, etc., along the Mexican-US
border, have long been a topic of investigation [37], using remote sensing data supported
such assessments, especially after Landsat satellite imagery became publicly available.

2.2. Urban Growth Analysis along the Mexican-US Border

Research on border cities or urban areas at the northern border of Mexico concentrates
on the amount of urban growth (see Table 1) and disparities of socio-economic condi-
tions [38–40] or related marginality in terms of access to basic services [41]. Studies on
individual (twin) cities go more in-depth on topographic, demographic, and infrastructure
factors contributing to or showcasing growth [42,43].

2.3. Usage of Aerial and Satellite Imagery for Measuring Urban Growth Related to Hazards

Aerial imagery has been used to capture land cover change, for individual local areas
such as Tijuana, with data ranging back to 1938 [44]. Satellite imagery is frequently used to
analyze and document urban growth or model future urban growth [45,46]. For individual
cities or transboundary cities along the area of interest, urban growth analyses using remote
sensing include studies on Tijuana [47], Ciudad Juarez and El Paso [48], Mexicali [49], Agua
Prieta, and Douglas [50]. No individual study on urban growth, sprawl, or expansion could
be found for a few cities using remote sensing, including San Diego, Calexico, Ciudad
Acuna, Del Rio, Piedras Negras, and Eagle Pass, San Luis Rio Colorado, or San Luis. No
single study could be found for a few cities, either as individual study or in conjunction
with other cities, for example, Ciudad Acuna, Del Rio, San Luis Rio Colorado, San Luis,
Reynosa, Hidalgo, or Matamoros. These remote sensing studies probably exist but have
not been identified using several search terms (see Table A1). Few studies have analyzed
several cross-border cities along this border regarding urban growth, and if so, not always
their twin cities and not all major cities together [51]. Few other studies investigated several
cities along the border but only in one country [52,53].

2.4. Flood Hazard and Risk Research

Water availability is a topic in this area due to water scarcity in arid regions and
occasional floods. Land-use change and urban growth often exacerbate water scarcity,
different on each side of the border, depending on different growth rates [54]. A watershed
analysis is conducted as a basis for identifying flood zones in Nogales [16]. Research
on climate change adaptation covers the interrelation between urbanization and water
scarcity [55] and related flood or landslide hazards [47]. Social vulnerability in conjunction
with flood hazard has been analyzed using census data for Ciudad Acuna and Del Rio [56].

2.5. State-of-the-Art Classification Models

Spatial mapping of urban features and growth using remote sensing images has a
long tradition of classification methods [57,58]. Recently, many machine or deep learning
forms have been applied [59–61], using neural networks for quite some time already [62,63].
Support vector machine or random forest are common approaches [64,65]. Developments in
the past years include multi-temporal, multi-spectral, and multi-modal analyses in different
areas of application concerning land use [60,66–69]. Time series analysis is a field especially
useful for urban growth detection [70,71], even despite cloud coverage [72]. Image fusion
to enhance spatial resolution is also an established field and has been long applied with
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Landsat images and other multi-spectral data [73–75], but has lately been advanced by
modern approaches with hyperspectral data [76]. Object-based classification often targets
building extraction and contributes to urban object-based image analysis [77,78]. Another
emerging field is radar satellite data applied for urban studies [79]. LiDAR data is also
increasingly used for both urban and natural hazard assessments [80,81]. Night-time light
or emission is another idea capturing urban features with remote sensing [82,83] and dates
back to early applications of thermal information, too [84]. NDVI is also used for urban
vegetation, but can also be used for other urban feature identification [58,82].

2.6. Summary of Major Gaps Identified

Table 1 shows several studies on individual cities along the Mexican-US border con-
cerning urban growth, of whom many are using remote sensing. There are fewer studies
on multiple cities at once, and by our search terms (see Table A1), no comprehensive
study covering all cities was identified. Individual city analyses often are covered by the
same or similar author teams for successive studies. The covered data range varies much,
complicating direct comparisons and underlines the need for a study that uses a uniform
approach. Of course, this is dependent on data availability. The data time ranges go back
to the 1970s and are mostly conducted using early Landsat data. Even earlier CORONA
satellite data or aerial imagery are missing. Few findings combine urban growth with flood
hazard assessment, and even fewer cover social vulnerability.

Table 1. Literature for individual cities of the Mexican-US border covering urban growth with mapping, and other analysis.

Authors Abstract or
Full-Text Cities Remote Sensing

(and Data Range) Hazard Social Vulnerability

Korbulic 2012 Full-text
Tijuana & San Diego; Mexicali

& Calexico; San Luis RC &
San Luis; El Centro; Yuma

Yes, 1985–2010 No No

Sánchez Rodríguez &
Morales Santos, 2018 Full-text Tijuana Yes, 1972–2014 Climate Change,

flood, landslides Yes

Leyva–
Camacho et al.,

2010
Full-text Mexicali Yes, 1990–2005 No No

Norman et al., 2004 Full-text Agua Prieta & Douglas Yes, 1973–2000 No No

Myint et al., 2014 Abstract Nogales & Nogales Yes, 1984–2004 - -

Norman et al., 2009 Full-text Nogales & Nogales Yes, 1975–2002 No No

Norman et al., 2010 Full-text Nogales & Nogales Yes Flood No

Mubako et al., 2018 Full-text Ciudad Juarez & El Paso,
Las Cruzes Yes, 1990–2015 No No

Zhao et al., 2017 Abstract Nuevo Laredo & Laredo Yes - -

Zhao et al., 2020 Full-text Nuevo Laredo & Laredo Yes, 1985–2014 No No

Pena 2012 Full-text
Rio Grande City-Roma,

McAllen-Edinburg-Mission,
Harlingen-Brownsville

Yes, 1990–2010 No No

Leigh et al., 2009 Full-text Counties Cameron, El Paso,
Hidalgo, Maverick, Willacy Yes, 1996–2006 No No

3. Method

A spatial assessment using a Geographic Information System (GIS) combines aerial
and satellite imagery, open-source maps, and demographic information. The approach
is a spatial risk assessment that analyzes hazard and impact features: spatial signatures
and growth of settlements, hazard zones, and information about social vulnerabilities. The
stepwise assessment approach first identifies suitable remote sensing data from multiple
temporal phases of urban development, then conducts cropping and georectification to
enable further analysis in a GIS (Figure 1). Next, urban boundaries are mapped, and flood
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exposure and social vulnerability are extracted from official sources. Finally, all information
is integrated into a table that compares important spatial risk features: of urban exposure,
flood zones, and their respective growth rates, and spatial differences in social vulnerability.
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3.1. Data Used

Literature sources have been searched on google scholar using specific key search
terms documented in the table in Table A1. Census statistics were obtained from public
websites, which appeared to be official governmental and, therefore, relatively reliable
statistics (see the table in Table A2).

Spatial data on urban extent were analyzed from satellite, and aerial images (see
Tables 2 and A2) since existing urban footprint data or urban boundaries were not found to
reach back into the past far enough to capture the massive growth that occurred. The USGS
Earth Explorer data portal was used since it is one of the most comprehensive data archives,
a reliable source for decades, and provides rare data reaching back into the past. Aerial
images have been accessed to the earliest date accessible, and 23 image tiles have been
manually selected, downloaded, and georectified. In areas where those imageries were not
available, additional old satellite imagery has been obtained from this platform; 9 images
of CORONA satellite data have been manually selected, downloaded, and georectified.
Images of Sentinel 2 satellite data have been used via a WMS service in QGIS to capture
the most recent urban perimeters.

The aerial imagery we used has a scale of 1:12,000–1:60,000, with one exception
(1:130,000). However, in most places, only one set of data was available. Only for selected
locations such as El Paso, aerial imagery in different scales was available; the oldest data
from 1:3120 (1950) to 1:50,000 (1942). Since the images from 1942 were of relatively bad
quality, we used aerial images from 1956 for these two border cities (Ciudad Juarez and El
Paso) and as a compromise between good quality, resolution, and frame size to make the
manual download, georectification, and digitization work feasible within a reasonable time.
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Table 2. Aerial and satellite imagery used for this study.

City in Mexico City in the USA
Declassified Satellite Data

Available for Download, High
Resolution, Without Clouds, Date

Aerial Imagery
Available and Date

Tijuana San Diego “1984-03-08” F006, “1972-11-25” F23 “1955-01-22” F38, 39

Mexicali Calexico “1976-02-28” “1953-05-08” F120, 122, 45

San Luis Rio Colorado Yuma “1980-08-10” “1972-11-13” “1949-05-04” F34–36, 90

Nogales Nogales “1976-01-10”, “1976-08-07”,
“1978-06-23” “1951-09-05” F23, 33

Agua Prieta Douglas “1976-01-28” “1958-03-10”

Ciudad Juarez El Paso “1978-04-17” (20 feet) “1984-01-18”
(NIR, US side) “1978-04-17” “1956-08-30”

Ciudad Acuna Del Rio “1982-08-05”, 1972-01-28 (Ciudad
Acuna only) “1947-07-31”, F26–28, F33–35,

Piedras Negras Eagle Pass “1978-03-27” “1947-08-08” F56, 96–97

Nueovo Laredo Laredo “1979-06-13” (only one tile available)
“1976-02-27” “1947-08-10” F43, 41

Reynosa McAllen Cloud coverage “1946-10-03” F29, 27, 25, 19, 17, 15

Matamoros, Mexico Brownsville Cloud coverage “1946-10-12” F8, 10, 35, 37, 39

3.2. Methodological Steps

The case study areas are selected according to urban settlements on both sides of the
Mexican-US border, which also have an assumed natural hazard exposure due to rivers
nearby. Due to the number of possible locations, only major twin cities are selected, with
at least around 100,000 inhabitants combined. Tecate, MX is excluded for this reason,
for example.

Using less known older aerial and satellite imagery (declassified data from CORONA,
GAMBIT, HEXAGON programs), the pre-existing land surface from the 1940/1950s and
1970s is mapped and compared with areas recently overgrown by settlement and infrastruc-
ture (using Sentinel 2 data). This is conducted in QGIS, an open-source software, so that
the results can later be shared with the public. QGIS also allows computing on different
computers (Microsoft, Apple, Linux). From aerial images, the black frames were cut to
enable mosaics better. The images were georectified, ground control points saved, to later
on sharing this processed data publicly. The aerial images, in scales between 1:20,000
and 1:130,000) were manually georectified to WGS84 UTM zone 14N and EPSG 32614
in QGIS at scales below 1:2500 using Sentinel 2 satellite data. Ground control points are
documented, and polynomial transformations 1–3 were compared to identify the best fit
(Table with details provided in our open data repository). Since arid lands and semi-desert
areas are involved, georectification in these areas was rather difficult. The amount of GCP
was therefore focused and maximized within urban areas.

A maximum spatial resolution of different scales and products was identified (see
data sub-sections below) and then consistently used for georectification and digitization
of urban built-up areas. Visual and manual mapping was conducted since the grayscale
images’ spatial resolution is often not sufficient for supervised or object-based classification.
Polygon shapefiles are created to enable area calculation later on. The urban area coverage
from the aerial images was mapped at a scale of 1:2000 to 1:5000. Suburban areas or single
houses at the city perimeter were excluded when the distances between the perimeter and
the adjacent urban area signature exceeded 100 m.

The recent urban land use coverage from the year 2020 was mapped using Sentinel 2
data. At a scale between 1:10,000 to 1:25,000, urban boundaries were mapped according
to the visibility of buildings, airports and runways, and industrial sites. Road and rail
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infrastructure were only taken into account within the city boundaries. Urban parks were
included when they were surrounded by the urban features described before. Golf courses
were excluded as well as city areas with roads only such as new designated urban areas.
Urban features of suburban development were excluded when the distance to the core
city area exceeded 1 km. The guiding idea was to cover urban areas that could potentially
receive flood damage. River embankments were excluded from mapping when not covered
by the built environment to enable mapping of flood risk more precisely. Each city received
one separate shape boundary. Since we were mapping 23 cities, the time factor played an
important role, and manually creating the boundaries was more time-efficient than the
classification methods we tried.

The mapping of urban areas via aerial and satellite images using GIS also permits
calculating the growth of urban areas. This enables a comparison of relative growth
but is not understood to be exact. Limitations of aerial size calculations can be due to
several reasons such as missed built-up areas due to image quality, the skill of the visual
interpretation, or re-projection [85]. Exceptional growth rates such as for San Luis are due
to the tiny area in the 1950s and the spatial resolution of the images and therefore are not
to be understood as absolute, only relative indications of growth rates.

Flood exposure analysis is conducted using publicly available data as a GIS file for
download (see data sections and Table A2). The flood area polygons are clipped with the
mapped urban areas for each time period. Area sizes are calculated in the GIS. Data for
flood zones in Mexico were identified in the Atlas Nacional de Riesgos por Inundación
(ANRI, see Table A2) but were unavailable as shapefiles. An email was sent to CENAPRED
to request the data, but no reply was received. Therefore, the respective best available
flood scenarios (100 years, except for Ciudad Juarez, where 50 years and 100 years were
combined) were mapped for each city using screenshots of the Atlas. Two different
scenario types are available, with better modeling resolutions for selected cities. These
were mosaiced, georeferenced, vectorized, cleaned, and then clipped with the urban areas
in QGIS.

Social vulnerability data were retrieved from public platforms of official institutions, too.
Data processed and generated were provided to the public on a data repository:

(https://riskncrisis.wordpress.com/data accessed on 31 October 2021). At the end of
all methodological steps, the factors contributing to urban area, growth, hazard, and
vulnerability were summarized in a table that allows for comparison.

4. Results

The results of the mapping and literature search were documented in the maps and
tables below.

4.1. Urban Area Size and Growth

The cities were presented from west to east, starting with Tijuana and San Diego in the
west, and ending with Matamoros and Brownsville in the east (Figure 2). The contrast of
urban development at the national border is visible in the urban shapes that were mapped.
The border makes an artificial divide limiting urban connectivity but also urban expansion,
which is especially the case for Tijuana/San Diego, Mexicali/Calexico, or San Luis R.C./San
Luis. All cities presented here are located directly at or close to a river. In several cases, the
river provides the natural border, which is visible by the border signature in the maps.

As visible from the aerial mappings (Figure 2), the urban areas in the past were smaller
on the Mexican side compared to the USA side of the border for Agua Prieta, Ciudad Juárez,
and Ciudad Acuna. On the US side, the cities of San Ysidro and Imperial Beach city (San
Diego area), Calexico, San Luis (Yuma is close by), and Hidalgo (McAllen is close by) were
smaller than their Mexican counterparts. This pattern has remained consistent during
massive urban growth in the 1970s and up to the 2020s, only for Ciudad Acuna (Figure 3).
Agua Prieta and Ciudad Juárez have grown in size more than their US counterparts. San
Ysidro is now part of the San Diego metropolitan area, which is difficult to delimit to the

https://riskncrisis.wordpress.com/data
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north. Calexico, San Luis, and Hidalgo on the US side have remained smaller than their
Mexican counterparts. However, their hinterland cities, Yuma and McAllen, have grown
massively, which is not shown here since they are not the direct border counterparts.
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As taken from census data (Table 3), urban growth rates indicate relatively higher
growth rates of almost all Mexican cities compared to their US neighbor cities, except for
Brownsville. Tijuana, San Luis Rio Colorado, and Ciudad Juárez had the highest growth
rates. This may indicate the importance of investigating a higher percentage of growth into
potential hazard zones as well.

Data limitations occur for data from the past for some cities or counties. Therefore,
the cities of Hidalgo and McAllen have to be presented by merged population numbers.
Data from the 1950s was not available for San Luis in the USA, and therefore, the already
very low population data from 1970 were used. San Luis was built as a border post in the
1930s. For Imperial Beach city, data from 1960 were available and not from 1950, which
may infer an error that may underestimate the growth rate a bit.
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Figure 3. Urban areas and urban growth from the 1940s to 2020 extracted from aerial images, CORONA, and Sentinel 2
satellite images; (a) San Diego area and Tijuana 1955, 1972, 2020, (b) Mexicali and Calexico 1953, 1976, 2020, (c) San Luis Rio
C./San Luis 1949, 1972, 2020, (d) Nogales 1951, 1976, 2020, (e) Agua Prieta and Douglas 1958, 1976, 2020 (f) Ciudad Juarez
and El Paso 1956, 2020, (g) Ciudad Acuna and Del Rio 1950, 1978, 2020 (h) Piedras Negras and Eagle Pass 1947, 2020, (i)
Nuevo L. and Laredo 1947, (j) Reynosa and Hidalgo 1946, (k) Matamoros and Brownsville 1946.

Table 3. Analyzing urban growth of the cities along the Mexican-US border, based on census data (data sources:
microregiones.gob.mx; inegi.org.mx; census.gov; texasalmanac.com, all accessed on 30 September 2021).

City Country County/State Population 2010 Population 1950 Growth Factor
1950–2010

Tijuana Mexico Baja California 1,559,683 65,364 23.9

Imperial Beach * &
San Ysidro USA California 51,332 20,154 2.5

Mexicali Mexico Baja California 936,826 124,362 7.5

Calexico USA California 38,573 6433 6.0

San Luis Rio
Colorado Mexico Sonora 178,380 13,593 13.1

San Luis USA Arizona 27,909 189 * 148

Heroica Nogales Mexico Sonora 220,292 26,016 8.5

Nogales USA Arizona 20,839 6141 3.4

Agua Prieta Mexico Sonora 79,138 13,121 6.0

microregiones.gob.mx
inegi.org.mx
census.gov
texasalmanac.com
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Table 3. Cont.

City Country County/State Population 2010 Population 1950 Growth Factor
1950–2010

Douglas USA Arizona 17,509 9393 1.9

Ciudad Juárez Mexico Chihuahua 1,332,131 131,308 10.1

El Paso USA TX 648,245 130,485 5.0

Ciudad Acuna Mexico Coahuila 134,233 13,540 10

Del Rio USA Val Verde/TX 35,591 14,211 2.5

Piedras Negras Mexico Coahuila 150,178 31,665 4.7

Eagle Pass USA Maverick/TX 26,248 7,276 3.6

Nuevo Laredo Mexico Tamaulipas 384,033 59,496 6.5

Laredo USA TX 235,780 51,910 4.5

Reynosa Mexico Tamaulipas 589,466 69,428 8.5

McAllen, Hidalgo USA Hidalgo/TX 141,075 20,067 7.0

Matamoros Mexico Tamaulipas 449,815 128,347 3.5

Brownsville USA Cameron/TX 175,023 36,066 4.9

* data was unavailable for 1950 for Imperial Beach city and San Luis, so 1960, respectively, 1970 data was used.

4.2. Analysing Urban Area Sizes from Remote Sensing Data

The urban areas were calculated from the aerial and satellite images (Table 4). Urban
growth has happened in all cities but varies in area and population growth factors.

Table 4. Area sizes and growth as calculated from the aerial and satellite images.

City in
Mexico

Area
1940–1950s

(km2)

Area
2020–2021

(km2)

Area
Growth
Factor

Population
Growth
Factor

City in USA
Area

1940–1950s
(km2)

Area
2020–2021

(km2)

Area
Growth
Factor

Population
Growth
Factor

Tijuana 8.489 387.665 46 24
San Ysidro &

Imperial
Beach

7.159 56.600 8 3

Mexicali 10.789 193.847 18 8 Calexico 2.273 16.462 7 6

San Luis Rio
Colorado 0.511 64.903 127 13 San Luis 0.011 8.712 827 148

Nogales 3.053 43.906 14 8 Nogales 2.215 17.679 8 8

Agua Prieta 2.771 26.110 9 6 Douglas 5.327 13.070 2 2

Ciudad Juarez 13.630 313.267 23 10 El Paso 87.303 712.264 8 5

Ciudad Acuna 2.262 36.576 16 10 Del Rio 6.798 27.886 4 3

Piedras Negras 3.377 44.804 13 5 Eagle Pass 2.832 33.016 12 4

Nuevo Laredo 8.384 96.235 11 6 Laredo 13.117 162.177 12 5

Reynosa 2.556 119.668 47 8 Hidalgo 0.411 23.163 56 7

Matamoros,
Mexico 4.064 108.771 27 4 Brownsville 5.855 135.434 23 5

Sum 60 1048 306 68 142 1206 969 196

Average 5 131 32 9 13 110 88 18

Average without
San Luis 22 9 14 5

In order not to indicate false accuracy, we cut decimals.

4.3. Flood Hazard Exposure Mapping

While potential exposure areas in total have grown in all cities, even their relative
share of the urban area has increased in 5 US and 4 Mexican cities (last two columns in
Tables 5 and 6).
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Table 5. Development of hazard exposure as calculated by the flood zones from the Atlas Nacional de Riesgos por Inundación overlapping with the urban areas mapped on the
Mexican side.

City Flood Exposure
Area in 1940/1950s

Flood Exposure
Area in 2020

Exposure Area
Growth Factor

1940–2020

Urban Area
in 1940s/1950s

Urban Area
in 2020

Exposure Ratio Flood
Area per Urban Area

1940/1950s

Exposure Ratio Flood
Area per

Urban Area 2020

Tijuana * 3.777 86.567 23 8.489 387.665 44% 22%

Mexicali * 2.852 49.602 17 10.789 193.847 26% 26%

San Luis Rio Colorado * 0.099 15.542 >100 0.511 64.903 19% 24%

Nogales * 1.136 7.301 6 3.053 43.906 37% 17%

Agua Prieta 1.121 5.001 4 2.771 26.110 40% 19%

Ciudad
Juarez 4.095 62.060 15 13.630 313.267 30% 20%

Ciudad Acuna * 1.477 14.704 10 2.262 36.576 65% 40%

Piedras Negras * 0.734 7.041 10 3.377 44.804 22% 16%

Nuevo Laredo 2.707 35.478 13 8.384 96.235 32% 37%

Reynosa 0.969 51.380 53 2.556 119.668 38% 43%

Matamoros * 2.248 76.014 34 4.064 108.771 55% 70%

In order not to indicate false accuracy, we cut decimals, * flood scenarios with a finer spatial resolution (“por ciudad”).
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Table 6. Development of hazard exposure as calculated by the flood zones from FEMA overlapping with the urban areas mapped.

City
Flood Exposure

Area in 1940/1950s
(km2)

Flood Exposure
Area in 2020 (All

Zones, incl. 2PCT and
Levee Breach) (km2)

Exposure Area
Growth Factor

1940–2020

Urban Area in
1940s/1950s (km2)

Urban Area in
2020 (km2)

Exposure Ratio Flood
Area per Urban Area

1940/1950s

Exposure Ratio Flood
Area per Urban

Area 2020

San Ysidro No exposure 1.785 2 1.019 7.534 0% 24%

Imperial Beach No exposure 1.198 1 6.140 49.066 0% 2%

Calexico No exposure 0.347 0 2.273 16.462 0% 2%

San Luis 0.011 8.600 >100 0.011 8.712 100% 99%

Nogales 1.108 5.237 5 2.215 17.679 50% 30%

Douglas 4.294 8.792 2 5.327 13.070 81% 67%

El Paso * 0.000 0.000 1 87.303 712.264 0% 0%

Del Rio 0.846 3.739 4 6.798 27.886 12% 13%

Eagle Pass 0.481 4.873 10 2.832 33.016 17% 15%

Laredo 1.167 17.423 15 13.117 162.177 9% 11%

Hidalgo 0.007 21.278 >100 0.411 23.160 2% 92%

Brownsville 5.860 134.000 23 5.855 135.434 100% 99%

In order not to indicate false accuracy, we cut decimals, * data incomplete.
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For the USA, hazard exposure was analysed using FEMA flood zone data (dates vary
between 1980–2020), conducting a GIS analysis of urban areas overlapping with the flood
zones (Table 6).

Flood hazard zones were obtained for the US cities from FEMA online (see Table A2)
and downloaded as shapefiles. Only for Hidalgo and Laredo, were the maps available
as printed versions only, and thus we digitized the flood areas. For the other cities, from
the shapefile S_FLD_HAZ_AR, the potential flood zones were extracted by selecting the
tiles marked with FLD_ZONE AE, AH, AO, AR, A99, manually from the map for the
respective river sections, and tiles marked with 2 PCT Flood Chance (Zone X, extreme
flood), separately (Figure 4). However, a visual check with the print version of the FEMA
maps was necessary to adjust to the local context, where not always all those categories
made sense to include.
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Figure 4. Flood zones (FEMA) on the US side; (a) San Diego area: Tijuana river, (b) Calexico: Rio Nuevo, (c) San Luis: Rio
Colorado, (d) Nogales: Arroyo, (e) Douglas: Whitewater Draw, (f) El Paso: Rio Grande, (g) Del Rio: Rio Grande, (h) Eagle
Pass: Rio Grande, (i) Laredo: Rio Grande, (j) Hidalgo: Rio Grande, (k) Brownsville: Rio Grande (data sources: Table A2).

Hazard exposure cannot be directly compared between both countries because of
different modeling and mapping approaches (see discussion). In addition, hazard exposure
cannot be directly compared between the 1940s and today due to major river training
measures conducted, such as along the Tijuana River or the Rio Grande River in Reynosa.
That means that for the San Diego area, our flood area exposure estimation for the 1950s
might be inaccurate in terms of absolute area. In addition, in some areas such as in San
Luis, we assumed overtopping or breach of existing flood protection measures, which
would need further analysis in more detail. However, the overall assessment looks at
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cross-regional and relative risk growth, where such error margins still do not change the
overall picture.

4.4. Comparing Existing Social Vulnerability Data

The SVI of the US CDC reveals that almost all southern US states exhibit a relatively
high social vulnerability (CDC 2021: Table A2). Along the US-Mexican border, almost
all counties are within the highest social vulnerability scores for the year 2000, except
San Diego County, which is moderate to high, and Jeff Davis County (TX), which is low
to moderate. Comparing the SVI at its earliest availability (2000) with its most recent
(2018) reveals few changes in this pattern. The SVI index shows changes to lower levels of
vulnerability for Brewster and Terrel counties, both located in Texas. The CDC SVI themes
reveal that all counties exhibit high minority and language-related vulnerabilities. Social
vulnerability differs for housing and transportation, which may indicate interesting areas
for further analysis. The SVI for the Mexican side reveals a different picture. Vulnerability
is quite heterogeneous along the Mexican-US border; medium and low to medium social
vulnerability levels prevailed in 2010. Medium vulnerability is most prevalent along the
Arizona and New Mexico border. While in the USA, vulnerability levels have decreased in
two counties, in Mexico, SVI has been low to medium in 2000 for all counties, except for
Janos county in Chihuahua. The map shows the SVI for 2010 on both sides of the border
(Figure 5). This is the latest year for which both countries have produced the index. More
recent indices are published as resilience indices in Mexico and can therefore not directly be
compared. Different compositions of variables selected further constrain direct comparison
of the Mexican and US SVI, and while the Mexican SVI is represented in 5 classes, the
US index is presented in 4 classes. Even the original variables differ, and requests for
obtaining original data were not answered. The latest SVI data at higher spatial resolution
was obtained for the USA using CDC census tract data from 2018 (see Table 7 for results,
Table A2 for data sources).
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countries. Darker colors (red) represent higher vulnerability (data sources: Table A2).

More detailed and context-specific SVI or social vulnerability analyses would be of
interest for the specific cities themselves. However, such analyses are somewhat fragmented
and available by individual studies of researchers for a few of those cities yet. Another
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constraint comparing the Mexican and US SVI is a composition of variables, the aggregation
method, and other aspects of SVI indicator methodology [86,87]. Therefore, a comparison
of both sides of the border would warrant more research and is limited here.

An additional aspect adding to social vulnerability is the high mobility and migration
at the border. Statistics show that around half a million encounters have been registered
on the US side, (as of March 2021, per one fiscal year) with half of the migrating people
crossing the Mexican-US border from Mexico (CBP 2021, see Table A2). Ratios were highest
for the Rio Grande Valley region, followed by Tucson, El Paso, Del Rio, San Diego, and
Laredo. They were lower for El Centro, Yuma, and Big Bend. Of the 159,470 persons
registered at the Rio Grande Valley, 20,964 were single minors, indicating a population
group with a specific social vulnerability. However, these numbers do not show the number
of persons illegally crossing the border, which must be added to the numbers of populations
potentially exposed to natural hazards such as riverine, pluvial flood, or storms.

4.5. Summary of Urban and Flood Exposure Growth Factors Contributing to Overall Disaster Risk

The spatial and statistical analysis provides some indications for disaster risk and for
capturing its dynamics. Table 7 lists some main results from the previous analysis steps. In
selecting the top 3 cities for Mexico and the US, those with the highest population sizes in
2010 also have the highest urban areas in 2020. However, these cities do not necessarily
exhibit the highest relative social vulnerability or flood exposure. On the Mexican side,
Tijuana is not only is the biggest city with the high area and population growth rates, but
it also lies in an administrative area (Mexican: municipio) with a social vulnerability that
had increased between 2000 to 2010. This puts Tijuana highest in the categories related to
existing static flood risk and highest in the dynamic development of disaster risk. Of course,
these few categories only indicate disaster risk, out of many more aspects that would have
to be considered for a holistic risk assessment. Ciudad Juarez also exhibits high growth
rates, as well as San Luis Rio Colorado and Ciudad Acuna on the Mexican side. On the US
side, the San Diego area, El Paso, and Laredo are the biggest agglomerations, whereas the
growth dynamic is higher in San Luis, Nogales, and McAllen/Hidalgo. Social vulnerability
varies across county/municipio levels. The highest rates at the city level in the USA are in
Nogales, Calexico, and Eagle Pass. Census tracts reveal wider disparities, with the lowest
rates in Imperial Beach and highest rates in El Paso (Table A3). Flood exposure by area
size is highest for 2020 for Tijuana, Matamoros, Ciudad Juarez, Brownsville, Hidalgo, and
Laredo. Flood exposed area has grown fastest in San Luis on both sides of the border,
Hidalgo, but is also significant for Reynosa, Matamoros, and Brownsville.
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Table 7. Summary of urban growth and risk factors analyzed in this study.

City in Mexico Population 2010 City Area 2020
(km2)

Area Growth
Factor

Population
Growth Factor

SVI 2010
(Municipio/County)

SVI 2018 Census
Tract (Mean Value)

Flood Exposure
2020 (km2)

Flood Exposure Growth
Factor 1940–2020

Tijuana 1559,683 388 46 24 medium - 87 23

Mexicali 936,826 194 18 8 low - 50 17

San Luis Rio
Colorado 178,380 65 >100 13 low - 16 >100

Nogales 220,292 44 14 8 medium - 7 6

Agua Prieta 79,138 26 9 6 low - 5 4

Ciudad Juarez 1332,131 313 23 10 low - 62 15

Ciudad Acuna 134233 37 16 10 low - 15 10

Piedras Negras 150178 45 1 5 low - 7 10

Nuevo Laredo 384,033 96 1 6 low - 35 13

Reynosa 589,466 120 1 8 low - 51 53

Matamoros, Mexico 449,815 109 0 4 low - 76 34

City in USA

San Ysidro 28,008 8 7 3 high 0.803 2 0

Imperial Beach city 51,332 49 8 3 high 0.650 1 0

Calexico 38,573 16 7 6 highest 0.923 0 0

San Luis 27,909 9 >100 >100 highest 0.837 9 >100

Nogales 20,839 18 8 8 highest 0.927 5 5

Douglas 17,509 13 2 2 highest 0.902 9 2

El Paso 648,245 712 8 5 highest 0.686 0 1

Del Rio 35,591 28 4 3 highest 0.794 4 4

Eagle Pass 26,248 33 1 4 highest 0.916 5 10

Laredo 235,780 162 1 5 highest 0.825 17 15

Hidalgo 141,075 23 1 7 highest 0.887 21 >100

Brownsville 175,023 135 0 5 highest 0.865 134 23
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5. Discussion

The results are a preliminary insight into opportunities for mapping border-city risks.
The mapping has been conducted using multiple sources and types of remote sensing data,
such as aerial images, declassified grayscale, and recent multi-spectral data. In addition,
GIS and demographic data have been analyzed and combined for multiple temporal
phases. Therefore, this research is in line with current approaches on multi-modal, multi-
spectral, and multi-temporal remote sensing approaches [60,66,68]. Since mapping and
data precision is relatively coarse, the results in numbers are instead useful for a relative,
not exact comparison. Nevertheless, they display ways to derive hazard, exposure, and
vulnerability indicators that are in demand in disaster risk studies [81,86,88]. This may
be used for monitoring at a cross-regional level by institutions such as the UN or others
interested in transboundary disaster risk management [2,89–91].

5.1. Data Availability

Data limitations included missing satellite information for the cities Nuevo Laredo/Laredo
and the northern areas of San Diego. Another caveat is that some border towns have a
nearby larger city in the immediate vicinity, such as Yuma, which is close to San Luis, USA,
or McAllen, which is close to Hidalgo. They have not been mapped since they are not the
direct border cities, but the overall population and settlement area in those regions is higher
than depicted by the border post towns in the maps here. Data for Reynosa and Hidalgo
1946, Matamoros and Brownsville 1946 had to be used from aerial images from the 1940s
only since data from the 1970s satellite images were not available without cloud coverage.

Historic flood events were searched in Google and collected (dates and death tolls)
from newspaper reports). However, since the findings were quite heterogeneous, we
decided that this needs more time and a separate analysis.

Flood extent maps were searched on the Dartmouth flood observatory, using their
Flood Map Index, and the Master Index of DFO Rapid Response Inundation Maps—2000 to
2008 and searched all entries manually for ‘USA’ and ‘Mexico’. No results were found, but
the search contained many hyperlinks that were not functional anymore. The international
charter ‘space and major disasters’ was also searched but did not yield any useful results.
Topographic maps on the US side were obtained from USGS websites, but the resolution of
contour lines around 3 feet was insufficient because the flood zones identified in studies
differ much from the zones to be derived from those contour lines.

It was more difficult than expected to identify potential or historic flood extent maps
and assessments on both sides of the border or even historic flood event documentation.
Therefore, this study remains at a preliminary stage, where the first objective is to map
urban growth and subsequent analysis of growth into flood hazard zones at selected
examples in a descriptive way and not in a comprehensive quantitative approach for all
cities. However, there are ample urban change detection studies utilizing remote sensing
to help monitor urban growth and sprawl, and this study contributes to it, too [58,92].

Some additional limitations need to be described for fellow researchers or international
bodies interested in monitoring urban growth disaster risk. First, it was not easy to identify
data for both countries for all aspects. In some categories, such as old aerial or satellite
imagery, this is not surprising. Moreover, this is not the only case where studies using
remote sensing and other data are hampered by data scarcity [93,94]. We were a bit
surprised about the lack of cross-border studies, lack of public repositories of georectified
imagery, urban boundary shapefiles, or urban population data in the past. Some cross-
border assessments have found solutions for data gaps, however [95]. Nevertheless, it
cannot be forgotten to state how laudable both countries provide public data; the US and
also Mexico are forerunners and made this assessment possible for outsiders in the first
place. Still, the assessment revealed some constraints for international researchers, such
as the problem of identifying hazard or vulnerability data that can directly be compared.
For example, the flood zones provided by the US CDC and FEMA on an open platform is
paralleled by the Mexican government and their Atlas with similar flood hazard and social
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vulnerability data. Both repositories are excellent, but the SVI is composed of different
variables, and the flood zones in Mexico are calculated and provided in a different format
and for different types of floods; not as a GIS file and based on a different computation
approach that makes it difficult to compare with the US data (Figure 6).
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Figure 6. Hidalgo urban area (orange) exposed to floods in 2020. Note that flood hazard mapping
styles and methods differ between Mexico (Atlas Gob) and the USA (FEMA). See Table A2 for
data sources.

Availability of public spatial data sources and repositories is still a gap, even more so
for most other countries, or even continents, Africa especially [96,97]. Land surveyors and
flood risk analysts have much more detailed knowledge and care taken during mapping
than we have conducted here. They will also often have done ground-truthing by fieldwork.
Drone-truthing could be a promising future alternative [98]. However, many aerial images
are not available for public usage, especially when georectified. Maintaining public data
repositories such as those used here is important to support, and hopefully, more data will
become available for long-term monitoring. This would ideally include urban boundary
mapping at regular intervals as well as hazard zones or vulnerability information.

There appear to exist relatively few studies on urban growth or flood risk in these
Mexican-US border cities using spatial assessments. There are studies on each city, often by
similar author groups who seem to have an individual interest, yet overview studies on
several cities are still missing. There are, however, change detection studies using remote
sensing for twin cities [99,100] or multi-cities [101] in other regions. Cross-border SVI or
flood risk mapping using cities or county units at the cross-regional level could be an
interesting upcoming research field.

5.2. Opportunities by Exploring Old Aerial and Satellite Imagery—Urban Growth into Hazard
Areas Detected by Comparison to the Previous Land Surface

Old declassified espionage satellite imagery such as CORONA seems hardly been used
for urban growth in conjunction with disaster risk or hazard mapping [102]. For this study,
no examples were identified (see search term list in Table A1). Aerial imagery also is hardly
used, even when it ranges back much further. One major advantage is that such old data
are often the only witnesses of former land cover at such a scale. This enables capturing
former natural environments that can indicate recent natural hazards, such as riverine
floods or landslides. Urban growth and river training have often massively changed the
land use of former river beds (Figure 7). While flood damage has been reduced according to
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the engineered safety level, history has proven early on that human adjustment to hazards
is limited [103], for example, when extreme floods take old river beds in.
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Figure 7. Mexicali 1953 on the aerial image (above) and 2021 on the OSM map (below) show an old river covered by a
settlement area.

However, certain limitations of spatial resolution or specific aspects of film satellite
data also have to be mentioned. This is in terms of transparency to inform other studies
on constraints for applications in other areas. For example, the spatial resolution of some
of the CORONA satellite images constrains urban feature identification [104]. Of course,
this can be the case for aerial images of low resolution just as well [105]. Figure 8a is an
example where mapping has become difficult due to the constraints in spatial resolution
and greyscale depth. We also identified this to be a constraint for automatized classification.
The image in Figure 8a is an aerial image with an original spatial scale of 1:130,000. The
higher resolution of the other three aerial images in Figure 8 is due to a better spatial
scale of 1:46,000. This enables better identification of objects such as streets and buildings
Figure 8b,d). At a viewing scale of 1:2500, individual land plots, streets, houses, and
trees can be identified and mapped (Figure 8a–c), but zooming in more can reveal even
more details when the resolution permits (Figure 8d). Markings at the margins at the
aerial images (Figure 8c) or lower resolution at the corners due to lens distortions can
be a constraint, too. The national border itself can be difficult to identify when border
fences were not established yet, and border posts such as in San Luis were still very small
(Figure 8d).
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6. Conclusions

This study replied to the main research question guiding this article, “How did
Mexican-US border cities develop over time and concerning flood hazards?” by providing a
mapping and statistical comparison of 23 cities. The findings show that the border is a zone
where urban growth is high in both population and area growth, but flood hazard exposure
zones have also grown. Furthermore, growth and vulnerability develop heterogeneously
within each country, but especially between sister cities on both sides. In Mexico, it seems
that more cities have grown at a more rapid pace than their US counterparts, and the border
stands out as a stark visual demarcation when mapped from space.

Based on the literature review conducted, this appears to be one of the first studies
to compare that many cross-border cities along the Mexican-US border by capturing both
urban growth and flood exposure while ranging back to the 1940s. Thereby it addresses an
important data gap in change detection assessments. The results look promising to expand
this study and conduct similar assessments along other national and natural borders. This
paper demonstrates how old aerial images and satellite data can be used to expand the
temporal assessment of urban growth. State-of-the-art spatial assessments often rely on
Landsat data, which only ranges back to the early 1970s and provides much coarser spatial
resolution. While limited by their grayscale information, they are often unique to providing
information about the previous land cover before settlement.

As an outlook, the findings also demonstrate the challenges for international bodies
such as the Sendai monitoring process to conduct long-term spatial risk assessments. It
seems necessary to thank those institutions for maintaining public data repositories as
used here. At the same time, this calls for more public data platforms in other areas
and countries and expanding exiting platforms on georectified images and urban border
shapefiles. Finally, using the same set of core variables for similar social vulnerability
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or resilience assessments and using the same classes would be great for transboundary
comparisons. This is important not only for flood hazards but also for other hazards in the
region, such as hurricanes that can force people to evacuate, which underlines the demand
for better informed decision-making [106]. Another area is migration which can suddenly
develop into an additional humanitarian conflict, as recently has been shown and where
remoter sensing information also helped to survey the situation [9]. The combination of
such risks is increasingly becoming a research topic, for example, under the terms ‘multi-
risk assessment’ [107–110], ‘cascading effects’ [111–113], or ‘compounding events’ [114,115].
These are all areas in high demand of big data and where remote sensing studies can help
provide baseline data for monitoring hazard areas and dynamical developments leading to
an increase in risk.
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Appendix A

Table A1. List of search terms used.

Search Term Search Engine Date of Search Comment

social vulnerability index mexico Google Scholar 18 April 2021

mexico vulnerabilidad social Google Scholar 18 April 2021

mexico USA border cities flood Google Scholar 18 April 2021

Urban growth border Mexic Google Scholar 18 April 2021 Many hits

Urban sprawl border Mexic Google Scholar 20 April 2021 Very few additional hits

Urban sprawl border Mexic remote sensing Google Scholar 20 April 2021 Few additional hits

border Mexic “CORONA satellite” Google Scholar 20 April 2021 No significant hits

Mexic border flood analysis Google Scholar 20 April 2021 Very few additional hits

Urban growth (city name) remote sensing Google Scholar 20 April 2021 Some hits

Urban growth (city name) Google Scholar 20 April 2021 Few relevant hits

Urban growth OR sprawl OR expansion
(city name) Google Scholar 20 April 2021 Few relevant hits

Urban growth OR sprawl OR expansion (city
name) remote sensing Google Scholar 20 April 2021 Few relevant hits

City name AND flood Google Scholar 2 May 2021 Hits depending on city

City name AND flood map OR flood plain Google Scholar 3 May 2021

City name AND flood map Google 3 May 2021

City name AND inundación OR aluvión
AND mapa Google 3 May 2021

Cross-border flood risk map Google Scholar 15 May 2021
Few hits, mostly for

European cross-border
river basins

Zonas de riesgo por desbordamiento Google 20 May 2021 Works for some cities

https://riskncrisis.wordpress.com/data
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Table A2. List of data used.

Description File Type Provider/Author File Name File Date Access Date Link

Admin. boundaries,
municipios Mexico Shapefile CONABIO División política municipal,

1:250000. 2018 10 Feb 2021 13 May 2021 http://www.conabio.gob.mx/
informacion/gis/

SVI 2010 Mexico Shapefile CONABIO Grado de vulnerabilidad
social por municipio, 2010 10 Feb 2021 13 May 2021 http://www.conabio.gob.mx/

informacion/gis/

Flood risk MX Shapefile CONABIO/CENAPRED Grado de riesgo por
inundaciones por municipio 12 Sep 2007 13 May 2021 http://www.conabio.gob.mx/

informacion/gis/

Rivers_MX Shapefile CONABIO/Maderey-R, L.
E. y Torres-Ruata, C. Hidrografía 1990 13 May 2021 http://www.conabio.gob.mx/

informacion/gis/

SVI 2010 USA Geodatabase CDC

CDC/ATSDR SVI Data and
Documentation Download.

Counties or Census tract
(RPL_Themes)

2010, 2018 13,26 May 2021
https:

//www.atsdr.cdc.gov/placeandhealth/
svi/data_documentation_download.html

Admin boundaries,
counties, USA US census/MAF/TIGER County and Equivalent 2020 13 May 2021

https://www.census.gov/geographies/
mapping-files/time-series/geo/carto-

boundary-file.html

Floodzones USA Shapefile
FEMA’s National Flood
Hazard Layer (NFHL)

Viewer

FEMA’s National Flood
Hazard Layer (NFHL)

Viewer/S_FLD_HAZ_AR.shp
varies 13 May 2021

https://hazards-fema.maps.arcgis.com/
apps/webappviewer/index.html?id=8b0

adb51996444d4879338b5529aa9cd

Floodzones Mexico KMZ Gobierno de
Mexico/CENAPRED

Atlas Nacional de Riesgos
por Inundacion (ANRI) 13 May 2021 http://atlasnacionalderiesgos.gob.mx/

archivo/visor-capas.html

Aerial images; CORONA
satellite date TIFF USGS Earth Explorer Aerial Photo Single Frames;

Declassified Data varies 1 December 2020–31 May 2021 https://earthexplorer.usgs.gov

Basemap WMS Open Street Map 1 December 2020 https://tile.openstreetmap.org/

Sentinel 2 satellite data WMS EOX::Maps Sentinel-2 cloudless layer
for 2020 by EOX-4326 2020 20 April 2021 https://tiles.maps.eox.at/wms?

Border, US states Shapefile US census/MAF/TIGER State and Equivalent 2020 14 May 2021
https://www.census.gov/geographies/
mapping-files/time-series/geo/carto-

boundary-file.html

Border encounters Table US Customs and Border
Protection

Southwest Land Border
Encounters (By Component) 2021 14 May 2021

https://www.cbp.gov/newsroom/stats/
southwest-land-border-encounters-by-

component

http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd
https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd
https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd
http://atlasnacionalderiesgos.gob.mx/archivo/visor-capas.html
http://atlasnacionalderiesgos.gob.mx/archivo/visor-capas.html
https://earthexplorer.usgs.gov
https://tile.openstreetmap.org/
https://tiles.maps.eox.at/wms?
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://www.cbp.gov/newsroom/stats/southwest-land-border-encounters-by-component
https://www.cbp.gov/newsroom/stats/southwest-land-border-encounters-by-component
https://www.cbp.gov/newsroom/stats/southwest-land-border-encounters-by-component
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Table A3. SVI at census tract level in the USA.

City in USA SVI 2010
(Municipium/Counties)

SVI Change
(2000–2010)

SVI 2018 Census
Tract (Mean Value) *

SVI Census
Tract (Min)

SVI Census
Tract (Max)

San Ysidro high no change 0.803 0.412 0.993

Imperial Beach city high no change 0.650 0.050 0.978

Calexico highest no change 0.923 0.770 0.995

San Luis highest no change 0.837 0.745 0.958

Nogales highest no change 0.927 0.655 0.998

Douglas highest no change 0.902 0.773 0.990

El Paso highest no change 0.686 0.051 1.000

Del Rio highest no change 0.794 0.549 0.974

Eagle Pass highest no change 0.916 0.801 0.990

Laredo highest no change 0.825 0.297 1.000

Hidalgo highest no change 0.887 0.752 0.975

* false entries removed, such as −999 (airports etc.)
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