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Abstract: Ecological environment quality is a long-term continuous concept that is affected by
various environmental factors. Its assessment has important implications for implementing the
planning and protection of dynamic regional ecosystems. Therefore, this study attempted to obtain
these indicators (green, dry, wet, heat) through the Google Earth Engine (GEE) platform, and then
coupled the ecological environment quality index in the middle reaches of the Yangtze River Basin
(MYRB) between 2000 and 2019, based on the remote sensing ecological index (RSEI). The major
results show that: (1) changes in the four indicators in summer were more obvious than those in
winter, and the changes were concentrated in the central and northern regions of the MYRB; (2) both
the modified normalized difference water index (MNDWI) and normalized differential build-up
and bare soil index (NDBI) in summer and winter have higher weighting ratios, implying that
water body changes and human activities had a greater impact on the ecological environment; and
(3) ecological environment quality in the MYRB between 2000 and 2019 was relatively flat. The
ecological conditions began to deteriorate in 2008, and substantial ecological degradation was noted
in some areas between 2008 and 2019 (18.7% in the central region, 16.0% in the eastern region). The
MYRB has an important position in the Yangtze River economic belt and is an important part of the
Yangtze River protection. This research could provide a theoretical basis and decision support for the
development and protection of the Yangtze River Basin (YRB) green economy.

Keywords: RSEI; remote sensing; entropy method; ecosystem; space changes

1. Introduction

With rapid industrial development and urban expansion, increasingly intense changes
in climate have gradually become an issue of common concern to the international com-
munity [1]. Recently, the climate has undergone major changes characterized by global
warming [2]. Affected by climate change, extreme weather events (e.g., droughts, floods,
rainstorms, and tropical typhoons) have occurred frequently, seriously affecting daily
life and economic development [3]. Meanwhile, with urban expansion, droughts, floods,
water pollution, and other problems are becoming increasingly serious, as they are also
aggravated by climate change [4]. Moreover, both have seriously affected the ecological
environment [5]. Ecosystems are the most precious resource, providing the necessary open
space for human survival and development [6]. Ecological environment quality is a concept
used to measure the level of ecological environment, which expresses the suitability of the
ecosystem ecological environmental factors in a specific spatial and temporal range for
human survival and social economic development [7]. However, ecological environment
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damage has caused some people to experience severe living environments [8]. For instance,
due to the occurrence of terrestrial disasters, 42% of potable water systems in China have
been polluted, resulting in 36% of urban river water becoming completely unusable and
causing tremendous damage to the human living environment [9]. Meanwhile, severe
resource constraints and sustained high-intensity industrial, traffic, and domestic pollution
have reduced the green living environment, and threatened the safety of life and property,
as well as the sustainable development of society and the economy [6].

Recently, the development of remote sensing technology has provided substantial
data for ecosystem monitoring, and it has also offered reliable instructions for ecological
conditions assessment at different scales [10]. Due to the large amount of data, wide
coverage, timeliness, and ease of acquisition, remote sensing technology has become an
important technical method for studying ecological environments [11]. Various ecological
indicators (e.g., forest [12], grassland [13], green space [14], cities [15], and water bodies [16])
have been applied to monitor and evaluate the ecological environment. Previous work has
usually applied remote sensing images at medium or low resolution when studying the
ecological environment quality [14,17,18]. A lower spatial resolution reduces the calculation
requirements, it also reduces the precision in small- and medium-area research [19]. High-
resolution images can better show the changes in the ecological environment quality when
small- and medium-scale regions are studied [20]. Ordinarily, ecosystem dynamics can
be extracted by remote sensing images with sufficient spatial and temporal resolution, in
which the changes related to appropriate ecological indexes can be quickly and accurately
monitored [21].

Single index and low spatial resolution images cannot accurately reflect the actual re-
gion situation with complex land types, while multiple indexes and high-resolution images
can better reflect the ecological changes, providing rich information support for related
research [22]. Therefore, multiple types of ecological environment quality indexes can also
be constructed to better understand ecological patterns and processes, and to evaluate re-
gional ecological changes better through the application of remote sensing technology [23].
Subsequently, these multiple indexes can be combined into a final composite index by
normalized weights, in which greater weight corresponds to greater contribution [24]. The
remote sensing ecological index (RSEI) is a comprehensive index that combines these four
indexes of green, dry, wet, and heat [25]. The RSEI can accurately identify the effects of
environmental state changes (e.g., plant biomass, plant leaf area, plant coverage, water
bodies and wetlands), human activities (e.g., urbanization) [26] and climate change (e.g.,
temperature) [27] on the quality of the ecosystem. Currently, there are many different
methods for calculating weights, which can be roughly divided into two categories: sub-
jective and objective weighting methods [28]. When previous researchers have studied
regional environmental quality, they have often used principal component analysis to
determine weight factors [25]. In principal component analysis, a high cumulative contri-
bution rate, reasonable practical background, and principal component significance must
be ensured [29]. However, the interpretation of principal components in actual situations
is generally somewhat vague, leading to uncertainty in the results [30]. Although the
principal component analysis is often applied in the classic RSEI model, it cannot avoid the
influence of subjective judgment on the results [25]. However, the entropy weight method
can effectively avoid the influence [31].

The complex types of land cover and terrain in the middle reaches of the Yangtze
River Basin (MYRB) have outstanding regional advantages, excellent natural endowments,
and strong comprehensive economic strength [32]. However, the rapid development of
cities, complex changes in water bodies and climate change have seriously threatened
the ecological environment in the MYRB [33]. To implement effective protection of the
Yangtze River Basin (YRB), the Yangtze River Protection Law was passed and reviewed
on 26 December 2020, and implemented on 1 March 2021 [34]. The MYRB has become
the focus of contemporary ecological environmental research [35]. RSEI has been used to
assess the ecological quality of the Erhai [36], Fuzhou [25] and others, but less frequently
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used for ecological quality assessment of the MYRB. Therefore, it is necessary quantita-
tive assessment and analysis on the ecological quality of MYRB under urbanization and
climate change.

Therefore, on the above basis, this research focuses the following: (1) analysing the
changes in the main environmental factors (the normalized difference vegetation index
(NDVI), normalized differential build-up and bare soil index (NDBI), modified normalized
difference water index (MNDWI), and land surface temperature index (LST)) in the MYRB
based on Landsat satellite data; (2) constructing an ecological environment quality index
based on the RESI model and entropy weight method; and (3) evaluating the ecological
environment quality and exploring the seasonal pattern of ecological quality in the MYRB.
This study uses RSEI and Google Earth Engine (GEE) platform to conduct rapid and
efficient ecological quality assessment in the MYRB and explore its change pattern, so as to
provide some theoretical basis and decision support for achieving the balance of economic
development and ecological protection.

2. Study Area

It is characterized by a typical subtropical monsoon climate, with the coldest and
hottest temperatures in January and July, respectively [24]. It includes the Hanjiang
River Basin (HRB), the Dongting Lake Rivers Basin (DLRB), and various plains, hills,
and mountains [37] (Figure 1). It is in the southern part of central China, spanning the
three provinces of Hubei, Hunan, and Jiangxi, with 927 km and 679,000 km2, accounting,
respectively, for 14.7% of the total YRB length and 37.6% of the entire area [38]. Various
urban agglomerations have formed new growth points for economic development in
China [39]. That area includes city clusters, in which the ecological environment is notably
affected by humans [33].

Figure 1. Study area map.
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3. Materials and Methods
3.1. Data and Preconditioning

Because of the complexity of land cover types in the MYRB, high resolution Landsat
remote sensing images (30 m) were used in this study. This study used the U.S. Geological
Survey’s Landsat 5, 7, and 8 surface reflectance images (https://earthdata.nasa.gov/,
accessed on 10 October 2021). The specific number of satellite images used for each image
synthesis and the use of remote sensing images are shown in Tables 1 and 2.

Table 1. Introduction to summer data of ecological environment quality assessment in the MYRB.

Satellite 2000 2002 2006 2008 2013 2019

Landsat 5 140 135 167 133
Landsat 7 159 159 129 130 115 127
Landsat 8 197 190

Table 2. Introduction to winter data of ecological environment quality assessment in the MYRB.

Satellite 2000 2002 2006 2008 2013 2019

Landsat 5 105 85 154 142
Landsat 7 133 138 148 141 141 127
Landsat 8 182 137

The better-quality image data of the Landsat 5 and 8 satellites occur in different time
periods, and the image coverage is small, while the Landsat 7 satellite data have a long
time-span, but the image quality is poor. Therefore, a single satellite cannot obtain a
complete image covering the entire study area within three months. Thus, the Google
Earth Engine (GEE) cloud computing platform was used to obtain the Landsat 5 and 7 data
from March to May and December to February in the following year. The data for 2000,
2002, 2006, and 2008 were selected for similar and uniform time spans. The average value
from March to May each year was calculated and then the remote sensing images of the
two satellites were combined to obtain a relatively complete image. The same method was
used to synthesize and resample Landsat 7 and 8 data. Due to the lack of remote sensing
images, only the data for 2013 and 2019 were obtained under the premise of ensuring the
time span and image quality.

3.2. Methods
3.2.1. Normalized Vegetation Index

NDVI is calculated from the near infra-red and red bands of the light spectrum [40] as
shown in Equation (1), with a value between −1 and 1.

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

where ρNIR and ρR are the near infra-red and red band reflectances.

3.2.2. Normalized Building Index

NDBI is a composite of the urban building index (BI) and the bare soil index (BSI) [41],
and is a negative indicator, which is written as follows:

BSI =
(ρSWIR1 + ρRed)− (ρNIR + ρBlue)

(ρSWIR1 + ρRed) + (ρNIR + ρBlue)
(2)

BI =

2ρSWIR1
ρSWIR1+ρNIR

−
(

ρNIR
ρNIR+ρRed

+ ρGreen
ρGreen+ρRSWIR1

)
2ρSWIR1

ρSWIR1+ρNIR
+
(

ρNIR
ρNIR+ρRed

+ ρGreen
ρGreen+ρRSWIR1

) (3)

https://earthdata.nasa.gov/
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where ρBlue, ρGreen, ρRed, ρNIR, and ρRSWIR1 are the reflectances of blue, green, red, near
infra-red, and short infra-red band 1, respectively.

3.2.3. Modified Normalized Difference Water Index

The MNDWI is calculated from the green band and mid infra-red band [16]. The
calculation is given by Equation (4).

MNDWI =
ρGreen − ρMIR
ρGreen + ρMIR

(4)

where ρMIR is the reflectance of the mid infra-red band.

3.2.4. Land Surface Temperature Index

LST was obtained through atmospheric correction using remote sensing images [42].
First, the influence of the atmosphere on the surface thermal radiation is estimated, and this
fraction of the atmospheric influence is subtracted from the total thermal radiation observed
by the satellite sensor, so that the surface thermal radiation intensity is obtained. Then, this
thermal radiation intensity is converted into the corresponding surface temperature. The
calculation formula is as follows:

Lλ = [εB(Ts) + (1− ε)L ↓]τ + L ↑ (5)

B(Ts) = [Lλ − L ↑ −τ(1− ε)L ↓]/τε (6)

Ts = K2/ ln(K1/B(TS) + 1) (7)

where ε is the land surface emissivity (LSE), Ts is the real surface temperature, B(Ts)
is blackbody thermal radiance, τ is atmospheric thermal infrared transmittance, Lλ is
thermal infrared radiance, L ↑ is upward atmospheric radiance, and L ↓ is downward
atmospheric radiance.

Finally, NDVI, NDBI, MNDWI, and LST were obtained from remote sensing images
based on the GEE platform and calculation method.

3.2.5. Remote Sensing Ecological Index

The RSEI is a comprehensive index that combines these four indexes of green, dry,
wet, and heat [25]. NDVI is closely related to plant biomass, plant leaf area, and plant
coverage, which can represent greenness. NDBI can indicate the change and destruction
of the original natural ecosystem caused by human construction, housing, activities, etc.,
resulting in passive ground desiccation [26]. Because of the numerous human activities in
the MYRB and the abundant building complexes, MNDWI can distinguish the moisture
status of water bodies and buildings, including plants, wetlands, and soil, which is closely
related to changes in the ecological environment [27]. Therefore, NDVI, NDBI, MNDWI,
and LST were used to represent green, dry, wet, and heat, respectively. The calculation
formula for the RSEI is as follows:

RSEI = f (NDVI, NDBI, MNDWI, LST). (8)

3.2.6. Weight and Data Standardization

To ensure result objectivity, the entropy weight method was selected to determine the
weight [31]. The entropy method calculates the dataset variance, for which the greater the
degree of similarity, the smaller the contribution to the final ecological situation. This is
consistent with the research objective, indicating that the smaller the degree of variation
in the time series, the smaller the amount of information reflected, and the lower the
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corresponding weight. Notably, the index must be normalized before obtaining the weights
using the entropy method, according to the following two methods:

XP =
Xi − Xmin

Xmax − Xmin
(9)

Xn =
Xmax − Xi

Xmax − Xmin
(10)

where XP indicates a positive effect on the result and Xn indicates a negative effect on the
result. Xi, Xmax, and Xmin represent the data, maximum, and minimum values, respectively.

3.2.7. Sen’s Slope Estimation

Sen’s slope estimation method can calculate the slope of the time series and the
significance level of the z value [43]. The slope m represents the average rate of change
in the data sequence. The calculation formula for the slope m is shown in Equation (11).
When m > 0, the sequence is increasing; when m < 0 the sequence is decreasing; and
when m = 0, no trend is apparent. The significance level z value indicates a significant
change in the element value. When z > 0, there is an increasing trend, and when z > 1.96,
it indicates a significant increase; when z < 0, it indicates a decreasing trend, and less
than −1.96 indicates a significant decrease. This study analyses ecological changes in a
continuous time series. Using Sen’s slope estimation method, the changes and trends in
the study area can be visualized.

m = Median
( xj − xi

j− i

)
, ∀j > I (11)

where m indicates slope, Median is the median function, and xt = (x1, x2, x3, · · · , xn)
represents the time series.

3.2.8. Calculating the RSEI in the MYRB

According to the above-mentioned data pre-processing and weight calculation meth-
ods, four indicators (NDVI, NDBI, MNDWI, and LST) in the MYRB can be obtained for
fitting the RSEI, which can be roughly divided into the following steps.

First, NDVI, MNDWI, and LST are normalized according to Equation (9); NDBI is
a negative indicator, thus NDBI is normalized according to Equation (10). Second, after
the normalized pixel values are obtained, six years of data from 2000 to 2019 are weighted
according to the values in the four pixels corresponding to the latitude and longitude
coordinates of the corresponding points.

Table 3 shows the coordinates of pixels for different indices. The data matrix of
coordinate points is listed in a time series. After obtaining the data matrix, the proportion
of each element in the column according to the data matrix is calculated to obtain the
probability matrix, and each element must be calculated using the following formula:

pij =
z̃ij

∑n
i=1 z̃ij

(12)

where pij is the element in the probability matrix P and z̃ij is the standardized index.
Then, the information entropy e of each indicator is calculated according to the proba-

bility matrix P as follows:

ej = −
1

ln n

n

∑
i=1

pij ln
(

pij
)
(j = 1, 2, 3, · · · , m) (13)
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where ej is the value of each information entropy point in the information entropy matrix
E. Finally, the information utility value of each element is calculated, and the information
utility value obtained by normalization is the weight of each indicator.

wi =
1− ej

sum
(
1− ej

) (14)

where wi is the final weight calculated for each indicator; 1− ej indicates the information
utility value of each element; and after calculating the weight value of each pixel, NDVI,
NDBI, MNDWI, and LST are weighted and summed according to the weight, and the RSEI
pixel value corresponding to each coordinate is obtained.

Table 3. Coordinate point pixel value matrix.

Time NDVI NDBI MNDWI LST

2000 a1 b1 c1 d1
2002 a2 b2 c2 d2
2006 a3 b3 c3 d3
2008 a4 b4 c4 d4
2013 a5 b5 c5 d5
2019 a6 b6 c6 d6

4. Results
4.1. Multiple Indices Change in the MYRB during 2000–2019

Figure 2 shows the changes in the four ecological factors in the summers of 2000, 2002,
2006, 2008, 2013, and 2019 in the MYRB. The results showed that the NDVI of the MYRB
was mainly concentrated in the north between 2000 and 2006, showing a downward trend
(6.4% between 2000–2006) (Figure 2(a.1–a.3)). NDVI showed an increasing trend between
2006 and 2019 (14.1% in the northwest, 10.4% in the southeast) (Figure 2(a.4–a.6)). NDBI
decreased by 25.3% in the north and increased by 46.4% in the south between 2000 and
2008 (Figure 2(b.1–b.4)). However, there were significant increases between 2008 and 2019
(21.5% in the north), indicating that human activities were more frequent recently. MNDWI
changed noticeably from 2000 to 2019 (Figure 2(c.1–c.6)), and MNDWI increased by an
average of 32.5% in the central and northern regions between 2000 and 2008 and decreased
by 39.3% in the north during 2008 and 2019. The overall distribution of LST showed little
change and was mainly concentrated in the northeast between 2000 and 2019, there were
significant increases between 2008 and 2019 (38.7% in the southwest).

Figure 3 shows the distribution map of the four types of indices in winter. The
indexes in winter were lower, and the overall trend in winter was lower without obvious
changes compared with summer. In winter, NDVI decreased by 25.3% from 2000 to 2008
(Figure 3(a.1–a.4)). However, NDVI increased by 24.9% compared with that in 2019. NDBI
increased overall with the change in year, increasing by an average of 1.1% and decreased
by 5.1% between 2000 and 2006, and 2006 and 2019, respectively, concentrated in the
northeast region, and the growth was generally consistent with that in summer. MNDWI
was more evenly distributed throughout the region (Figure 3(c.1–c.6)), with an average
decrease of 12.9%. Meanwhile, MNDWI was higher in winter than in summer, indicating
that MNDWI was seasonally affected. LST gradually changed from higher in the south to
more evenly distributed from 2000 to 2019 but was still higher in the northeast and south
than other regions. In winter, NDBI and LST had opposite distributions in space, but the
spatial distribution of NDBI and LST was consistent in summer, indicating that seasonal
changes greatly affect the spatial distribution of surface temperature.
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Figure 2. Distribution map of four types of indices in summer.((a.1–a.6), (b.1–b.6), (c.1–c.6), (d.1–d.6) represents the NDVI,
NDBI, MNDWI and LST in the six years of 2000, 2002, 2006, 2008, 2013 and 2019, respectively).

Figure 3. Distribution map of four types of indices in winter. ((a.1–a.6), (b.1–b.6), (c.1–c.6), (d.1–d.6) represents the NDVI,
NDBI, MNDWI and LST in the six years of 2000, 2002, 2006, 2008, 2013 and 2019, respectively).

4.2. Multiple Indices Change in the MYRB during 2000–2019

In order to compare the average weight proportion of different indices more intuitively,
this study calculated the average weight within the whole study area according to the
weights of different pixel points of remote sensing images. The summer index average
weight statistics are presented in Table 4. NDVI in the large region occupied the smallest
weight, indicating that NDVI had the smallest contribution to RSEI between 2000 and 2019
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(Figure 4a); the weights of MNDWI were higher than those of NDVI, indicating that water
body changes were more obvious than greenness, the impact of water body changes on
the ecology was also more serious. The average weight of NDBI was significantly higher
than that of NDVI and MNDWI, which meant that the impact of human activities on the
ecological environment was greater. Furthermore, the average weight of LST was the
highest, indicating that changes in temperature greatly affected the ecological environment.
For example, the temperature changed significantly in the south and northeast (Figure 2),
which had a substantial impact on the changes in the ecological environment quality in
the MYRB.

Table 4. Weight statistics for different indexes in summer.

Name Max Min Mean

NDVI 0.8433 0 0.0143
NDBI 0.9947 0 0.4214

MNDWI 0.9952 0 0.1245
LST 0.9978 0 0.4398

Figure 4. Distribution map of the weights of (a) NDVI, (b) NDBI, (c) MNDWI and (d) LST in the MYRB in summer.

The weight statistics of the four indices in winter are listed in Table 5. The average
weights of NDVI and MNDWI showed little change in winter. Compared with summer,
the water bodies did not change significantly, MNDWI changed less obviously than in
summer (Figure 2(c.1–c.6) and Figure 3(c.1–c.6)), and the proportion of MNDWI average
weight decreased. The average weight of LST had the highest average weight, followed
by the NDBI. The maximum and minimum values of the four indexes were similar in
summer and winter, but the maximum and minimum values of each index had a large gap,
indicating that the weight values of each coordinate were not evenly distributed. As the
location of the area changed, the weight value also changed substantially.
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Table 5. Weight statistics of different indexes in winter.

Name Max Min Mean

NDVI 0.7245 0 0.0201
NDBI 0.9981 0 0.4347

MNDWI 0.9513 0 0.0646
LST 0.9996 0 0.4506

The weight distribution of each index in summer is shown in Figure 4. The weight of
NDVI were higher in the north and east, indicating that the greenness had larger changes
in these areas. The weights of NDBI were not uniformly distributed (Figure 4b). The NDBI
weights throughout the region were relatively high; in the central region and northern
region, it was slightly higher than the average level, indicating that the MYRB has been
extensively affected by human activities in recent years. The weight of MNDWI was higher
than NDVI (Figure 4c), and MNDWI with higher weights were mainly distributed in
the northeast region, while the south regions had lower weights. The LST weights were
more evenly distributed in the region, and northwest and eastern regions, in which the
temperature had changed significantly, exhibited higher weights.

The winter indices are shown in Figure 5. The changes in the NDVI and MNDWI
weights were not obvious in winter. The decrease in the MNDWI weights was more
serious (Figure 5c), indicating that the water body changes in winter were not as significant
in summer. This was consistent with the changes in the average MNDWI weight in
Tables 4 and 5. The MNDWI weight was more evenly distributed in winter. There were
obvious changes in NDBI and LST. NDBI increased significantly in the south region
(Figure 5b), and the areas with higher weights moved to the south and central regions.
The regions with high LST weights were concentrated in the northern regions (Figure 5d),
indicating that seasonal changes also affected the regional transfer of weights. In addition,
the spatial distribution of NDBI and LST weights was clearly opposite in summer and
winter, suggesting that regions with high human activity did not have significant surface
temperature changes, human activities had reduced the intensity of surface temperature
changes. This was also consistent with the opposite spatial distribution of NDBI and LST
in Figure 3.

4.3. RSEI Changes in the MYRB during 2000–2019

The spatial distribution of the RSEI during summer is shown in Figure 6. The RSEI
did change significantly in northwest and southeast in 2000–2008, the RSEI decreased
40% and increased 113.5% in the northwest and southeast MYRB, respectively (Figure 6);
the RSEI decreased 70.4% in the central and northeast regions in 2008–2019, indicating
that the ecological environment in these regions deteriorated more severely. The situation
improved significantly in northwest between 2008 and 2019. The RSEI in the northwest
regions of the MYRB increased, signifying that the ecological environment of these regions
had also improved somewhat. However, the overall situation remained poor, the low
ecological quality was mainly concentrated in the central region.

The RSEI distribution during winter is shown in Figure 7. Affected by the monsoon
and the difference in ecological conditions between winter and summer, the RSEI spatial
distribution in winter and summer also showed significant differences. In winter, the
RSEI in most areas did not change significantly and only decreased by an average of 4.2%
from 2000 to 2008 (Figure 7). The RSEI in the north-western MYRB increased and then
decreased between 2008 and 2019. In addition, the ecological conditions in most areas
changed little in these years, and there were some changes in the ecological conditions in
the southwest, but they were not obvious compared with the overall situation. The RSEI
improved in a large area during 2008–2019. The entire region showed an increasing trend
from the northwest and gradually radiating to the northeast; the northern area had the most
significant improvement (62.7% between 2008 and 2019), and the ecological conditions in
the entire region continuously improvement from 2008 to 2019.
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Figure 5. Distribution map of the weight of (a) NDVI, (b) NDBI, (c) MNDWI and (d) LST in the MYRB in winter.

Figure 6. Spatial distribution of RSEI in the MYRB in the summer.

4.4. Ecological Quality Change Analysis

The distribution of the slope and significance level eigenvalues for winter and summer
are shown in Figure 8. The regional decline was widely distributed throughout the region
in summer, and was mainly concentrated in the southwest, east, and north (Figure 8(b.1)).
It can be seen that the situation in most declining areas was very significant. The results
implied that the ecological environment in the region had deteriorated over a wide range
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and the deterioration in most areas was significant, although a small part of the ecological
situation improved between 2000 and 2019. The ecological environment deterioration in
winter was smaller than that in summer, and there was less area reaching a significant level
than in summer, which was consistent with the RSEI trend in Figure 6; Figure 7. According
to Figure 8(b.2), the decline in ecological level in winter was better than that in summer, but
the situation in most areas was still not optimistic, and only a few areas achieved significant
improvement in ecological conditions.

Figure 7. Spatial distribution of the RSEI in the MYRB in the winter.

Figure 8. Distribution of eigenvalues of slope and significance level in winter and summer ((a.1,a.2) are the distribution of
slope in summer and winter, respectively; (b.1,b.2) are the distribution map of significant level in summer and winter).
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5. Discussion
5.1. Data and Model Advantages

In this study, the GEE platform was used to synthesize the data using Landsat 5, 7,
and 8, and to obtain MYRB images, which were processed and analysed. When other
researchers conducted similar research, they mostly used moderate-resolution imaging
spectroradiometer (MODIS) remote sensing data to study the research area [31]. MODIS
data are easy to obtain and have the advantages of wide coverage and multiple data
types. The use of MODIS data could reduce many calculation steps, but for small and
medium-sized areas, the spatial resolution of MODIS data is too large, and cannot show
the characteristics of changes within the study area well [18]; therefore, this study used
Landsat satellite data. It was necessary to filter and synthesize the images because the
data coverage was relatively small. The study area was a small- to medium-sized area,
and high-resolution images could capture the situation and changes in the region and its
complex internal dynamics. This research used the RSEI model framework, which was
based on remote sensing data and the greenness, dryness, wetness, and heat factors in the
study area to construct an RSEI model that expresses the regional ecological quality [29].
Although humidity was calculated by tasseling cap transformation in the original RSEI
model [36], MNDWI was used to represent wet in RSEI for the large number of water body
and wetland types in the MYRB. The RSEI can quickly assess the long-term ecological
quality of a region and determine changes by comparing the ecological quality of different
years, which yields a more dynamic and intuitive ecological quality understanding in the
MYRB [44]. The index was extracted from remote sensing data, and was easy to obtain,
convenient to visualize, fast, efficient, and intuitive.

5.2. Weight Method and Result Verification

For the same experiment, different weighting methods greatly affected the study
results. At present, the commonly used weighting methods can be divided into two types.
One method is the subjective weighting method, which is substantially influenced by
decision makers and reference standards, such as the Delphi method [45] and the Analytic
Hierarchy Process (AHP) method [46]. The other is the objective weight method that uses
a certain calculation method adopted by the decision matrix to obtain the weight (e.g., the
deviation maximization method [47] and the coefficient of variation method [48]). The
subjective weight method is easily affected by subjective factors, and the ecological quality
of a specific area is a relatively objective concept. Therefore, this study chose the objective
entropy weight method to weigh the remote sensing factors. The assignment of the entropy
method was only related to the relationship among the values themselves [49], and the
weights were obtained by numerical calculations. The four factors were also calculated
from the existing real-time remote sensing images. Their combination ensured the objective
reality of the results.

The different impact factors are strongly influenced by seasonal changes, the contribu-
tion of different impact factors to the ecological environment varies by season. There was a
large difference in the type of vegetation growth and vegetation ecological water storage
between summer and winter [50], this led to the fact that NDVI also varies within the region
in different seasons. The country’s rapid economic development, industrial development,
and urban expansion all affected the quality of the original ecological environment between
2000 and 2019 [51]. With the rapid development of the Yangtze River Economic Zone and
the advancement of urbanization [52], the increasing intensity of human activity has had a
negative impact on the ecological environment in the MYRB [53], the temperature has also
risen between 2000 and 2019 [43], greatly affecting the ecological quality of the MYRB. The
ecological environment quality was severely affected by human activities and temperature
change according to higher average weighting of NDBI and LST in both summer (Table 4)
and winter (Table 5) in the MYRB.

The ecological quality reduced significantly between 2000 and 2008. Li et al. (2007,
2009) [54,55] reported the ecological quality in HRB was excellent in 2006, but moderate
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pollution in 2008. With the continuous development of the Yangtze River Economic Belt,
the green development of the MYRB has gradually become more and more effective during
the period 2008–2012, and the area of some urbanized green areas has increased, prompting
a slow improvement in the quality of their regional ecological environment between
2010 and 2012 [52]. Meanwhile, the ecological quality improved slightly in the period
2013–2019, although the overall situation was still one of continuous deterioration [56].
Both the water quality in the major lakes and reservoirs in Hubei Province and Hunan
Province has become moderately polluted in 2020 [57,58]. Because of the increasingly
severe environmental problems in the MYRB, the Ministry of Water Resources drafted
the Yangtze River Protection Law in July 2018 which was implemented on 1 March 2021,
and showed that the decline in environmental quality in the YRB had attracted national
attention and verified the research results [34].

5.3. Shortcomings of This Research and Suggestions for Improvement

Due to the data and time-span limitations of the Landsat 5, 7, and 8 satellites, the
remote sensing images used in this study were synthesized and extracted; however, they
were not sufficient to completely replace the remote sensing images at the same time point,
which introduced some errors. Moreover, the ecological environment is complex, with
complicated internal conditions. The four indicators selected in the RSEI model could
not fully represent the real situation of the complex ecological environment, which could
only be expressed approximately. This research uses the objective entropy method as the
weighting method, which avoids the interference caused by subjective factors and provides
an intuitive expression of numerical calculation. The results were highly authentic, but the
number of calculations was excessive, and the calculations were time-consuming. In future
work, using better quality and more complete data (e.g., Worldview, Pleiades-1, Gaofen-2
and other high-resolution satellite products), and finding ways to reduce the calculation
load will be paramount. This will enable using remote sensing images to obtain better
results for future ecological quality evaluations.

6. Conclusions

This study used Landsat satellite remote sensing data to establish the RSEI evaluation
model of the MYRB area. Subsequently, the entropy weight method was used to determine
the factor weights, and the ecological and index change of the MYRB region were analysed
with the following findings.

(1) The index changes mainly started between 2008 and 2013. The changes in NDBI
and LST were more obvious than those in NDVI and LST and were more obvious in
summer than winter. The changes in winter and summer were concentrated in the
central, northwest and northern regions of MYRB;

(2) Due to the monsoon influence, the weight of summer and winter was different.
However, the weights of LST and NDBI are higher than those in NDVI and MNDWI
in different seasons. Increasing human activity caused deterioration of the ecological
environment. Temperature increased greatly and had the most serious impact on the
regional ecological quality;

(3) The overall ecological quality was poor in the MYRB. The ecological change in summer
and winter was generally the same. The ecological quality trend declined suddenly
in the period 2000–2008. The overall ecological quality in winter was better than that
in summer because of the monsoon climate. The ecological quality was improved
in summer and winter between 2008 and 2019. This study revealed the ecological
impact of seasonal changes and changes in human and natural conditions, indicating
that people were focusing on regional green development along with economic
development, which was one of the important conditions for maintaining a good
relationship between humans and the ecological environment. It also provided a
theoretical basis and decision support for the harmonious coexistence between human
beings and nature.
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