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Abstract: Accurate knowledge of photosynthetic capacity is critical for understanding the carbon
cycle under climate change. Despite the fact that deep neural network (DNN) models are increasingly
applied across a wide range of fields, there are very few attempts to predict leaf photosynthetic
capacity (indicated by maximum carboxylation rate, Vcmax, and maximum electron transport
rate, Jmax) from reflected information. In this study, we have built a DNN model that uses leaf
reflected spectra, alone or together with other leaf traits, for the reliable estimation of photosynthetic
capacity, accounting for leaf types and growing periods in cool–temperate deciduous forests. Our
results demonstrate that even though DNN models using only the reflectance spectra are capable of
estimating both Vcmax and Jmax acceptably, their performance could nevertheless be improved by
including information about other leaf biophysical/biochemical traits. The results highlight the fact
that leaf spectra and leaf biophysical/biochemical traits are closely linked with leaf photosynthetic
capacity, providing a practical and feasible approach to tracing functional traits. However, the DNN
models developed in this study should undergo more extensive validation and training before being
applied in other regions, and further refinements in future studies using larger datasets from a wide
range of ecosystems are also necessary.
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1. Introduction

Leaf maximum carboxylation rate (Vcmax) and maximum electron transport rate
(Jmax) are two key parameters describing leaf photosynthetic capacity which are essential
to providing a mechanistic understanding of plant carbon fixation. Their parameterization
determines the performance of carbon uptake simulations in terrestrial biosphere mod-
els [1–3]. Traditionally, the two parameters are obtained from in vivo measurements using
gas exchange systems [4], which are not only time-consuming and labor-intensive but
also consistently face scaling dilemmas because of their large variabilities across temporal
and spatial scales [5–8]. Due to recent advances, hyperspectral remote sensing techniques
can increasingly provide opportunities to rapidly measure leaf-level photosynthetic in-
formation using low-cost, nondestructive, and wide-scale monitoring, and they may help
to enhance our understanding of photosynthetic capacity. Leaf hyperspectral reflectance
contains many narrow and contiguous spectral channels, representing a collection of op-
tical properties related to leaf biochemical characteristics and cell structure, as well as
physiological properties. These properties have been used to estimate leaf photosynthetic
capacity accurately [9,10] across different species, canopy environments, and leaf ages [11].

Strong connections between the leaf photosynthetic capacity and reflectance spectra
have been reported, although their underlying mechanisms remain unclear in most cases.
A range of studies have also demonstrated that leaf reflectance spectra can be used to
accurately estimate leaf photosynthetic capacity in several different ways, ranging from
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simple linear regression to machine learning techniques [9–14], even though the capacity
varies greatly due to multiple biotic and environmental variables [15,16]. Considering
some examples in detail, multiple vegetation indices, such as the normalized difference
vegetation index, enhanced vegetation index, photochemical reflectance index, simple
ratio, double difference, and chlorophyll index, have been used to predict photosynthetic
parameters [17–21] and to reveal photosynthetic productivity [22,23]. Similarly, partial
least squares regressions have also been widely applied to estimate Vcmax and Jmax from
leaf reflectance spectra [14,17,24], due to their advantages in handling the problems of both
collinearity and more predictors than observations, although obvious variations in the
performance of partial least squares regressions for estimating photosynthetic traits are
found across different plant species and environmental conditions, or different years and
growing periods [25]. Furthermore, machine learning techniques, including the support
vector machine, least absolute shrinkage and selection operator, and random forests, have
also been used to estimate leaf photosynthetic capacity [26].

Deep learning is a recent advanced data-oriented analytical approach, which can
be described as a model that represents nonlinear processing composed of a multilayer
artificial neural network, and it employs multiple neurons. Examples include the deep
neural network (DNN), convolutional neural network (CNN), recurrent neural network
(RNN), etc. [27,28]. Previous studies have reported that deep learning can be used to
process large-scale and multi-feature data by using a hierarchical learning capacity to
characterize input and target data, which usually leads to better performance and gen-
eralization ability [28–32]. Accordingly, the deep learning model has a powerful ability
to capture highly abstracted features with deeper layers and could be used to mine effec-
tive information better and to estimate the target parameters accurately [33,34]. A deep
learning model will thus consider the relationships between each spectrum and the plant
characteristics more comprehensively and could provide an accurate estimation of plant
properties from leaf spectra. To date, deep learning has been widely employed for big data
analysis with remote sensing [35,36], and has also been applied to speech recognition and
object detection [37,38], surface parameters [30,31,39], yield prediction [40–44], stress and
disease detection [28,45,46], and other fields using different types of deep neural network
architectures. However, the approach has not yet been thoroughly explored in terms of pho-
tosynthetic capacity estimation. To the best of our knowledge, only Fu et al. [26] reported
the potential of an artificial neural network (ANN) regression in estimating photosynthetic
capacities in tobacco genotypes. Thus, it is necessary to explore the potential of powerful
deep learning techniques to estimate photosynthetic capacity.

Unfortunately, deep learning models with complex multi-layer structures have a fun-
damental limitation for practical applications due to the need for a large training dataset
and the connections among the input, hidden, and output layers, which lead to uncer-
tainties and fluctuations in predictions, particularly for limited samples [47]. However,
increasing evidence has indicated that an ensemble of deep learning models with the ap-
plication of the bootstrap sampling approach provides a potential solution to increase the
robustness and accuracy [48] and has obtained satisfactory results in the fields of species
distribution [49] and complex diseases and medicine [50,51]. Including the bootstrap sam-
pling approach in the deep learning models may thus be necessary for handling unknown
complexity in a given dataset.

Among current deep-learning-based techniques, deep neural network (DNN) models
have recently gained wide attention across various fields; for example, they have been used
for the prediction of soil properties [52], biomass estimation [53], and forecasting [33,34,54].
In general, the DNN has been proposed to overcome the shortcomings of the traditional
ANN and, because it has more complexity, it can efficiently learn from training samples,
with high accuracy [33,37,55]. Although most available studies focused on the field of clas-
sification [56–58], the applications of DNN models in regression problems have increased
in recent years. For example, Cai et al. [29] obtained promising results using a DNN-based
regression model to predict soil moisture from meteorological variables and initial mois-
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ture data. Similarly, Elbeltagi et al. [59] used a DNN model to estimate and predict crop
evapotranspiration from recorded historical and future meteorological data, with good
results. These results suggest the superiority of the DNN in dealing with regression issues.

However, to date, no study has yet estimated leaf photosynthetic capacity using a
DNN model based on leaf reflectance. Hence, the objectives of this study are (1) to assess the
feasibility of predicting the photosynthetic capacity from leaf reflectance in cool–temperate
deciduous forests by employing DNN models; (2) to assess the performance of DNN
models across different leaf types and different temporal scales; (3) to evaluate whether
including other leaf traits would improve the estimation of leaf photosynthetic capacity
using DNN models. This study explores the potential of deep learning for predicting
photosynthetic capacities quantitatively in different leaf types and during different growing
periods in cool–temperate deciduous forests.

2. Materials and Methods
2.1. The Naeba Dataset

A composite dataset consisting of simultaneous leaf photosynthetic CO2 response
measurements and reflectance spectra was built up for leaf samples taken during the period
from May to October on Mount Naeba (36◦51′ N and 138◦40′ E, adjacent to the Sea of
Japan). This mountain has typical cold–temperate deciduous forests from elevations of
550 to 1600 m [60]. Leaf sampling was carried out consistently using the detached branch
method [61] from 2007 to 2015, except for 2011, on different layers of Fagus crenata Blume
canopies, the only dominant species in the 4 permanent tower sites deployed along these
altitudes, with one site at 550 m, two sites at 900 m (denoted 900 m X1 and 900 m X5), and
another site at 1500 m. The photosynthetic parameters Vcmax and Jmax were estimated
from the leaf photosynthetic CO2 response (A-Ci) curves at the saturating irradiance level,
which was measured using a LI-COR LI-6400 portable photosynthesis system equipped
with standard leaf chambers [7]. The “plantecophys” package [62] in the R platform
was used. The synchronic reflectance measurements were performed using a FieldSpec
spectrometer (Analytical Spectral Devices Inc., Boulder, CO, USA) with a leaf clip, which
operates in the 350–2500 nm spectral range [63]. The reflectance spectra data spanning
350–399 nm and 2451–2500 nm were excluded from the analyses in this study due to the
substantial noise in the edge bands of the spectrum produced by both the immediate
environment and the instrument itself. The reflectance spectra data and corresponding
Vcmax and Jmax values in the dataset are presented in Figure 1.
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while the training dataset was further arranged to be in proportion (25%) to the validation 
data. Specifically, the networks had the following architecture: an input layer, seven hid-
den layers with 16, 32, 64, 128, 256, 128, and 64 neurons, respectively, and an output layer, 
with the nodes being fully connected. The rectified linear unit (Relu) activation function 
was utilized as the activation function in the neurons. The loss and optimization functions 
selected were the mean square error and the Adam optimizer, respectively. The number 
of training epochs was defined using early stopping; the networks were trained for 500 
epochs, with the patience equal to 20 epochs, to minimize the loss function until the min-
imum error was achieved to prevent overfitting. Furthermore, dropout [64], which is a 
regularization technique that randomly and temporarily removes a fixed proportion of 
different neurons and their respective connections from the network in each training step, 
was also used to avoid complex co-adaptations on training data, therefore reducing over-
fitting. The deep neural networks were built and trained with the TensorFlow backend, 
using the Keras library in RStudio (1.4.1717). 

To improve the generality and predictive performance of the DNN model, a boot-
strap approach was applied for the training dataset in this study. Bootstrapping is a 
resampling method that samples independently with replacement from a sample dataset 
with the sample size, which reduces biases and strengthens the robustness, especially 
when the number of samples is limited [48,65]. Specifically, we randomly sampled the 
training set with replacement k times; the maximum k value was set to 50 and the best k 
value was selected based on the mean squared error. The DNN model was fitted using a 
bootstrap sample each time and prediction values from each DNN model were created. 
This was repeated 10 times to improve the model performance. 

Figure 1. The spectra data with 2051 features (400–2450 nm) (a) and the corresponding photosynthetic
traits of maximum carboxylation rate (Vcmax) and maximum electron transport (Jmax) (b), in the
Naeba dataset.

2.2. DNN Model Construction

A DNN model is generally composed of an input layer, an output layer, and several
hidden layers placed between them, and each layer contains a number of neurons. In
this study, leaf reflectance data were considered as predictors of Vcmax and Jmax when
constructing the deep neural network. The workflow is illustrated in Figure 2. All predictor
variables were normalized prior to building the neural networks. The entire dataset was
then randomly divided into training data (75%, randomly chosen) and test data (25%),
while the training dataset was further arranged to be in proportion (25%) to the validation
data. Specifically, the networks had the following architecture: an input layer, seven hidden
layers with 16, 32, 64, 128, 256, 128, and 64 neurons, respectively, and an output layer, with
the nodes being fully connected. The rectified linear unit (Relu) activation function was
utilized as the activation function in the neurons. The loss and optimization functions
selected were the mean square error and the Adam optimizer, respectively. The number of
training epochs was defined using early stopping; the networks were trained for 500 epochs,
with the patience equal to 20 epochs, to minimize the loss function until the minimum error
was achieved to prevent overfitting. Furthermore, dropout [64], which is a regularization
technique that randomly and temporarily removes a fixed proportion of different neurons
and their respective connections from the network in each training step, was also used to
avoid complex co-adaptations on training data, therefore reducing overfitting. The deep
neural networks were built and trained with the TensorFlow backend, using the Keras
library in RStudio (1.4.1717).

To improve the generality and predictive performance of the DNN model, a bootstrap
approach was applied for the training dataset in this study. Bootstrapping is a resampling
method that samples independently with replacement from a sample dataset with the
sample size, which reduces biases and strengthens the robustness, especially when the
number of samples is limited [48,65]. Specifically, we randomly sampled the training set
with replacement k times; the maximum k value was set to 50 and the best k value was
selected based on the mean squared error. The DNN model was fitted using a bootstrap
sample each time and prediction values from each DNN model were created. This was
repeated 10 times to improve the model performance.
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Figure 2. The structure of the deep neural network (DNN) (a) and the flowchart of the ensemble DNN model with the
bootstrap sampling approach (b) for predicting the maximum carboxylation rate (Vcmax) and maximum electron transport
(Jmax) in this study.

2.3. Other Leaf Biophysical/Biochemical Traits as Additional Predictors

In this study, other leaf biophysical/biochemical traits besides reflected spectra were
also investigated as potential predictors: the photosynthetic capacity (Vcmax and Jmax)
was treated as a function of reflectance (ref), leaf thickness (LT), leaf mass per area (LMA),
and/or leaf chlorophyll content (Chl). Among the set of predictors, leaf thickness was
measured using a digital micrometer (with a precision of 0.001 mm). The LMA was
calculated using the leaf dry mass divided by its area, with the leaf area scanned using
a digital scanner (EPSON GT-S600; Epson, Indonesia) and the dry mass weighed using
a precision balance (with a precision of 0.001 g) after being dried in an oven. Leaf discs
for chlorophyll content were punched, and their chlorophyll contents were determined
using a dual-beam scanning UV–Vis spectrophotometer (Ultrospec 3300 pro, Amersham
Biosciences, Piscataway, NJ, USA).

2.4. Performance Evaluation

The actual and predicted dependent values were compared and the model perfor-
mance was evaluated using the following statistical indicators: the coefficient of determina-
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tion (R2), root mean square error (RMSE), mean absolute error (MAE), and the ratio of the
performance to the standard deviation (RPD). All these indicators are defined as follows:

R2 = 1−
(

∑n
i=1(Oi−Pi)2

∑n
i=1(Oi−O)

2

)
RMSE =

√
1
n ∑n

i=1(Pi−Oi)2

MAE = 1
n ∑n

i=1|Oi− Pi|
RPD = SD/SEP

where Oi and Pi are the observed and predicted values, respectively, and n is the total
number of samples. O is the mean of the observed values. SD is the standard deviation
of the observed values, and SEP is the standard error prediction. The RPD is an auxiliary
indicator of the model, and the model’s predictive ability and future reliability can be
categorized as follows: (A) > 2.0: good model, (B) 1.4–2.0: fair model, and (C) < 1.4: model
with poor predictive ability [66].

3. Results
3.1. Performance of DNN Models for Predicting Vcmax and Jmax from Reflectance

Vcmax in the Naeba dataset ranged from 4.23 to 93.09 µmol m−2 s−1, with mean
and standard deviation values of 35.38 and 16.30 µmol m−2 s−1, respectively. Similarly,
Jmax also exhibited a large variation from 12.58 to 196.26 µmol m−2 s−1 (mean value:
73.28 µmol m−2 s−1 and standard deviation: 29.61 µmol m−2 s−1) (Figure 1). The diagrams
of statistical values (R2, RMSE, MAE, and RPD) resulting from using the built DNN models
coupled with bootstrap sampling to predict Vcmax and Jmax are shown in Figure 3. In
detail, the respective DNN model yielded a mean R2 of 0.54 within the range of 0.45 to
0.60, with a corresponding mean RMSE of 11.13 µmol m−2 s−1 (10.33–11.98) and a mean
MAE value of 8.37 µmol m−2 s−1, when predicting Vcmax. The mean RPD value was 1.46,
and the model performance was categorized as “B” (1.4–2.0). For predicting Jmax, the R2

values varied from 0.43 to 0.55, with a mean R2 value of 0.50. Furthermore, the DNN model
had a mean RMSE of 20.76 µmol m−2 s−1, an MAE of 16.05 µmol m−2 s−1, and an RPD of
1.42 for Jmax.
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3.2. Performance of DNN Models for Predicting Vcmax and Jmax from Reflectance in Different
Leaf Types

The DNN models used to predict Vcmax and Jmax from reflectance in different
leaf types were further explored, and the results are presented in Figure 4. In detail,
the DNN model for predicting Vcmax for sunlit leaves had a mean R2 of 0.50, RMSE of
12.10 µmol m−2 s−1, MAE of 9.17 µmol m−2 s−1, and RPD of 1.42. In comparison, the DNN
model for shaded leaves had a mean R2 of 0.39, RMSE of 7.15 µmol m−2 s−1, and MAE of
5.64 µmol m−2 s−1. Furthermore, the mean RPD value of the DNN model for estimating the
Vcmax of shaded leaves only reached 1.26 (lower than 1.40), so its performance was classed
as “C” (RPD < 1.40) only. Similar results were also found when predicting Jmax using
the DNN model. The best predictive performance was achieved for sunlit leaves (mean
R2 = 0.49, RMSE = 21.68 µmol m−2 s−1, MAE = 16.76 µmol m−2 s−1, and RPD = 1.40).
However, the DNN model had a relatively poor performance for predicating Jmax in
shaded leaves (mean R2 = 0.23, RMSE = 14.69 µmol m−2 s−1, MAE = 11.34 µmol m−2 s−1,
and RPD = 1.13). In terms of R2 and RPD values, it is worth noting that the predicted
performances were higher in sunlit leaves than in shaded leaves for both Vcmax and Jmax.
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3.3. Performance of DNN Models for Predicting Vcmax and Jmax from Reflectance during
Different Growing Periods

Distinctive DNN models were trained to predict Vcmax and Jmax in different grow-
ing periods, namely, leaf flushing, maturity, and senescence. Their respective perfor-
mances are listed in Table 1. Specifically, the estimations of Vcmax (based on the mean
R2 and RPD values) during the flushing period (mean R2 = 0.70, RPD = 1.85) were con-
siderably higher than those in the mature (mean R2 = 0.48, RPD = 1.41) and senescence
(mean R2 = 0.52, RPD = 1.46) periods, in terms of R2 and RPD. Likewise, the estimation of
Jmax was best during the flushing period (mean R2 = 0.78, RMSE = 16.60 µmol m−2 s−1,
MAE = 12.06 µmol m−2 s−1, RPD = 2.15), followed by the leaf senescence period (mean
R2 = 0.55, RMSE = 18.84 µmol m−2 s−1, MAE = 15.04 µmol m−2 s−1, RPD = 1.47). The
poorest model performance was found during the mature leaf period, with a mean R2 of
0.50, RMSE of 19.68 µmol m−2 s−1, MAE of 15.18 µmol m−2 s−1, and RPD of 1.43.

Table 1. Performance results for predicting the maximum carboxylation rate (Vcmax) and maximum
electron transport rate (Jmax) using the ensemble DNN model during different growing periods
(flushing, maturity, and senescence). R2: coefficient of determination; RMSE: root mean square error;
MAE: mean absolute error; RPD: ratio of performance to standard deviation.

Traits Period R2 RMSE MAE RPD

Vcmax
Flushing 0.70 11.03 8.34 1.85
Maturity 0.48 12.53 9.39 1.41

Senescence 0.52 8.05 6.33 1.46

Jmax
Flushing 0.78 16.60 12.06 2.15
Maturity 0.50 19.68 15.18 1.43

Senescence 0.55 18.84 15.04 1.47

3.4. Leaf Biophysical/Biochemical Traits as Additional Predictors of DNN Models

The effects of including additional leaf biophysical/biochemical traits (LT, LMA, and
Chl in this study) as predictors in the ensemble DNN models have been investigated in this
study. The results are shown in Table 2. It worth noting that the model performance for
Vcmax improved only slightly when LMA and Chl were taken into consideration, in terms
of the mean R2 and RPD values (R2 = 0.55, RPD = 1.48). In terms of the mean R2 and RPD
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values, including the additional leaf chlorophyll trait resulted in the DNN models for Jmax
providing a higher mean R2 value (0.55) and RPD (1.49) than for the reflectance alone.

Table 2. Results of the DNN model for predicting photosynthetic traits (Vcmax: maximum carboxylation rate; Jmax: maxi-
mum electron transport rate) using hyperspectral information, with different additional leaf traits and their combinations
added in as predictors. R2: coefficient of determination; RMSE: root mean square error; MAE: mean absolute error; RPD:
ratio of performance to standard deviation.

Leaf Type DNN Model
Vcmax Jmax

R2 RMSE MAE RPD R2 RMSE MAE RPD

All

ref, LT 0.53 11.83 8.94 1.46 0.53 21.40 16.82 1.46
ref, LMA 0.54 11.24 8.58 1.47 0.53 21.21 16.53 1.46
ref, Chl 0.54 11.73 8.90 1.47 0.55 20.92 16.27 1.49

ref, LT, Chl 0.49 11.90 9.20 1.41 0.51 20.94 16.74 1.42
ref, LMA, Chl 0.55 11.53 8.94 1.48 0.53 21.79 16.73 1.45

ref, LT, LMA, Chl 0.54 11.70 9.24 1.44 0.51 22.67 17.46 1.41

Sunlit

ref, LT 0.50 12.56 9.69 1.41 0.48 22.98 17.78 1.39
ref, LMA 0.50 12.36 9.69 1.42 0.49 22.12 17.27 1.40
ref, Chl 0.54 11.55 9.28 1.49 0.52 19.96 16.87 1.45

ref, LT, Chl 0.50 12.71 9.91 1.42 0.49 21.05 16.22 1.41
ref, LMA, Chl 0.52 12.79 10.18 1.43 0.54 20.97 16.62 1.49

ref, LT, LMA, Chl 0.53 12.44 9.88 1.45 0.50 21.53 16.66 1.40

Shaded

ref, LT 0.42 7.07 5.37 1.29 0.36 14.38 11.66 1.20
ref, LMA 0.49 6.17 5.05 1.41 0.45 11.48 9.14 1.39
ref, Chl 0.46 6.39 5.04 1.28 0.41 10.30 8.37 1.26

ref, LT, Chl 0.44 6.84 5.64 1.30 0.37 12.05 7.73 1.22
ref, LMA, Chl 0.47 6.49 5.50 1.39 0.43 9.34 7.99 1.38

ref, LT, LMA, Chl 0.45 6.82 5.01 1.33 0.37 11.57 9.67 1.23

Impressive improvement, however, was noted when leaf traits were included in
the ensemble DNN models as predictors for dealing with different leaf types. In detail,
for sunlit leaves, the trained DNN model including leaf chlorophyll content showed an
improvement in terms of the mean R2 and RPD: they increased by up to 8.00% (0.50 to 0.54)
and 4.93% (1.42 to 1.49), respectively, while the mean RMSE was reduced by 4.55% (12.10
to 11.55 µmol m−2 s−1) for Vcmax. Similarly, including Chl also resulted in a significant
improvement for Jmax (mean R2 = 0.52, RMSE = 19.96 µmol m−2 s−1, and RPD = 1.45),
even though the best DNN model was found when both the LMA and Chl were included;
this had a mean R2 of 0.54, RMSE of 20.97 µmol m−2 s−1, MAE of 16.62 µmol m−2 s−1, and
RPD of 1.49. On the other hand, notable improvements were found when the LMA was
added to the reflectance in shaded leaves. In detail, the mean RMSE and MAE decreased
by 13.71% and 10.46%, while the mean R2 and RPD increased by 25.64% and 11.90%,
respectively, for Vcmax. Many improvements were obtained through the addition of the
LMA for Jmax compared to other traits, and the mean R2, RMSE, MAE, and RPD values
were 0.45, 11.48 µmol m−2 s−1, 9.14 µmol m−2 s−1, and 1.39, respectively.

Furthermore, we also examined the performances of DNN models when other leaf
traits were included as predictors in different growth periods, and the results are presented
in Table 3. We confirmed the performance improvements that resulted from including leaf
traits as well as the reflectance in the DNN models for predicting Vcmax and Jmax. Specif-
ically, for Vcmax, the mean RMSE decreased from 11.03 to 10.64 (3.54%) µmol m−2 s−1,
and the mean R2 and RPD increased from 0.70 to 0.82 (17.14%) and 1.85 to 2.26 (22.16%),
respectively, when considering both the leaf chlorophyll content and the LMA as inputs
during the leaf flushing period. According to the mean R2 and RPD, the performance was
also greatly improved (mean R2 = 0.83, RMSE = 15.65 µmol m−2 s−1, RPD = 2.21) for Jmax
when the leaf chlorophyll content, leaf thickness, and LMA were used as predictors.
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Table 3. Results of DNN model for predicting photosynthetic traits (Vcmax: maximum carboxylation rate; Jmax: maximum
electron transport rate) using hyperspectral information, with different additional leaf traits and their combinations used as
predictors during different growing periods (flushing, maturity, and senescence). R2: coefficient of determination; RMSE:
root mean square error; MAE: mean absolute error; RPD: ratio of performance to standard deviation.

Period DNN Model
Vcmax Jmax

R2 RMSE MAE RPD R2 RMSE MAE RPD

Flushing

ref, LT 0.73 11.18 8.63 1.93 0.78 17.68 12.89 2.07
ref, LMA 0.71 11.25 8.49 1.86 0.73 18.05 13.01 1.93
ref, Chl 0.77 11.49 9.37 2.04 0.75 18.83 15.15 2.00

ref, LT, Chl 0.64 12.19 9.48 1.86 0.75 17.71 12.50 1.92
ref, LMA, Chl 0.82 10.64 9.43 2.26 0.79 17.17 13.56 2.13

ref, LT, LMA, Chl 0.82 11.31 9.63 2.01 0.83 15.65 12.33 2.21

Maturity

ref, LT 0.43 12.51 9.50 1.36 0.48 21.84 16.92 1.41
ref, LMA 0.49 11.89 9.24 1.45 0.49 21.79 16.70 1.40
ref, Chl 0.41 12.22 9.79 1.33 0.49 21.57 16.84 1.41

ref, LT, Chl 0.48 12.15 10.04 1.41 0.46 21.63 17.71 1.39
ref, LMA, Chl 0.46 11.90 10.68 1.42 0.49 20.14 16.23 1.43

ref, LT, LMA, Chl 0.44 12.43 9.98 1.39 0.52 20.09 16.36 1.45

Senescence

ref, LT 0.49 8.24 6.56 1.42 0.52 19.31 15.45 1.44
ref, LMA 0.48 8.42 6.78 1.40 0.56 18.89 14.77 1.50
ref, Chl 0.56 7.84 6.03 1.52 0.54 19.16 15.07 1.47

ref, LT, Chl 0.53 8.18 6.23 1.49 0.59 18.56 14.59 1.53
ref, LMA, Chl 0.51 8.40 6.67 1.43 0.53 18.58 15.14 1.46

ref, LT, LMA, Chl 0.47 9.37 7.19 1.42 0.61 17.67 14.14 1.62

However, the estimation accuracy of Vcmax (mean R2 = 0.49, RPD = 1.45) and Jmax
(mean R2 = 0.52, RPD = 1.45) were only slightly increased when the LMA and all of the
traits, respectively, were combined with the reflectance during the leaf maturity period.
Furthermore, during the leaf senescence period, Vcmax prediction using the DNN model
based on the reflectance combined with Chl improved, with mean R2, RMSE, MAE, and
RPD values of 0.56, 7.84 µmol m−2 s−1, 6.03 µmol m−2 s−1, and 1.52, respectively. Similarly,
the DNN model with the LT, LMA, and Chl coupled with the reflectance performed best
for estimating Jmax; this had mean R2, RMSE, MAE, and RPD values of 0.61, 17.67 µmol
m−2 s−1, 14.14 µmol m−2 s−1, and 1.62, respectively.

4. Discussion
4.1. Estimation of Leaf Photosynthetic Traits from Spectra Using the DNN Models

Our results suggest that DNN models can be used to estimate photosynthetic traits
with moderate accuracy, except for shaded leaves. Our results are in agreement with
previous studies that reported that the photosynthetic capacity can be estimated from
reflectance spectral data [10,14,67,68]. For example, one previous study reported moderate
predictive performance for sunlit tobacco leaves using an ANN model (Vcmax: R2 = 0.60,
RMSE = 54.80; Jmax: R2 = 0.48, RMSE = 41.50) and emphasized the potential predictive
ability of neural networks regarding photosynthesis [26]. Beyond such pioneering works,
we have explored DNN models with multiple hidden layers in this study. These have
previously been proven to outperform ANNs in predicting soil properties [52]. Even
though the DNN model developed in this study (mean R2 = 0.54, RMSE = 11.13) for
predicting Vcmax exhibited relatively low R2 and RMSE values compared with those
of Fu et al. [26], the DNN model nevertheless had a better performance for predicting
Jmax (mean R2 = 0.50, RMSE = 20.46) than the ANN in that study [26], with impressive
reductions in RMSE values and increases in R2 values. This work has thus advanced the
use of deep learning algorithms in photosynthesis.

As claimed previously, the DNN models performed better than the other machine
learning models; they are the best types of models to estimate surface parameters in
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almost all cases [52]. In this study, we also explored the one-dimensional convolutional
neural network (CNN) [69,70] for predicting Vcmax and Jmax. However, the use of
the CNN model yielded a weak predictive performance, with R2 and RMSE values of
0.46 and 11.76 µmol m−2 s−1 for Vcmax and 0.45 and 23.54 for Jmax. In addition, the
RPD values (1.36 and 1.29) for Vcmax and Jmax were both classified as “C”, indicating
the unreliability of the model. The inferior performance of the CNN model could be
related to explicitly considering photosynthetic traits with large seasonal variations, canopy
variations, and sampling times, all of which increase the uncertainty. Overall, the DNN
model outperformed the CNN model, with a better correlation with in situ photosynthetic
trait measurements.

Compared with other commonly applied data-driven approaches, the DNN models
unsurprisingly outperformed reported indices such as the photochemical reflectance index
(PRI), normalized difference vegetation index (NDVI), and enhanced vegetation index
(EVI) [71], when estimating both Vcmax and Jmax. Furthermore, the performance for
estimating Vcmax using the DNN model was also better than double difference (DDn)
types of vegetation indices (R2 = 0.50, RPD = 1.42), as proposed by Jin et al. [71] for mature
leaves with mixed dominant species. However, the DNN model had a relatively weaker
performance than the PLSR model used for Vcmax and Jmax modeling by Jin et al. [72].

Furthermore, we explored the robustness of the DNN models for predicting the
photosynthetic capacity with different leaf groups. The modeling performances for Vcmax
and Jmax of the DNN model for sunlit leaves were much higher than those for shaded
leaves. The differences in leaf groups can be explained by the differences in their responses
to the photosynthesis process [73] and/or the changes in leaf properties such as the leaf
mass per area, and the light environment throughout the vertical profile [74–77]. Taking
the sunlit and shaded leaf groups into consideration is helpful for improving the estimation
of carbon and water fluxes [78,79]. In addition, the performance using the DNN models in
estimating Vcmax and Jmax was notably the best during the leaf flushing period, followed
by the senescence period, with the poorest performance occurring during the maturity
period. This observation could be attributed to the range of variation in Vcmax and Jmax
for model development [11]. As reported by previous studies, leaf flushing and senescence
are accompanied by a strong increase and decline in photosynthetic capacity, while leaf
maturity is relatively stable with minor changes [7,80]. A more likely explanation is that
the spectra–photosynthetic capacity linkages could vary with leaf age. The results suggest
that including as many axes of variation as possible is critical in tracing the photosynthetic
capacity using spectral information.

4.2. Including Other Leaf Biophysical/Biochemical Traits to Better Predict Photosynthetic Capacity
from Reflectance Using DNN Models

Our results showed that using only leaf hyperspectral reflectance, it is possible to
capture a large variety of photosynthetic traits. However, combining other leaf biophysi-
cal/biochemical traits could further improve the estimation accuracy of photosynthetic
traits using DNN models, since our results clearly indicated that the estimation accuracy
of Vcmax from reflectance using DNN models was much improved by the addition of
the leaf chlorophyll content for sunlit leaves. Leaf chlorophyll is an important component
of the photosynthesis machinery that harvests light and transports electrons to support
the production of the biochemical energy necessary to drive photosynthesis [81], and it
is an important indicator of physiological status [19]. Several studies found that there
were strong correlations between leaf chlorophyll content and both Vcmax and Jmax for
several broadleaf tree species [82] and crops [83], and the integration of the relationship into
terrestrial biosphere models has been reported to reduce errors in the estimated primary
productivity [84]. However, we found that shaded leaves were different from sunlit leaves,
and that the addition of the LMA to the DNN models could improve the prediction of
Vcmax and Jmax. The results are consistent with those of Song et al. [85]. In addition,
leaf chlorophyll, together with leaf morphological characteristics, has been considered to
improve Vcmax and Jmax prediction during the leaf flushing period. The increments in
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chlorophyll and morphological traits were similar to those in Vcmax and Jmax [7], and
these trends can possibly contribute to tracing the photosynthetic capacity when using
leaf spectra.

Overall, we found that the inclusion of leaf traits can effectively constrain the uncer-
tainty of modeled photosynthesis and improve the estimation accuracy, particularly for
areas with strong seasonal cycles and different leaf types, and in turn this can provide a
more realistic estimation of photosynthetic capacity.

4.3. Bootstrap as a Remedy for Setting Up Robust DNN Models from Limited Samples

Our results have clearly demonstrated that a DNN model using the bootstrap approach
is an effective solution that increases the stability and accuracy of leaf photosynthetic
capacity prediction. We have verified the approach’s effectiveness in comparison to the
original DNN model based on the measured data using the coefficient of variation (CV) in
terms of R2 and RMSE values (see Figure 5). The DNN model based on limited samples
exhibited relatively larger variations in both R2 and RMSE values when predicting Vcmax
(CV = 13.18% and 6.97%) and Jmax (CV = 13.36% and 5.70%). In comparison, using the
bootstrap sampling approach, as in the ensemble DNN, resulted in a decrease in the CV
values for R2 for predicting Vcmax (7.30%) and Jmax (8.00%), and also in the RMSE CV
values (5.10% and 4.13% for Vcmax and Jmax, respectively). The differences between
the performances of these two approaches are attributed to the fact that deep learning
methods require large datasets to develop good prediction models [70]. As a result, the
ensemble DNN model could predict photosynthetic capacity with high stability, unlike the
single DNN model built from limited samples. This could provide high-quality results in
future applications.
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These results are in agreement with previous studies that use the bootstrapping
approach in ensemble deep learning models, spanning a wide range of fields [49,86]. For
example, Rew et al. [49] reported that a DNN model based on the bootstrap aggregating
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method obtained more accurate and robust prediction results for species distribution
than other typically used models. Overall, the results of this study indicated that it is
important to use the bootstrapping approach when the data acquisition is limited in the
modeling process, as it enhances the strengths of the deep learning techniques, even if
further evaluations are still necessary.

4.4. Limits and Future Studies

We have combined the leaf trait information (possibly the causes of the variations in
leaf photosynthetic capacity) and leaf reflectance (not the cause but the outside expression
only) to build DNN models in this study. Although the feasibility of this technique is
confirmed in this study, the inherent biological mechanisms of prediction models are,
unfortunately, difficult to understand due to the “black-box” nature of neural networks
as well as the large number of layers and neurons involved in training the DNN models.
This experiment still needs to be applied to more study areas in order to verify the effec-
tiveness of the model in predicting photosynthetic traits under different environmental
conditions and to further analyze the impact of different leaf characteristics on the accuracy
of predicting photosynthetic traits. Furthermore, the potential of DNN models for map-
ping photosynthetic capacity using satellite spectral imagery should be explored, thereby
providing a powerful tool to accurately assess photosynthetic capacity across large spatial
scales. Feature selection methods, to simplify the model based on the relationship between
reflectance spectra and photosynthesis, should also be explored in the future to exclude
unimportant and redundant auxiliary variables.

5. Conclusions

DNN models using reflected information for predicting leaf photosynthetic capacity
were evaluated extensively in this study, in terms of different leaf types and growth periods.
High correlations between the actual and predicted photosynthetic parameters suggested
that the DNN is a feasible approach for predicting leaf functions from outside reflected
information. However, DNN models can be much improved by including associated leaf
traits as predictors, in addition to the spectra. Although there are still many unknowns
that need to be explored, the approach of coupling deep learning with hyperspectral
information to trace leaf photosynthetic capacity, especially with the aid of other leaf
traits, is promising. This study has addressed an important challenge by estimating leaf
photosynthetic capacity based on reflected hyperspectral information, and it advances our
understanding of tracking physiological dynamics using remote sensing technology.
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