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Abstract: Grassland ecosystems are a significant part of the global ecosystem and support the
livelihoods of millions of people. The Inner Mongolia grassland is the largest temperate grassland in
the world, and an important ecological barrier for China, but due to human activities and climate
change it has been faced with an ecological crisis in recent years. In this study, a modified Carnegie-
Ames-Stanford approach (CASA) model based on the Google Earth Engine platform was used to
determine the net primary production (NPP) in the Inner Mongolia grassland from 2000 to 2020. The
results show that the average annual NPP of the Inner Mongolia grassland is 278.63 g C/m2, and
83.22% of the total area has shown an increasing trend during the study period. We also analyzed
the impact of land-use/cover change (LUCC) and climatic factors on NPP. We found that: (1) the
total area of grassland increased from 2000 to 2010 and then decreased from 2010 to 2020. During the
whole study period, although the grassland area increased slightly by 4728.69 km2 because of LUCC,
the overall effect of LUCC on grassland NPP was negative, with a loss of 17.63 Tg C compared to an
increase of 16.38 Tg C. (2) The main meteorological factor affecting the NPP of the Inner Mongolia
grassland is precipitation, followed by sunshine duration and temperature. About 97.06% of the
grassland shows a positive correlation between NPP and precipitation. (3) The results for NPP and its
changing trends are not completely consistent in the long- and short-term study periods. Considering
the instability of grassland growth, it is necessary to take the periodic variation of precipitation into
account when studying NPP. These results could provide basic information for policy formulation
and scientific research into the ecological environment management of grassland areas in the future.

Keywords: net primary production; LUCC; remote sensing; CASA; Google Earth Engine; Inner
Mongolia

1. Introduction

Grassland ecosystems are one of the most important parts of the global land ecosystem,
covering nearly 25% of the land surface of the Earth, but they are sensitive to global
change [1,2]. Grassland ecosystems also play an important role in global carbon cycling,
holding 10% of the global carbon stocks [1,3,4]. Grasslands also provide a huge material
basis for human survival and support the livelihoods of over 1 billion people [5,6]. However,
due to the global population growth, many grasslands present a degradation trend [5,7].

China is a country with rich grassland resources, which account for about 40% of the
total land area in China [8,9]. Inner Mongolia has the second largest area of grassland and
the largest area of pasture in China, in which approximately 66% of the total area is coved
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by grassland [8,10,11]. The Inner Mongolia grassland is acknowledged as an important
barrier for the ecological environment in northern China [12]. However, grasslands are
fragile ecosystems, especially in arid and semi-arid locations [13–15]. The grassland degra-
dation in Inner Mongolia is now very serious, including both area reduction and growth
decline [11,16]. Two of the most important factors causing the grassland degradation are
climate change and human activities [11,13,17]. The study found that Inner Mongolia had
become warmer and drier during 1961–2012, with the rate of the global warming twice
as fast [18]. It was reported droughts usually occurred in spring when strong winds blow
away the surface soil easily [11], causing the degradation of grasslands. Moreover, many
studies concluded that the impact of human activities (e.g., overgrazing, reclamation of
grassland, mining, etc.) on desertification of grasslands intensified [19,20]. To slow down
the trend of environmental deterioration in northern China, the Chinese government has
launched several environmental restoration projects since 1999 [21], such as Grain to Green
Program (1999–2015), Rangeland Law (2003), Return Grazing Land to Grassland Program
(first round during 1999–2013, second round during 2014 to now), Beijing-Tianjin Sand
Source Control Engineering Project (first round during 2001–2010, second round during
2013–2022), Payments for Environmental Services (2001–2020), Subsidy and Incentive
System for Grassland Conservation (2011–2021), etc. [14,21–23].

With the repaid development of remote sensing technology and the gradual abundance
of data, remote sensing has been indicated as a powerful way to study the spatiotemporal
changes of earth ecosystems and their causes [24–27]. Net primary production (NPP)
and land-use/cover change (LUCC), as calculated based on remote sensing technology,
have been widely applied to analyze the structural and functional health of different
ecosystems [28,29]. NPP refers to the net amount of new carbon absorbed by plants per unit
of time and space, which can reflect the plant growth and ecosystem health status [17,30].
Several evaluation models for NPP based on remote sensing data have been developed,
such as the Carnegie-Ames-Stanford approach (CASA) [31], the global production efficiency
model (GLO-PEM) [32], and the vegetation photosynthesis model (VPM) [33]. The CASA
model is the most popular approach, and has been widely applied [31,34]. Gao et al. [35]
analyzed the trend of grassland NPP changes in Northern Tibet from 1981 to 2004 and
found that the impact of regional climate change on NPP was more detrimental than
positive. Zhang et al. [36] evaluated the grassland NPP in the Eurasian Steppe for 2000–
2014 and found that the main cause of degradation of grassland was climate change
in China, whereas human activities in Mongolia, while human activities promoted the
grassland recovery in Kazakh steppe regions. Zhao et al. [37] analyzed the influencing
factors for grassland NPP in Inner Mongolia, and their results showed that ecological
restoration projects have had a positive impact on grassland NPP.

Furthermore, monitoring land-use/cover change has been another important task
of remote sensing [38]. LUCC reflects the human activities that change the natural land
environment, which can profoundly affect climate, biogeochemistry, and biological diver-
sity [19,39]. Different anthropogenic activities, such as urban expansion and desertification
control, have different impacts on vegetation types. Combined with LUCC and NPP, Yang
et al. [26] found that the increase of urban and construction land has led to the decrease
of vegetation NPP in Anhui province in China. Wen et al. [40] thought urban expansion
significantly exacerbates the decline of the total NPP, especially in areas of rapid urban
expansion. However, some scholars also point out that human environmental policies are
beneficial to the ecological environment. According to the land use transfer matrix result,
a large area of cultivated land and deserts turned back to grassland, with better growth,
after several policies were vigorously implemented in Inner Mongolia [22,41]. Li et al. [28]
pointed that the conversion to grassland or forest increased the total NPP in Northern
China, which could increase the carbon sequestration capacity. Yang et al. [29] found the
total NPP in the Yangtze River basin in China increased 53887.51 GgC from 2001 to 2018
because of the positive combination effect of LUCC and climate change.
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With the advent of cloud computing technology, Google Earth Engine (GEE) has
become one of the most popular platforms for geospatial and big data analysis. GEE
provides massive computational capabilities for free, which makes it easy to analyze the
temporal and spatial variations at a large scale [42–44]. Many studies about land-use
and land-cover have been carried out through GEE [45–47]. Tassi et al. [46] compared
the object-based and pixel-based methods for Landsat 8 image classification in Maiella
National Park and found the object -based method was better. On a larger scale, Zhang
et al. [47] applied a local adaptive random forest model to perform a fine classification of
surface types at the global scale based on the Landsat 8 surface reflectance images on the
GEE platform, achieving an overall accuracy of 82.5%. Moreover, some studies applied
the GEE platform to monitor the spatial and temporal variation of NPP or gross primary
production (GPP). Yin et al. [48] developed a method to analyze the spatiotemporal change
of global forest NPP and its response to the El Niño–Southern Oscillation with the GEE
platform. Zhang et al. [49] used the Coupled Carbon and Water model to estimate GPP in
the United States from 2001 to 2016 and found LUCC had a significantly greater negative
impact on GPP than climate change. In addition, remote sensing research based on the GEE
platform has been widely conducted, including evapotranspiration (ET) modeling [50–52],
shorelines extraction [53], flood monitoring [54], vegetation monitoring [55], urban remote
sensing [56,57], snow fluctuations monitoring [58], etc.

Although these studies have obtained valuable results through the use of remote
sensing, there is still a lack of systemic analyses of the quantity and quality change of the
grassland ecosystem in Inner Mongolia. Meanwhile, there is still a lack of NPP estimation
cases based on the CASA model on the GEE platform. Since the grassland ecosystem is sen-
sitive and changeable in Inner Mongolia, it is of great significance to quantitatively analyze
the grassland NPP and LUCC using long time-series data, and to assess the influence of
LUCC and meteorological factors on NPP. The findings of such an analysis could provide
data support for government to formulate or change the sustainable development policies.
Therefore, the specific objectives of this study were:

(1) to analyze the LUCC spatiotemporal process in Inner Mongolia every 11 years from
2000 to 2020, and especially the change of grassland.

(2) to estimate the Inner Mongolia grassland NPP and its spatiotemporal change every
year for 2000–2020.

(3) to evaluate the influence of LUCC and meteorological factors on the spatiotemporal
change of grassland NPP.

The rest of this paper is organized as follows. The background information for the
study area, data sources, and research method is provided in Section 2. In Section 3,
the results of the LUCC processing, the grassland NPP estimation, and the influence of
LUCC and meteorological factors on NPP are provided and discussed in sequence. In
Section 4, the NPP response to LUCC and meteorological factors, and the importance and
uncertainties in this study will be discussed. Our conclusions are given in Section 5.

2. Materials and Methods
2.1. Study Area

Inner Mongolia, from 37◦24′N to 53◦23′N and 97◦12′E to 126◦04′E, with a total cover-
age of 1.183 million km2, is located in the northern part of China (Figure 1a). Most of Inner
Mongolia belongs to the continental monsoon climate zone. Due to the Greater Khingan
Range and the Yinshan Mountains (Figure 1b), there exists a huge difference in the altitude
in Inner Mongolia, high in the west and low in the east, which significantly affects the
distribution of hydrothermal resources [59]. The annual mean temperature ranges from
−1 to 10 ◦C and shows an increasing trend from north-east to south-west. Annual total
precipitation is in the range of 100–500 mm, decreasing from east to west and concentrated
in summer. There is abundant sunshine in most areas, which lasts more than 2700 h every
year. Due to the large range of longitude and latitude, six major vegetation types are found
from east to west, which are coniferous forest, deciduous broadleaf forest, meadow steppe,
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typical steppe, desert steppe, and desert. Inner Mongolia represents a great resource of
forest and grassland and is an important animal husbandry base for China. However, the
Inner Mongolia terrestrial ecosystem is fragile, and is greatly affected by climate change
and human activities [59].

Figure 1. (a) Land cover and (b) digital elevation model of Inner Mongolia in 2020.
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2.2. Data Sources

In order to quickly pre-process the huge remote sensing images of the study area from
2000 to 2020, we selected GEE as the main research platform. The normalized difference
vegetation index (NDVI) data, meteorological data, land-cover data, and NPP observation
data were applied in this study, as listed in Table 1.

Table 1. Description of data used in this study.

Date Type Date Name Time Provider

NDVI data
MOD13Q1 Every 16 days from

February 2000 to 2020
Google Earth Engine by
NASA LP DAAC at the

USGS EROS CenterMYD13Q1 Every 16 days from
July 2002 to 2020

Meteorological data
Temperature,

precipitation, and
sunshine duration

Monthly from 2000
to 2020

China Meteorological
Data Service Center

Land-cover data GlobeLand30 2000, 2010, 2020 China National
Geomatics Center

NPP observation
data

FLUXNET2015 Monthly from 2007
to 2009 and 2011

Lawrence Berkeley
National Laboratory

(USA)

ChinaFLUX Monthly from 2004
to 2008

Institute of Geographic
Sciences and Natural
Resources Research

(China)

2.2.1. NDVI Data

The NDVI data were derived from the MOD13Q1 and MYD13Q1 products on the GEE
platform from 2000 to 2020. These two products are produced from Moderate Resolution
Imaging Spectroradiometer (MODIS) data by NASA’s Land Processes Distributed Active
Archive Center (LP DAAC) at the USGS EROS Center [60,61]. The NDVI data have a
temporal resolution of 16 days and a spatial resolution of 250 m. We first used the quality
bands (SummaryQA) to remove the influence of cloud-, snow-, and ice-based pixels for
each image. Secondly, since there were three or four remote sensing images for each month
(since the Aqua satellite was not launch yet, before July 2002, there is only MOD13Q1 data
from Terra satellite, with one or two images each month), the maximum-value composite
(MVC) procedure was applied to transfer the 16-day NDVI data to monthly data. Moreover,
we re-projected the NDVI data to Universal Transverse Mercator (UTM) 49 N Projection
based on the WGS-84 datum and extracted the data for the research area through the use
of the Inner Mongolia administrative boundary vector file.

2.2.2. Meteorological Data

The meteorological data used to estimate NPP in this study were the monthly mean
temperature, total precipitation, and total sunshine duration data from 2000 to 2020.
These data were obtained from 92 meteorological stations, including 39 stations in In-
ner Mongolia and 53 stations in surrounding provinces within 100 km. The original
meteorological data were downloaded from the China Meteorological Data Service Center
(http://data.cma.cn/, accessed on 28 January 2021). Missing data were filled by the aver-
age data of the same period before and after the year. Gaussian kriging interpolation was
performed to interpolate the monthly meteorological data to a spatial resolution of 250 m
based on the same projection as the remote sensing images on the GEE platform.

2.2.3. Land-Cover Data

The distribution of vegetation types reflects the long-term evolution of the ecological
environment under the influence of climate change and human activities [62]. In the
CASA model, the maximum light use efficiency (LUE) is determined by the different

http://data.cma.cn/
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vegetation types. GlobeLand30 data, published by Chen et al. [63], were applied in this
study, including the V2000, V2010, and V2020 images. GlobeLand30 includes 10 land cover
classes in total, namely cultivated land, forest, grassland, shrubland, wetland, water bodies,
tundra, artificial surface, bare land, perennial snow and ice. In this study, we only take the
land-cover type of grassland as the subject of this study. The grassland land-cover type in
the GlobeLand30 is defined as the lands covered by natural grass with cover density over
10%, including prairies, meadow steppes, alpine grasslands, desert steppes, and lawns.
The overall accuracy of all three GlobeLand30 images has been reported to exceed 80% [64],
which could meet the needs of this study.

The GlobeLand30 is published in a spatial resolution of 30 m under the UTM pro-
jection system on its official website by the China National Geomatics Center (http:
//www.globallandcover.com/, accessed on 24 January 2021). In order to match the spatial
resolution of the NDVI data, the sliced images were first mosaiced into one complete
image, and then resampled to 250 m by the majority method in ArcGIS 10.4 (ESRI, West
Redlands, CA, USA). In order to analyze the long-term sequence changes of the grassland
NPP in Inner Mongolia, we merged the grassland types in the GlobeLand30 for three
period images.

2.2.4. NPP Observation Data

In this work, the estimated NPP by CASA model was verified through the observed
NPP based on FLUXNET2015 datasets (https://fluxnet.org/data/fluxnet2015-dataset, ac-
cessed on 24 August 2021) and ChinaFLUX datasets (http://www.chinaflux.org/, accessed
on 30 October 2021), hosted at the Lawrence Berkeley National Laboratory (Berkeley,
CA, USA) and Institute of Geographic Sciences and Natural Resources Research (Beijing,
China), respectively. FLUXNET2015 and ChinaFLUX datasets contains the gross primary
production (GPP) [65,66], which could be converted into the NPP value by multiplying the
ratio of NPP/GPP at 0.55 [67]. The observed GPP data from four flux sites located in Inner
Mongolia during different periods were applied in this study. The details of the flux sites
are given in Table 2.

Table 2. Description of FLUXNET sites in Inner Mongolia.

Site ID Site Name Time Land Use Type Latitude Longitude

CN-Du2 Duolun
Grassland 2007–2008 Grassland 42.05N 116.28E

CN-Du3
Duolun

Degraded
Meadow

2009 Grassland 42.06N 116.28E

CN-Sw2 Siziwang Grazed 2011 Grassland 41.79N 111.90E
NMG Inner Mongolia 2004–2008 Grassland 43.33N 116.40E

2.3. Research Method

This study mainly aimed to assess the long time series of grassland NPP in Inner
Mongolia based on the CASA model. The analysis of LUCC, the changing trends of NPP,
and its correlation with climatic factors were combined to study the spatial and temporal
variation of grasslands in Inner Mongolia. The flowchart of the main methods is shown in
Figure 2.

http://www.globallandcover.com/
http://www.globallandcover.com/
https://fluxnet.org/data/fluxnet2015-dataset
http://www.chinaflux.org/


Remote Sens. 2021, 13, 4480 7 of 26

Figure 2. The flowchart of CASA model and NPP analysis methods in this study.

2.3.1. Estimation of NPP Based on the CASA Model

In this study, the evaluation of NPP based on the CASA model was completed on the
GEE platform. The CASA model, which is a satellite-based NPP model, is based on the
theory of LUE. It uses absorbed photosynthetically active radiation (APAR) and LUE to
estimate NPP at the time step of a month [31,68]. The main CASA equation is:

NPP(x, t) = APAR(x, t)× LUE(x, t) (1)

where NPP(x, t), APAR(x, t), and LUE(x, t) are the NPP, APAR, and LUE at grid position
x in month t, respectively. The units of the first two parameters are gC·m−2·month−1 and
MJ·m−2·month−1, respectively. APAR is determined jointly by the total solar radiation and
the characteristics of the vegetation itself, and can be calculated as:

APAR(x, t) = 0.5× SOL(x, t)× FPAR(x, t) (2)

where the constant 0.5 is the proportion of solar radiation which can be absorbed by plants
(i.e., 0.38–0.71 µm). SOL(x, t) is the total surface solar radiation, which can be estimated by
the relationship between the sunshine duration and solar radiation at grid position x in
month t (unit: MJ·m−2·month−1). For details of the calculation method for SOL, we refer
the reader to Pang et al. [69] and Wu et al. [70]. FPAR(x, t) is the fraction of APAR absorbed
by the plant canopy at grid position x in month t, which has a good linear correlation with
NDVI [71,72]. The formula for FPAR is:

FPAR(x, t) = NDVI(x,t)−NDVImin
NDVImax−NDVImin

× (FPARmax − FPARmin) + FPARmin (3)

where NDVI(x, t) is the NDVI value at grid position x in month t. NDVImax and NDVImin
represent the maximum and minimum NDVI values of grassland, respectively. To reduce
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the influence of extreme values, we used 95% and 5% in the NDVI histogram as the
maximum and minimum of each vegetation type. FPARmax and FPARmin are constants,
with values of 0.001 and 0.95, respectively.

In real conditions, the LUE is not only determined by the vegetation itself, but also by
the influence of environmental factors, such as temperature, moisture, and other factors [68].
The formula for LUE is:

LUE(x, t) = Tε1(x, t)× Tε2(x, t)×Wε(x, t)× LUEmax (4)

where Tε1(x, t) and Tε2(x, t) are the temperature stress coefficients to depress the LUE,
which can be derived by the optimum temperature and the temperature difference between
the monthly temperature and the optimum temperature at grid position x in month t.
Wε(x, t) is the moisture stress coefficient at grid position x in month t, which can be
calculated by the precipitation and temperature data [31,68]. LUEmax is the maximum LUE
of grassland under ideal environmental conditions (unit: gC·MJ−1). According to Zhu
et al. [72], we set 0.589 as the LUEmax of grassland under a classification accuracy of 85%.

2.3.2. Analysis of the NPP Change Volatility and Trends

The coefficient of variation (CV) of NPP can reflect the interannual volatility of the
grassland growth status. The calculation of the CV was conducted on the GEE platform, of
which the formula is expressed as follows:

CV =

√
1

n−1×∑n
i=1(NPPi−NPP)

2

NPP
(5)

where CV is the CV of NPP; n was 21 in this study because of the years from 2000 to 2020;
i is the index of years; NPPi is the value of NPP in the i-th year; and NPP is the average
NPP from 2000 to 2020.

The ordinary least squares (OLS) method was selected to estimate the linear trend of
NPP over the long time series, which can reflect the change trend of grassland NPP [13]. The
OLS method also was completed on the GEE platform. The formula for OLS is expressed
as follows:

θOLS =
n×∑n

i=1 i×NPPi−(∑n
i=1 i)×(∑n

i=1 NPPi)
n×∑n

i=1 i2−(∑n
i=1 i)

2 (6)

where θOLS is the linear trend of NPP, and the other parameters are the same as above.
Theil–Sen median trend analysis, combined with the Mann–Kendall (MK) test, can be

applied to analyze long time series of vegetation indicators, and reflect the change trends
of each pixel in a time series [73–75]. Theil–Sen median trend analysis is free from the
interference of outliers. The Theil–Sen median trend analysis and MK test were conducted
in Python 3, using pyMannKendall open-source software [76]. The detailed formulae are
expressed as follows:

θTS = median
(NPPj−NPPi

j−i

)
, 2000 ≤ i < j ≤ 2020 (7)

where θTS is the Theil–Sen median result; and NPPi and NPPj represent the NPP in the
years of i and j, respectively.

The MK test, which a non-parametric statistical test, is widely applied to measure the
significance of Theil–Sen median trends [77,78]. It has also been used to analyze vegetation
growth trends over long time series [75,79].

The MK statistic, i.e., Z, is defined as follows:

Z = f (x) =


S−1√

s(S)
, S > 0

0, S = 0
S+1√

s(S)
, S < 0

(8)
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where

S =
n−1
∑

i=1

n
∑

j=i+1
sgn
(

NPPj − NPPi
)

(9)

sgn
(

NPPj − NPPi
)
=


1, NPPj − NPPi > 0
0, NPPj − NPPi = 0
−1, NPPj − NPPi < 0

(10)

s(S) = n(n−1)(2n+5)
18 (11)

where NPPi and NPPj represent the same as above, n is the length of the time series, and
sgn is a sign function. The Z statistic value ranges from −∞ to +∞, and |Z| > u1−α/2
reflects whether the long time series shows significance at the level of α. In this study,
we set α = 0.05, so that u1−α/2 = u0.975 = 1.96. The NPP change trends were reclassified
into four classes, according to the detected change trend and its significance test result, as
shown in Table 3.

Table 3. Rules for the trend classification of NPP change.

θTS Z NPP Change Trend

> 0 > 1.96 Significantly improved
> 0 ≤ 1.96 Insignificantly improved
< 0 > 1.96 Significantly degraded
< 0 ≤ 1.96 Insignificantly degraded

2.3.3. Analysis of the Main Influencing Factors

The correlation coefficient and partial correlation coefficient methods were applied
in this study to analyze the influencing factors of NPP, which were calculated on the
GEE platform. The partial correlation coefficient can assess the relationship between
variables a and b, while eliminating the impact of other influencing factors on the complex
relationship [80,81]. The partial correlation coefficient can be calculated as follows:

Rab,cd =
Rab,c−Rad,c×Rbd,c√

(1−Rad,c
2)×(1−Rbd,c

2) (12)

Rab,c =
Rab−Rac×Rbc√

(1−Rac
2)×(1−Rbc

2) (13)

Rab =
∑n

i=1[(ai−a)×(bi−b)]√
∑n

i=1(ai−a)2×∑n
i=1(bi−b)

2 (14)

where Rab,cd represents the second-order partial correlation coefficient of variables a and
b, with c and d acting as the control variables; Rab,c represents the partial correlation
coefficient of variables a and b, with c acting as the control variable; Rab represents the
Pearson correlation coefficient between variables a and b; and a and b are the mean values
of the two variables.

3. Results
3.1. Characteristics and Variation of LUCC in Inner Mongolia

As the LUCC matrix (Table 4) shows, grassland is the dominant land-use type (46.88%
of the total area in 2020) in Inner Mongolia, followed by bare land, cultivated land, and
forest (24.99%, 13.52%, and 11.81% in 2020, respectively). These four land-use types covered
97.20% of the total area of Inner Mongolia in 2020. During the study period, the LUCC in
11.80% of the total area (136,322.38 km2) changed. From 2000 to 2020, the area of cultivated
land increased the most (9,461.19 km2), followed by artificial surfaces (7,208.50 km2),
grassland (4,728.69 km2), shrubland (3,965.25 km2), and forest (755.94 km2), while the areas
of water (205.50 km2), wetland (1,959.31 km2), and bare land (23,954.75 km2) reduced.
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Table 4. Transition matrices for the land-use/land-cover change in 2000–2010, 2010–2020, and 2000–2020 in Inner Mongolia
(unit: km2).

2010

Cultivated
Land Forest Grassland Shrubland Wetland Water

Area
Artificial
Surfaces

Bare
Land Total Losses

2000

Cultivated
land 134,912.69 554.44 9,813.00 114.31 92.88 207.63 1024.88 79.50 146,799.31 11,886.63

Forest 233.81 126,442.06 8964.25 20.25 14.75 27.75 4.63 0.31 135,707.81 9265.75
Grassland 5173.50 8753.63 512,974.56 4750.00 596.31 364.50 1090.56 3288.31 536,991.38 24,016.81
Shrubland 8.69 299.38 515.94 1337.81 2.75 2.19 1.50 96.13 2,264.38 926.56

Wetland 391.75 111.75 1861.81 52.69 4621.56 441.06 12.31 238.69 7731.63 3110.06
Water area 246.13 66.19 1018.06 14.38 632.69 3835.81 8.88 316.69 6138.81 2303.00
Artificial
surfaces 517.50 9.88 397.44 6.19 5.94 8.31 6336.44 16.25 7297.94 961.50

Bare land 80.25 0.69 15,733.63 38.00 48.00 237.63 99.38 296,475.88 312,713.44 16,237.56
Total 141,564.31 136,238.00 551,278.69 6333.63 6014.88 5124.88 8578.56 300,511.75
Gains 6651.63 9795.94 38,304.13 4995.81 1393.31 1289.06 2242.13 4035.88

Change −5235.00 530.19 14,287.31 4069.25 −1716.75 −1013.94 1280.63 −12,201.69

2020

Cultivated
Land Forest Grassland Shrubland Wetland Water

Area
Artificial
Surfaces Bare Land Total Losses

2010

Cultivated
land 126,092.94 611.06 10,865.88 62.31 96.00 328.81 3299.88 207.44 141,564.31 15,471.38

Forest 892.38 128,634.81 6405.00 108.06 19.94 71.69 86.38 19.75 136,238.00 7603.19
Grassland 26,495.25 7067.31 502,358.50 685.56 1665.44 719.25 3482.19 8805.19 551,278.69 48,920.19
Shrubland 299.38 109.13 397.25 5255.88 10.94 11.38 107.69 142.00 6333.63 1077.75

Wetland 229.56 6.25 1280.88 2.44 3586.38 494.50 66.75 348.13 6014.88 2428.50
Water area 229.94 20.63 341.63 1.81 271.81 3929.94 16.19 312.94 5124.88 1194.94
Artificial
surfaces 1040.25 13.31 391.63 14.88 1.50 11.31 7065.94 39.75 8578.56 1512.63

Bare land 980.81 1.25 19,679.31 98.69 120.31 366.44 381.44 278,883.50 300,511.75 21,628.25
Total 156,260.50 136,463.75 541,720.06 6229.63 5772.31 5933.31 14,506.44 288,758.69
Gains 30,167.56 7828.94 39,361.56 973.75 2185.94 2003.38 7440.50 9875.19

Change 14,696.19 225.75 −9558.63 −104.00 −242.56 808.44 5927.88 −11,753.06

2020

2000 to 2020 Cultivated
Land Forest Grassland Shrubland Wetland Water

Area
Artificial
Surfaces Bare Land Total Losses

2000

Cultivated
land 126,460.88 738.81 14,918.88 118.44 159.06 343.94 3872.25 187.06 146,799.31 20,338.44

Forest 688.81 123,179.88 11,613.56 50.44 20.75 64.94 74.94 14.50 135,707.81 12,527.94
Grassland 26,130.44 12,131.13 477,849.56 4862.81 1545.69 739.50 4181.69 9550.56 536,991.38 59,141.81
Shrubland 83.63 251.25 706.94 1003.56 50.69 13.25 11.38 143.69 2264.38 1260.81

Wetland 644.31 91.63 2519.75 46.63 3,224.25 475.19 82.13 647.75 7731.63 4507.38
Water area 309.13 52.69 582.44 10.56 654.31 4070.50 33.69 425.50 6138.81 2068.31
Artificial
surfaces 967.06 17.31 442.38 15.06 2.88 12.06 5792.63 48.56 7297.94 1505.31

Bare land 976.25 1.06 33,086.56 122.13 114.69 213.94 457.75 277,741.06 312,713.44 34,972.38
Total 156,260.50 136,463.75 541,720.06 6229.63 5772.31 5,933.31 14,506.44 288,758.69
Gains 29,799.63 13,283.88 63,870.50 5226.06 2,548.06 1862.81 8713.81 11,017.63

Change 9461.19 755.94 4728.69 3965.25 −1,959.31 −205.50 7208.50 −23,954.75

However, there were certain differences in the LUCC between the first 11 years and
the second 11 years. From 2000 to 2010, the area of cultivated land and water decreased
(by 5,235.00 and 1013.94 km2, respectively), while they showed a pattern of growth during
2010–2020 (by 14,696.19 and 808.44 km2, respectively). The area of grassland and shrubland
increased from 2000 to 2010 (by 14,287.31 and 4069.25 km2, respectively), while the area
of grassland decreased during 2010–2020 (by 9558.63 and 104.00 km2, respectively). The
change trends of forest, wetland, artificial area, and bare land remained the same during
the two periods.

In general, the land-use change in Inner Mongolia during the study period mainly
focused on the conversion between grassland and cultivated land, forest, and bare land.
During 2000–2010, about 9813.00 km2 of cultivated land changed into grassland, with
5173.50 km2 of grassland changed into cultivated land. During 2010–2020, the shifts
between cultivated land and grassland were more intense, and far more grassland was
changed into cultivated land (26,495.25 km2) than changed from cultivated land
(10,865.88 km2). Furthermore, the shift between forest and grassland remained in rel-
ative balance during the study period, ranging from 6405.00 to 8964.25 km2. In addition,
the trend of change from bare land into grassland was significant in these two periods.
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The area of bare land changed into grassland was nearly five times (15,733.63 km2) that of
grassland changed into bare land (3288.31 km2) during 2000–2010. In the second 11-year
period, the ratio was again more than 2, at about 19,679.31 and 8805.19 km2, respectively.

From the spatial characteristics of the LUCC conversion process shown in Figure 3,
it can be seen that the change of grassland shows spatial heterogeneity. During the first
11 years, grassland areas showed a net increase of 14,287.31 km2 (2.66%). The new grass-
land was mainly transformed from bare land in the city of Bayannur, cultivated land
in south Xilingol League, and forest along the Great Hinggan Mountains. The losses of
grassland mainly took place to the south of the city of Baotou, where it was transformed
into shrubland, and in the Great Hinggan Mountains, where it was transformed into forest.
There was also 5173.50 km2 of grassland changed into cultivated land, which took place
scattered throughout Inner Mongolia. During the second 11 years, although the total area
of grassland decreased by 9558.63 km2 (1.73%), there was still 19,679.31 km2 of bare land
that was converted into grassland, which took place mostly in north Xilingol League and
to the north of the city of Ulanqab. Furthermore, 10,865.88 km2 of cultivated land changed
into grassland, which took place mainly in central Inner Mongolia and the city of Chifeng.
However, a large amount of grassland was changed into cultivated land in eastern Inner
Mongolia, especially to the east of the city of Chifeng, around the city of Tongliao, and
to the west of the city of Hulun Buir. Furthermore, 7067.31 km2 of grassland changed
into forest, which took place mainly in the Great Hinggan Mountains, and 8805.19 km2 of
grassland degenerated into bare land, which took place mainly in western Inner Mongolia.

Figure 3. Land-use change in Inner Mongolia related to grassland during: (a) 2000–2010; (b) 2010–2020; and (c) 2000–2020.
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3.2. Spatial and Temporal Distribution of Grassland NPP in Inner Mongolia
3.2.1. Validation of the NPP Calculation

The estimated NPP by CASA model was verified through the observed NPP of four
FLUXNET sites from the FLUXNET2015 datasets and ChinaFLUX datasets, located in Inner
Mongolia during the growth seasons over 2004 to 2009 and 2011. As shown in Figure 4,
the estimated NPP presents a high correlation with the observed NPP, with a regression
coefficient of 0.64 (p < 0.001) and root mean square error (RMSE) of 24.31 g C/m2, which
represents that the modified CASA model has a high precision and could meet the accuracy
requirements in this study.

Figure 4. Comparison of the monthly estimated NPP with observed NPP.

3.2.2. Characteristics of the Grassland NPP Distribution

The temporally averaged NPP in the study area over the 21 years is 278.63 g C/m2, and
the NPP shows an increasing trend from south-west to north-east, as shown in Figure 5. The
eastern part of Inner Mongolia has the highest NPP, followed by central Inner Mongolia,
while western Inner Mongolia has the lowest productivity. As shown in Figure 6, the
statistical results for the average NPP show that the NPP in most areas is between 100 and
400 g C/m2, accounting for 58.74%. There are also a few grassland areas which have an
NPP of more than 600 g C/m2, accounting for 3.98%. The total NPP in Inner Mongolia
grassland is 169.72 Tg C (1 Tg = 1012 g) for each year.

Figure 7 shows the spatial distribution of the CV of the NPP distribution during
the study period, for which the average CV of the NPP in the study area is 0.26. There
is significant spatial heterogeneity in the temporal variation of NPP over the 21 years.
Areas with high CV values are mainly distributed in the north of the Greater Khingan
Range/Yinshan Mountains and north-west Inner Mongolia, while the grassland NPP in
eastern Inner Mongolia shows little interannual change.
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Figure 5. Spatial distribution of the average NPP in the Inner Mongolia grassland during 2000–2020.

Figure 6. Area proportion of the different NPP distribution intervals.

3.2.3. The Change Trend Distribution of Grassland NPP

The relationships between the interannual fluctuations of grassland NPP and mete-
orological factors in Inner Mongolia from 2000 to 2020 are shown in Figure 8. The NPP
ranges from 246.15 g C/m2 in 2001 to 323.96 g C/m2 in 2013. The change trend obtained
by the OLS method shows a slight increasing trend of 2.43 g C/(m2·yr) (p < 0.01), and
that obtained by the Theil–Sen method shows a slight increasing trend of 2.16 g C/(m2·yr)
(p < 0.05). In general, the NPP of the Inner Mongolia grassland gradually improved from
2000 to 2020.
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Figure 7. Coefficient of variation of NPP in the Inner Mongolia grassland during 2000–2020.

Figure 8. Interannual change trends of grassland NPP and meteorological factors obtained by the
OLS method for the Inner Mongolia grassland.

From an overall perspective, as shown in Figure 8, the highest grassland NPP appeared
in 2013, when there was adequate precipitation, suitably low temperatures, and abundant
sunshine. The other periods of higher NPP were in 2012, 2018, 2019, and 2020, when the
climatic conditions were better than average. The lowest grassland NPP was in 2001, when
there was a lack of precipitation. The other years of lower NPP were 2000, 2007, and 2016.
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Extreme weather conditions occurred in these years, i.e., drought, high temperature, and
lack of sunlight, respectively.

Although the growth trend of grassland NPP from 2000 to 2020 passes the significance
test, the growth of NPP was not continuous and showed temporal heterogeneity (Table 5).
From 2000 to 2010, the growth rate of grassland NPP was slower and more unstable,
with opposite change trends obtained by the two methods, while the growth rate during
2010–2020 was faster.

Table 5. Growth trend of grassland NPP in the different periods based on the two-tailed significance
test method.

Study Period
(Years)

OLS Method Theil–Sen Method

Growth Rate
(g C/(m2·yr)) p-Value Growth Rate

(g C/(m2·yr)) p-Value

2000–2010 0.27 0.85 −0.47 1.00
2010–2020 3.14 0.22 2.55 0.28
2000–2020 2.43 <0.01 2.16 <0.05

In order to better clarify the spatial and temporal variation of grassland NPP in Inner
Mongolia, the different time series of grassland NPP were analyzed by the use of the
Theil–Sen method in this study. As shown in Figure 9e,f, there was a positive annual NPP
growth tendency in most areas in the Inner Mongolia grassland from 2000 to 2020. About
83.22% of the total grassland showed an increasing trend for NPP, of which 32.28% showed
significant growth at the p-value of 0.05. The grassland areas that showed significant
growth are mainly distributed in east Ordos, south Chifeng, south Tongliao, and Hinggan.
At the same time, about 16.78% of the total area presented a decreasing trend for NPP,
which took place mainly in west Xilingol and north Chifeng, but most of this change
(93.24%) was not significant.

In order to show more details of the short-term changes, the spatial and temporal
variation of grassland NPP in the first 11 years and the second 11 years was also compared
in this study. Figure 9a,b shows the results for 2000–2010. The changes of most of the
grassland do not pass the significance test at a p-value of 0.05. About 44.85% of the
grassland showed an insignificant increasing trend for NPP during this period, which took
place mainly in west Ordos, middle Xilingol, and west Hulun Buir. Another 43.91% of the
grassland showed an insignificant decreasing trend for NPP, which took place mainly in
Baotou, Ulanqab, south-west Xilingol, and along both sides of the Greater Khingan Range.
Only 8.08% of the grassland showed a significant growth trend for NPP, which took place
mostly in east Ordos, while 3.16% showed a significant decrease, which took place mostly
along the Greater Khingan Range. Figure 9c,d shows the results for 2010–2020. Compared
with the first 11 years, the spatial distribution of the change trend of NPP changed to a
certain extent, and more grassland (72.34%) showed an increasing trend for NPP. About
13.36% of the total area passed the significance test, which occurred mainly in east Ordos,
south Chifeng, and south Tongliao. These three places maintained a significant growth
trend from 2000 to 2010 and 2010 to 2020. Furthermore, the area of grassland NPP decline
greatly reduced during this period, with less than 1% of the grassland showing a significant
decreasing trend. The grassland NPP growth status greatly improved in Xilingol and along
the Greater Khingan Range.
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Figure 9. Spatial distribution of the slope of grassland NPP obtained by the Theil–Sen method (a,c,e) (unit: g C/(m2·yr))
and its significance by the MK test (b,d,f) (α = 0.05) in Inner Mongolia during the different periods.

3.3. Influence of LUCC on the Change of Grassland NPP in Inner Mongolia

Human activities obviously affect LUCC, which in turn influences the growth of
vegetation and its NPP. The research by Liu et al. [82] showed that the global urbanization-
induced decrease in global NPP offset 30% of the climate-driven increase over the same
period. In this study, we applied the LUCC of 2000, 2010, and 2020 as a mask to extract
the grassland NPP in the corresponding range, to analyze the influence of LUCC on the
change of grassland NPP.

As Figure 10 shows, the grassland NPP maintained an increasing trend in 2000, 2010,
and 2020. The average NPP increased from 250.28 g C/m2 in 2000 to 257.13 g C/m2 in 2010,
and then to 303.25 g C/m2 in 2020. The total NPP in Inner Mongolia was 134.40, 141.75,
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and 164.28 Tg C in 2000, 2010, and 2020, respectively. In terms of the spatial distribution,
the area of medium-level NPP (200–400 g C/m2) increased from 2000 to 2020, accounting
for 32.62%, 36.59%, and 37.47% in 2000, 2010, and 2020, respectively, which was obvious
in north Xilingol, Chifeng, and Tongliao. This indicates that the area of grassland with
medium to high quality has increased.

Figure 10. Spatial distribution map for NPP in the Inner Mongolia grassland based on LUCC in (a) 2000, (b) 2010, and (c)
2020. (d) The change of grassland NPP.

From the perspective of the different LUCC changes (Table 6), the different types of
LUCC conversion had various effects on the grassland NPP. From 2000 to 2010, 24016.81 km2

of grassland was transferred to other land-use types, causing a loss of 8.29 Tg C in NPP,
while 38,304.13 km2 changed to grassland, bringing an addition of about 9.65 Tg C in NPP.
Although in terms of area, the grassland area increased, but the average NPP of the lost
grassland (345.23 g C/m2) was higher than that of the added grassland (251.91 g C/m2).
Taking the conversion between bare land and grassland as an example, from 2000 to 2010,
grassland changing from bare land accounted for 15,733.63 km2, bringing 0.74 Tg C in NPP.
Although grassland changing to bare land only accounted for 3288.31 km2, it caused a loss
of 0.35 Tg C in NPP. This shows that although the lost grassland was a lesser area, the
quality was good, while the added grassland was a greater area, but the quality was poor.
From 2010 to 2020, the area of lost grassland increased (48,920.19 km2 and 14.96 Tg C NPP)
and was more than the area of added grassland (39,361.56 km2 and 10.73 Tg C NPP). As a
result of human reclamation, a large area of grassland, i.e., 26,495.25 km2 (54.16% of the
total lost area), was converted into cultivated land, which led to a loss of 8.36 Tg C in NPP.
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During this period, the average NPP of grassland changed to bare land was 100.72 g C/m2,
and the average NPP of grassland changed from bare land was 82.48 g C/m2. In general,
the quality difference between the new and lost grassland still existed, but there was some
improvement compared with the period of 2000–2010. However, the total area of grassland
decreased during 2010–2020.

Table 6. Changes of grassland NPP in Inner Mongolia based on the different land-use changes during 2000–2010, 2010–2020,
and 2000–2020.

LUCC

2000–2010 2010–2020 2000–2020

Area
(km2)

Total NPP
(Tg C)

Average NPP
(g C/m2)

Area
(km2)

Total NPP
(Tg C)

Average NPP
(g C/m2)

Area
(km2)

Total NPP
(Tg C)

Average NPP
(g C/m2)

Total area of lost
grassland 24,016.81 8.29 345.23 48,920.19 14.96 305.79 59,141.81 17.63 298.16

Grassland to cultivated
land 5173.50 1.77 342.51 26,495.25 8.36 315.49 26,130.44 7.41 283.39

Grassland to bare land 3288.31 0.35 105.47 8805.19 0.89 100.72 9550.56 0.97 101.87
Grassland to forest 8753.63 5.06 578.19 7067.31 4.18 590.83 12,131.13 7.04 580.32
Grassland to others 6801.38 1.11 163.41 6552.44 1.54 234.71 11,329.69 2.22 195.58

Total area of new
grassland 38,304.13 9.65 251.91 39,361.56 10.73 272.55 63,870.50 16.38 256.40

Cultivated land to
grassland 9813.00 3.24 330.65 10,865.88 4.49 412.76 14,918.88 6.02 403.38

Bare land to grassland 15,733.63 0.74 46.94 19,679.31 1.62 82.48 33,086.56 2.32 69.97
Forest to grassland 8964.25 4.96 553.08 6405.00 3.89 606.86 11,613.56 6.94 597.87
Others to grassland 3793.25 0.71 186.70 2411.38 0.73 304.05 4251.50 1.10 258.75

Overall, from 2000 to 2020, 59,141.81 km2 of grassland was changed into other land-
use types, resulting in a loss of 17.63 Tg C in NPP. As a comparison, 63870.50 km2 of other
land-use type changed into grassland, but this led to an addition of only 16.38 Tg C in NPP.
In total, 26130.44 km2 grassland (44.18% of the total lost area) of high quality changed into
cultivated land, for which the average NPP was 283.38 g C/m2. A further 33,086.56 km2

of bare land changed into grassland (51.80% of the total added area), with a poor average
NPP of 69.97 g C/m2.

3.4. Correlation between Grassland NPP and Meteorological Factors

Meteorological factors, i.e., precipitation, temperature, and sunshine duration, are
important factors affecting grassland NPP [83]. Figure 11 shows the map of the average
meteorological factors in Inner Mongolia from 2000 to 2020. In order to investigate the
main climatic driving factors for grassland NPP in Inner Mongolia during 2000–2020, the
spatial distribution of the correlation coefficients and partial correlation coefficients was
considered in this study.

Figure 11. Map of (a) the total annual precipitation, (b) average annual temperature, (c) total annual sunshine hours in
Inner Mongolia from 2000 to 2020.

As shown in Figure 12a,b, a positive correlation between grassland NPP and pre-
cipitation is seen in 97.06% of the total area. When removing the influence of the other
meteorological factors, about 98.58% of the total shows a positive relationship. Thus, pre-
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cipitation is the main factor affecting grassland growth in Inner Mongolia. According to
the statistics, 70.59% of the grassland area has a higher partial correlation coefficient than
correlation coefficient, which indicates that there is a lack of precipitation in most areas
of the Inner Mongolia grassland. Thus, an increase in precipitation can greatly promote
the growth of the grassland and increase the NPP. The areas with high partial correlation
coefficients are distributed in east Ordos, north Xilingol, and west Hulun Buir. The cor-
relation in the south side of the Greater Khingan Range is lower than that in the north
side. However, the precipitation is generally sufficient in the south side, and when the
precipitation is sufficient, the grassland NPP can be affected by the other meteorological
factors, and the effect of precipitation is weakened.

Figure 12. Spatial distribution of the correlation coefficients and partial correlation coefficients between grassland NPP and
precipitation (a,b), temperature (c,d), and sunshine duration (e,f) in Inner Mongolia during 2000–2020.

For temperature, the correlation between NPP and temperature is not consistent in
spatial distribution, as shown in Figure 12c,d. About 61.80% of the total grassland area
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shows a negative correlation with temperature, and only 7.59% of the total grassland
area shows a positive correlation coefficient of greater than 0.3. The areas with negative
correlation are mainly concentrated in the north side of the Greater Khingan Range. When
the influence of precipitation and sunshine duration is controlled, 79.19% of the total
grassland area shows a certain improvement in the positive correlation between NPP and
temperature, mostly in the north side of the Greater Khingan Range. Although Inner
Mongolia is located at high latitudes, a higher temperature would cause more evaporation
in arid areas with little precipitation, which would then make the natural environment
more disadvantageous for the growth of grassland. In contrast, in the south side of the
Greater Khingan Range, due to the humid climatic conditions, the warmer environment, to
a certain degree, is conducive to the increase of NPP.

The correlation between NPP and sunshine duration also shows spatial heterogeneity
(Figure 12e,f) and most areas are weakly correlated. The proportion of grassland NPP
showing positive correlation and negative correlation with sunshine duration is 51.18%
and 48.82%, respectively. Only 6.34% of the grassland has a negative correlation of greater
than 0.3, and 10.93% has a positive correlation of greater than 0.3. However, the partial
correlation is positive in most grassland areas, accounting for 87.41%, with 47.66% of the
total grassland having a positive correlation of greater than 0.3. A small amount of negative
partial correlation is found in west Xilingol and west Inner Mongolia. Due to the arid
climate in Inner Mongolia, the sunshine leads to increased soil water evaporation, which
affects the growth of the grassland. In addition, the sunshine time might be less affected by
the undulating terrain in Inner Mongolia than precipitation and temperature, and there is
no obvious difference in the correlation and partial correlation between the two sides of
the Greater Khingan Range.

In general, at the scale of a single year, precipitation has the most obvious effect on
grassland NPP in Inner Mongolia. Most of the grassland shows a strong positive correlation
between NPP and precipitation. The second factor is the length of sunshine duration,
showing a relatively weak positive correlation. The third factor is temperature. The
influence of temperature is different on the different sides of the Greater Khingan Range.

4. Discussion
4.1. Uncertainty Analysis

According to the validation result, the correlation coefficient between the estimated
NPP and the observed NPP from FLUXNET2015 and ChinaFLUX was 0.64. FLUXNET
provides the monthly observed data, but grasslands in arid regions tend to have low NPP
by month, which resulted in NPP values generally in the low value region. In the meantime,
the number of FLUXNET stations is limited. Moreover, it was reported that the spatial
scale of remote sensing images has an impact on the estimation of GPP/NPP [84]. Limited
to the spatial resolution, the NPP for a pixel represents an area of 250 × 250 m2, which
impacts the accuracy verification result. The published estimation results for grassland
NPP in Inner Mongolia were used to verify the estimated NPP in this work (Table 7). The
estimation results obtained in this study are close to those of the previous studies, that is,
the results reported in this paper are reliable and could be utilized for future research.

Table 7. Comparison with other NPP estimation results.

Research Case Average Yearly NPP
(g C/m2)

Growth Rate
(g C/(m2·yr)) Time Range NPP Model or

Data Sources

Zhu et al. [85] Around 250 – 2002 CASA
Mu et al. [86] 281.30 0.33 2001–2010 CASA
Jin et al. [10] 271.10 4.36 2001–2015 CASA

Zhao et al. [37] Ranged from 81.21 to
365.53 4.53 2000–2014 MODIS

MOD17A3
This study 278.63 2.43 2000–2020 CASA
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For the uncertainties, the maximum light use efficiency LUEmax in this work refers to
the work of Zhu et al. [72]. In the original CASA model, the maximum light use efficiency
LUEmax was assigned a fixed value, 0.389 gC·MJ−1 [31]. Since the value of LUEmax has a
great influence on the estimated NPP, its value is controversial [31,87]. Some research tried
to modify the value of LUEmax based on field sampling data [10,88]. In future research,
LUEmax should be modified using more flux measurement sites.

4.2. LUCC and the NPP Response to LUCC

In this study, we analyzed the LUCC in Inner Mongolia and its effect on the grassland
NPP in 2000, 2010, and 2020. The grassland area increased by 2.66% from 2000 to 2010,
and then decreased by 1.73% from 2010 to 2020. Hu and Batu [22] found grassland of a
low quality developed to a higher quality in Inner Mongolia from 1990 to 2015 based on
their LUCC analysis result for dense grassland, moderate grassland, and sparse grassland.
Tong et al. [89] quantitatively monitored the land use changes in Inner Mongolia and
found the area of high- and moderate-coverage grassland decreased while the area of
low-coverage grassland increased during 2000–2015. Li et al. [90] also found that the
area change trend of high- and low-coverage grassland is opposite during 2000–2012. In
this study, we found the main outflow (59,141.81 km2 in total) was grassland turned into
cultivated land (26,130.44 km2), and the main inflow (63,870.50 km2 in total) was from
bare land to grassland (33,086.56 km2) over the 21 years. These above studies suggest that
the combined effects of climate change and human activities caused the NPP frequent
changes, so that both long and short time series of monitoring are required. Notably, it
has been widely reported that the ecological environment of the Mu Us Desert in Ordos
has been greatly improved because of a series of ecological restoration policies in the past
decades [91,92], which is consistent with our results. Therefore, the impact of human
activities on grasslands quality has both positive and negative effects.

Although more land changed into grassland, the NPP of the increased grassland was
lower than that of the lost grassland. In total, the NPP loss caused by LUCC was greater
than the NPP growth caused by LUCC, at 17.63 and 16.38 Tg C, respectively. If the increase
of grassland NPP caused by climatic factors is considered, the NPP loss caused by human
activities (mainly reclaiming grassland) would be even greater. Although people have
made great efforts to make the bare land green and turn it into grassland, the quality of
these new grassland areas is on the low side. Thus, it is also important to protect the
existing grassland from reclamation and desertification. Moreover, to explore the quality of
grass, the higher time resolution and finer-grained vegetation types should be included in
the future. All grassland ecosystem management projects should be evaluated by quality
indices, such as NPP, and not just the area.

4.3. NPP Response to the Meteorological Factors

The correlation coefficient spatial distribution map (Figure 12) shows that precipitation
was the main factor for grassland NPP in Inner Mongolia from 2000 to 2020, with which
97.06% of the total grassland showed a positive relationship. Most studies suggest that
the precipitation is the most important meteorological factor which affected the change
of grassland NPP in Inner Mongolia [41,83,86,93], which is consistent with the conclusion
of our research. The increase of precipitation over the last 20 years has contributed to the
overall increase in grassland NPP. The grassland NPP shows a negative correlation with
temperature in the water-deficient area while the relationship will turn into positive when
the water is enough.

Moreover, the correlation coefficients between precipitation and NPP in the north and
south of the Greater Khingan Range have a certain difference of the strength. Combined
with Figure 7, the changes of NPP in the different sides of the Greater Khingan Range are
different significantly. For the two sides of the mountains, the differences in water and
heat resources have a greater impact on grassland growth. In addition, as Wu et al. [94]
summarized, human activities such as mining and reclamation had the most obvious
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impact on grassland NPP in west Xilingol during 2000–2018. More human activities can
also weaken the response of grassland to meteorological factors, such as in the south side
of the Greater Khingan Range.

Guo et al. [93] found that different grassland species had different responses to mete-
orological factors. Moreover, there is a time-lag in the response of vegetation to climatic
factors [95], which is difficult to find on the annual scale. Thus, the changes of NPP in
response to meteorological factors should be further analyzed on finer and longer time
series data. In addition, the periodic law of meteorological factors should be taken into
account, considering the high sensitivity of grassland to meteorological factors, especially
for precipitation, which can avoid the inconsistent conclusion over a different study period.

4.4. Importance of the Segmented Long Time Series Study and GEE

As shown in Table 5, the trend of NPP was inconsistent over the two periods by
Theil–Sen method. The different results and their significance between the two periods
show that the change trend of grassland NPP over a short period of time might not be
reliable. The change trend can be easily disturbed by one year of unusual increase or
decrease and is determined by the selection of the start and end points. Furthermore, some
short-term sudden changes may also be of interest, and should not be overlooked. The
same situation also existed in the spatial distribution of NPP changes. For example, as
shown in Figure 9, in west Hulun Buir, although there was no obvious decline in the area of
grassland NPP at the scale of 21 years, different regions showed decreasing trends during
the different periods (2000–2010 or 2010–2020). In other words, the grassland NPP decline
in west Hulun Buir has not been stopped, but it has shifted within the region. However,
it is difficult to find such a phenomenon in a long time series directly. Thus, it is of great
importance to undertake trend research at an appropriate time scale, with both long and
short time series, in order to find more comprehensive details of the NPP change trends. In
this paper, not only was the long time series of 21 years (from 2000 to 2020) analyzed, but
we also divided the long time series into two 11-year periods (from 2000 to 2010 and from
2010 to 2020) as short time series.

A large amount of remote sensing data and computational power are required for
the long time series and large-scale spatiotemporal monitoring. In this study, the quantity
and quality of the grassland in Inner Mongolia were evaluated by LUCC and NPP based
on the GEE platform. The high-performance computing power and rich image resources
of the GEE platform can be used for the long-term research of NPP in Inner Mongolia.
The observed data from meteorological stations were applied in this study. However, the
observation data from meteorological stations cannot be accessed conveniently for a larger
scale study (e.g., a continental or global scale). Thus, for better and extensive monitoring of
ecosystem growth changes, it may be easier and quicker to adopt the massive amount of
remote sensing data and meteorological images available on the GEE platform [52,58].

5. Conclusions

The Inner Mongolia grassland is an important ecological barrier in northern China and
the largest animal husbandry and dairy product base in China. It is of great importance to
make a detailed analysis of the spatiotemporal change of the grassland in Inner Mongolia,
to help formulate grassland management policies in the future. We applied the CASA
model, combined with MODIS NDVI, the GlobeLand30 land-use type, and meteorological
data based on the GEE platform, to evaluate the grassland NPP in Inner Mongolia during
2000–2020.

The results showed that the average grassland NPP was 278.63 g C/m2 and the
growth trend was 2.43 g C/(m2·yr) by the OLS method. Especially, the NPP of grassland
in east Ordos and the south side of the Greater Khingan Range showed sustained and
significant growth. Moreover, the grassland area increased during 2000–2010 and then
decreased during 2010–2020. Although the total area of grassland increased during the
whole study period, the NPP loss caused by LUCC was greater than the NPP growth
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caused by LUCC. Precipitation is the most important meteorological factor affecting the
grassland NPP, followed by sunshine duration and temperature, and there is a positive
relationship between NPP and precipitation in most grassland.

Our result shows the grassland ecosystem in Inner Mongolia improved, overall,
during 2000–2020, but more attention should be paid to the reclamation of grassland and
preventing new grassland from desertification again. Moreover, for future studies on
grassland NPP, the periodic variation of precipitation could be taken into account. For
other land-cover types, both long time series study and short time series change analysis
should be considered for the spatio-temporal study of the NPP. The specific time series
change should refer to its main impact factors. The remote sensing cloud computing
platform like GEE could help with long time series monitoring of ecosystems.

Author Contributions: Conceptualization, K.T.; data curation, R.J.; formal analysis, R.J.; methodol-
ogy, R.J.; software, R.J., C.P. and L.X.; supervision, K.T.; validation, C.P.; visualization, X.W. and L.X.;
writing—original draft, R.J.; writing—review and editing, R.J., K.T. and X.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Natural Science Foundation of China
(No. 41871337 and No. 42171335).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are openly available on the websites.

Acknowledgments: We would like to sincerely thank Google for providing the free Google Earth
Engine platform for scientific research. We would also like to thank NASA LP DAAC for providing
the MODIS NDVI data, the China Meteorological Data Service Center for providing the monthly
climate data, the China National Geomatics Center for providing the GlobeLand30 data, the Resource
and Environment Science and Data Center for providing the vector map of the study area, and the
FLUXNET (CN-Du2, CN-Du3, and CN-Sw2) and ChinaFLUX (NMG) flux tower sites for sharing
their observed datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Y.; Fang, J.; Ma, W.; Guo, D.; Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Glob.

Ecol. Biogeogr. 2010, 19, 268–277. [CrossRef]
2. Mao, D.; Wang, Z.; Li, L.; Ma, W. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association

with climatic pattern and changes in Northern China. Ecol. Indic. 2014, 41, 40–48. [CrossRef]
3. Deng, L.; Shangguan, Z.; Wu, G.; Chang, X. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth-Sci.

Rev. 2017, 173, 84–95. [CrossRef]
4. Lei, T.; Feng, J.; Lv, J.; Wang, J.; Song, H.; Song, W.; Gao, X. Net Primary Productivity Loss under different drought levels in

different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144. [CrossRef]
5. Kemp, D.; Han, G.; Hou, X.; Michalk, D.L.; Hou, F.; Wu, J.; Zhang, Y. Innovative grassland management systems for environmental

and livelihood benefits. Proc. Natl. Acad. Sci. USA 2013, 110, 8369–8374. [CrossRef]
6. Millennium Ecosystem Assessment Board. Ecosystems and Human Well-Being: Desertification Synthesis; World Resources Institute:

Washington, DC, USA, 2005.
7. Faour, G.; Mhawej, M.; Nasrallah, A. Global trends analysis of the main vegetation types throughout the past four decades. Appl.

Geogr. 2018, 97, 184–195. [CrossRef]
8. Liu, J.; Zhang, Y.; Li, Y.; Wang, D.; Han, G.; Hou, F. Overview of grassland and its development in China. In Proceedings of the

21st International Grassland Congress/8th International Rangeland Congress, Hohhot, China, 5 July 2008.
9. Chen, Y.; Fischer, G. A New Digital Georeferenced Database of Grassland in China; Interim Report IR-98-062/September; International

Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 1998.
10. Jin, H.; Bao, G.; Chen, J.; Chopping, M.; Jin, E.; Mandakh, U.; Jiang, K.; Huang, X.; Bao, Y.; Vandansambuu, B. Modifying the

maximal light-use efficiency for enhancing predictions of vegetation net primary productivity on the Mongolian Plateau. Int. J.
Remote Sens. 2020, 41, 3740–3760. [CrossRef]

11. Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What is the main cause of grassland degradation? A case study of grassland
ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [CrossRef]

http://doi.org/10.1111/j.1466-8238.2009.00502.x
http://doi.org/10.1016/j.ecolind.2014.01.020
http://doi.org/10.1016/j.earscirev.2017.08.008
http://doi.org/10.1016/j.jenvman.2020.111144
http://doi.org/10.1073/pnas.1208063110
http://doi.org/10.1016/j.apgeog.2018.05.020
http://doi.org/10.1080/01431161.2019.1707902
http://doi.org/10.1016/j.catena.2016.11.014


Remote Sens. 2021, 13, 4480 24 of 26

12. Pan, Q.; Xue, J.; Tao, J.; Xu, M.; Zhang, W. Current status of grassland degradation and measures for grassland restoration in
northern China. Chin. Sci. Bull. 2018, 63, 1642–1650. [CrossRef]

13. Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative assessment of the contributions of climate
change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [CrossRef]

14. Xue, Z.; Kappas, M.; Wyss, D. Spatio-temporal grassland development in Inner Mongolia after implementation of the first
comprehensive nation-wide grassland conservation program. Land 2021, 10, 38. [CrossRef]

15. Li, X.; Gao, J.; Brierley, G.; Qiao, Y.; Zhang, J.; Yang, Y. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for
rehabilitation. Land Degrad. Dev. 2013, 24, 72–80. [CrossRef]

16. Chen, H.; Shao, L.; Zhao, M.; Zhang, X.; Zhang, D. Grassland conservation programs, vegetation rehabilitation and spatial
dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [CrossRef]

17. Liu, Y.; Zhang, Z.; Tong, L.; Khalifa, M.; Wang, Q.; Gang, C.; Wang, Z.; Li, J.; Sun, Z. Assessing the effects of climate variation and
human activities on grassland degradation and restoration across the globe. Ecol. Indic. 2019, 106, 105504. [CrossRef]

18. Hu, Q.; Pan, F.; Pan, X.; Zhang, D.; Li, Q.; Pan, Z.; Wei, Y. Spatial analysis of climate change in Inner Mongolia during 1961–2012,
China. Appl. Geogr. 2015, 60, 254–260. [CrossRef]

19. Zhou, W.; Li, J.; Yue, T. Research Progress of the Grassland Carbon Cycle and Grassland Degradation in China; Springer: Singapore, 2019;
pp. 1–16.

20. Yan, Y.; Liu, X.; Wen, Y.; Ou, J. Quantitative analysis of the contributions of climatic and human factors to grassland productivity
in northern China. Ecol. Indic. 2019, 103, 542–553. [CrossRef]

21. Zhou, W.; Yang, H.; Huang, L.; Chen, C.; Lin, X.; Hu, Z.; Li, J. Grassland degradation remote sensing monitoring and driving
factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 2017, 83, 303–313. [CrossRef]

22. Hu, Y.; Nacun, B. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China,
1990–2015. Sustainability 2018, 10, 4048. [CrossRef]

23. Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The impact of ecological construction programs on grassland
conservation in Inner Mongolia, China. Land Degrad. Dev. 2017, 29, 326–336. [CrossRef]

24. Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management.
J. Plant Ecol. 2016, 9, 649–671. [CrossRef]

25. Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 2020,
12, 1949. [CrossRef]

26. Yang, H.; Hu, D.; Xu, H.; Zhong, X. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui
province, China. Environ. Sci. Pollut. Res. 2020, 27, 14915–14932. [CrossRef]

27. Wang, X.; Tan, K.; Chen, B.; Du, P. Assessing the spatiotemporal variation and impact factors of net primary productivity in
China. Sci. Rep. 2017, 7, 1–10. [CrossRef]

28. Li, J.; Wang, Z.; Lai, C.; Wu, X.; Zeng, Z.; Chen, X.; Lian, Y. Response of net primary production to land use and land cover change
in mainland China since the late 1980s. Sci. Total Environ. 2018, 639, 237–247. [CrossRef]

29. Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River
basin, China. Catena 2021, 206, 105542. [CrossRef]

30. Liu, J.; Chen, J.M.; Cihlar, J.; Chen, W. Net primary productivity distribution in the BOREAS region from a process model using
satellite and surface data. J. Geophys. Res. Space Phys. 1999, 104, 27735–27754. [CrossRef]

31. Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote
Sens. Environ. 1995, 51, 74–88. [CrossRef]

32. Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22, 815. [CrossRef]
33. Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary production

in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [CrossRef]
34. Hadian, F.; Jafari, R.; Bashari, H.; Tartesh, M.; Clarke, K.D. Estimation of spatial and temporal changes in net primary production

based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of Semirom County, Iran. J. Arid. Land 2019,
11, 477–494. [CrossRef]

35. Gao, Q.; Li, Y.; Wan, Y.; Qin, X.; Jiangcun, W.; Liu, Y. Dynamics of alpine grassland NPP and its response to climate change in
Northern Tibet. Clim. Chang. 2009, 97, 515–528. [CrossRef]

36. Zhang, Y.; Wang, Q.; Wang, Z.; Li, J.; Xu, Z. Dynamics and drivers of grasslands in the Eurasian steppe during 2000. Sustainability
2021, 13, 5887. [CrossRef]

37. Zhao, Y.; Liu, H.; Zhang, A.; Cui, X.; Zhao, A. Spatiotemporal variations and its influencing factors of grassland net primary
productivity in Inner Mongolia, China during the period 2000. J. Arid. Environ. 2019, 165, 106–118. [CrossRef]

38. Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004,
61, 301–325. [CrossRef]

39. Hao, H.; Ren, Z. Land use/land cover change (LUCC) and eco-environment response to LUCC in Farming-Pastoral Zone, China.
Agric. Sci. China 2009, 8, 91–97. [CrossRef]

40. Wen, Y.; Liu, X.; Bai, Y.; Sun, Y.; Yang, J.; Lin, K.; Pei, F.; Yan, Y. Determining the impacts of climate change and urban expansion
on terrestrial net primary production in China. J. Environ. Manag. 2019, 240, 75–83. [CrossRef]

http://doi.org/10.1360/N972017-01178
http://doi.org/10.1007/s12665-014-3322-6
http://doi.org/10.3390/land10010038
http://doi.org/10.1002/ldr.1108
http://doi.org/10.1016/j.landusepol.2017.03.018
http://doi.org/10.1016/j.ecolind.2019.105504
http://doi.org/10.1016/j.apgeog.2014.10.009
http://doi.org/10.1016/j.ecolind.2019.04.020
http://doi.org/10.1016/j.ecolind.2017.08.019
http://doi.org/10.3390/su10114048
http://doi.org/10.1002/ldr.2692
http://doi.org/10.1093/jpe/rtw005
http://doi.org/10.3390/rs12121949
http://doi.org/10.1007/s11356-020-08006-w
http://doi.org/10.1038/srep44415
http://doi.org/10.1016/j.scitotenv.2018.05.155
http://doi.org/10.1016/j.catena.2021.105542
http://doi.org/10.1029/1999JD900768
http://doi.org/10.1016/0034-4257(94)00066-V
http://doi.org/10.2307/2845983
http://doi.org/10.1016/j.rse.2003.11.008
http://doi.org/10.1007/s40333-019-0060-3
http://doi.org/10.1007/s10584-009-9617-z
http://doi.org/10.3390/su13115887
http://doi.org/10.1016/j.jaridenv.2019.01.004
http://doi.org/10.1016/S0305-9006(03)00066-7
http://doi.org/10.1016/S1671-2927(09)60013-4
http://doi.org/10.1016/j.jenvman.2019.03.071


Remote Sens. 2021, 13, 4480 25 of 26

41. Zhang, Y.; Wang, Q.; Wang, Z.; Yang, Y.; Li, J. Impact of human activities and climate change on the grassland dynamics under
different regime policies in the Mongolian Plateau. Sci. Total Environ. 2020, 698, 134304. [CrossRef]

42. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

43. Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data
applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [CrossRef]

44. Kumar, L.; Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 2018, 10,
1509. [CrossRef]

45. Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine learning classification of Mediterranean Forest Habitats in Google Earth
Engine based on Seasonal Sentinel-2 time-series and input image composition optimisation. Remote Sens. 2021, 13, 586. [CrossRef]

46. Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel- vs. Object-based Landsat 8 data classification in Google Earth
Engine using random forest: The case study of Maiella National Park. Remote Sens. 2021, 13, 2299. [CrossRef]

47. Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m
using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [CrossRef]

48. Yin, S.; Wu, W.; Zhao, X.; Gong, C.; Li, X.; Zhang, L. Understanding spatiotemporal patterns of global forest NPP using a
data-driven method based on GEE. PLoS ONE 2020, 15, e0230098. [CrossRef]

49. Zhang, Y.; Song, C.; Hwang, T.; Novick, K.; Coulston, J.W.; Vose, J.; Dannenberg, M.P.; Hakkenberg, C.R.; Mao, J.; Woodcock, C.E.
Land cover change-induced decline in terrestrial gross primary production over the conterminous United from 2001 to 2016. For.
Meteorol. 2021, 308–309, 108609. [CrossRef]

50. Melton, F.S.; Grimm, R.; Huntington, J.L.; Herring, J.; Erickson, T.; Hall, M.; Anderson, M.; Bastiaanssen, W.; Daudert, B.; Doherty,
C.; et al. OpenET: Filling the Biggest Gap in Water Data for the Western United States; AGU: Washington, DC, USA; p. H53B-07. 2018.

51. Mhawej, M.; Faour, G. Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system.
Environ. Model. Softw. 2020, 133, 104845. [CrossRef]

52. Fadel, A.; Mhawej, M.; Faour, G.; Slim, K. On the application of METRIC-GEE to estimate spatial and temporal evaporation rates
in a mediterranean lake. Remote Sens. Appl. Soc. Environ. 2020, 20, 100431. [CrossRef]

53. Vos, K.; Splinter, K.D.; Harley, M.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract
shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [CrossRef]

54. DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using
Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [CrossRef]

55. Martín-Ortega, P.; García-Montero, L.G.; Sibelet, N. Temporal patterns in illumination conditions and its effect on vegetation
indices using Landsat on Google Earth Engine. Remote Sens. 2020, 12, 211. [CrossRef]

56. Wang, X.; Du, P.; Chen, D.; Lin, C.; Zheng, H.; Guo, S. Characterizing urbanization-induced land surface phenology change from
time-series remotely sensed images at fine spatio-temporal scale: A case study in Nanjing, China (2001–2018). J. Clean. Prod. 2020,
274, 122487. [CrossRef]

57. Abunnasr, Y.; Mhawej, M. Downscaled night air temperatures between 2030 and 2070: The case of cities with a complex- and
heterogeneous-topography. Urban Clim. 2021, 40, 100998. [CrossRef]

58. Guo, S.; Du, P.; Xia, J.; Tang, P.; Wang, X.; Meng, Y.; Wang, H. Spatiotemporal changes of glacier and seasonal snow fluctuations
over the Namcha Barwa–Gyala Peri massif using object-based classification from Landsat time series. ISPRS J. Photogramm.
Remote Sens. 2021, 177, 21–37. [CrossRef]

59. Ren, H.; Shang, Y.; Zhang, S. Measuring the spatiotemporal variations of vegetation net primary productivity in Inner Mongolia
using spatial autocorrelation. Ecol. Indic. 2020, 112, 106108. [CrossRef]

60. Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-day L3 Global 250m SIN Grid V006; NASA EOSDIS Land Processes DAAC;
NASA: Washington, DC, USA, 2015. [CrossRef]

61. Didan, K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-day L3 Global 250m SIN Grid V006; NASA EOSDIS Land Processes DAAC;
NASA: Washington, DC, USA, 2015. [CrossRef]

62. Sha, Z.; Bai, Y.; Lan, H.; Liu, X.; Li, R.; Xie, Y. Can more carbon be captured by grasslands? A case study of Inner Mongolia, China.
Sci. Total Environ. 2020, 723, 138085. [CrossRef]

63. Chen, J.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [CrossRef]
64. Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m

resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [CrossRef]
65. Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey,

M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 27.
[CrossRef]

66. Yu, G.; Wen, X.; Sun, X.; Tanner, B.D.; Lee, X.; Chen, J. Overview of ChinaFLUX and evaluation of its eddy covariance measurement.
Agric. For. Meteorol. 2006, 137, 125–137. [CrossRef]

67. Guo, D.; Song, X.; Hu, R.; Zhu, X.; Jiang, Y.; Cai, S.; Zhang, Y.; Cui, X. Large-scale analysis of the spatiotemporal changes of net
ecosystem production in Hindu Kush Himalayan Region. Remote Sens. 2021, 13, 1180. [CrossRef]

68. Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem
production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2019.134304
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1016/j.isprsjprs.2020.04.001
http://doi.org/10.3390/rs10101509
http://doi.org/10.3390/rs13040586
http://doi.org/10.3390/rs13122299
http://doi.org/10.5194/essd-13-2753-2021
http://doi.org/10.1371/journal.pone.0230098
http://doi.org/10.1016/j.agrformet.2021.108609
http://doi.org/10.1016/j.envsoft.2020.104845
http://doi.org/10.1016/j.rsase.2020.100431
http://doi.org/10.1016/j.envsoft.2019.104528
http://doi.org/10.1016/j.rse.2020.111664
http://doi.org/10.3390/rs12020211
http://doi.org/10.1016/j.jclepro.2020.122487
http://doi.org/10.1016/j.uclim.2021.100998
http://doi.org/10.1016/j.isprsjprs.2021.04.018
http://doi.org/10.1016/j.ecolind.2020.106108
http://doi.org/10.5067/MODIS/MOD13Q1.006
http://doi.org/10.5067/MODIS/MYD13Q1.006
http://doi.org/10.1016/j.scitotenv.2020.138085
http://doi.org/10.1038/514434c
http://doi.org/10.1016/j.isprsjprs.2014.09.002
http://doi.org/10.1038/s41597-020-0534-3
http://doi.org/10.1016/j.agrformet.2006.02.011
http://doi.org/10.3390/rs13061180
http://doi.org/10.1029/93GB02725


Remote Sens. 2021, 13, 4480 26 of 26

69. Pang, J.; Xu, Z.; Liu, C. Weather Generator and Database in the SWAT Model. J. China Hydrol. 2007, 27, 25–30.
70. Wu, Y.; Wu, Z.; Liu, X. Dynamic changes of net primary productivity and associated urban growth driving forces in Guangzhou

city, China. Environ. Manag. 2020, 65, 758–773. [CrossRef]
71. Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the estimation of terrestrial net primary production from remotely sensed

data. J. Geophys. Res. Space Phys. 1994, 99, 5263–5283. [CrossRef]
72. Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China.

Chin. Sci. Bull. 2006, 51, 457–463. [CrossRef]
73. Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]
74. Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 85.
75. Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River

Basin. Ecol. Indic. 2015, 51, 117–126. [CrossRef]
76. Hussain, M.M.; Mahmud, I. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open

Source Softw. 2019, 4, 1556. [CrossRef]
77. Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [CrossRef]
78. Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975.
79. Kamali, A.; Khosravi, M.; Hamidianpour, M. Spatial–temporal analysis of net primary production (NPP) and its relationship with

climatic factors in Iran. Environ. Monit. Assess. 2020, 192, 1–20. [CrossRef] [PubMed]
80. Wang, H.; Liu, L.; Yin, L.; Shen, J.; Li, S. Exploring the complex relationships and drivers of ecosystem services across different

geomorphological types in the Beijing-Tianjin-Hebei region, China (2000–2018). Ecol. Indic. 2021, 121, 107116. [CrossRef]
81. Zhu, X.; Li, C.; Tang, L. Assessing the Spatiotemporal Dynamic of NPP in Desert Steppe and Its Response to Climate Change from 2003 to

2017: A Case Study in Siziwang Banner; SPIE: Washington, DC, USA, 2019; Volume 11149. [CrossRef]
82. Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global urban expansion offsets

climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10. [CrossRef] [PubMed]
83. Wang, Z.; Zhong, J.; Lan, H.; Wang, Z.; Sha, Z. Association analysis between spatiotemporal variation of net primary productivity

and its driving factors in Inner Mongolia, China during 1994. Ecol. Indic. 2019, 105, 355–364. [CrossRef]
84. Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Zhao, M.; Running, S.W.; Wofsy, S.C.; Urbanski, S.; Dunn, A.L.; Munger,

J.W. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product
validation. Remote Sens. Environ. 2003, 88, 256–270. [CrossRef]

85. Zhu, W.; Pan, Y.; Long, Z.; Chen, Y.; Li, J.; Hu, H. Estimating net primary productivity of terrestrial vegetation based on GIS and
RS: A case study in Inner Mongolia, China. J. Remote Sens. 2005, 9, 300–307. [CrossRef]

86. Mu, S.; Li, J.; Yang, H.; Gang, C.; Chen, Y. Spatio-temporal variation analysis of grassland net primary productivity and its
relationship with climate over the past 10 years in Inner Mongolia. Acta Pratacult. Sin. 2013, 22, 6–15. [CrossRef]

87. Wang, Y.; Xu, X.; Huang, L.; Yang, G.; Fan, L.; Wei, P.; Chen, G. An improved CASA model for estimating winter wheat yield
from remote sensing images. Remote Sens. 2019, 11, 1088. [CrossRef]

88. Li, A.; Bian, J.; Lei, G.; Huang, C. Estimating the maximal light use efficiency for different vegetation through the CASA model
combined with time-Series remote sensing data and ground measurements. Remote Sens. 2012, 4, 3857–3876. [CrossRef]

89. Tong, S.; Dong, Z.; Zhang, J.; Bao, Y.; Guna, A.; Bao, Y. Spatiotemporal variations of land use/cover changes in Inner Mongolia
(China) during 1980. Sustainability 2018, 10, 4730. [CrossRef]

90. Li, Z.; Wu, W.; Liu, X.; Fath, B.D.; Sun, H.; Liu, X.; Xiao, X.; Cao, J. Land use/cover change and regional climate change in an arid
grassland ecosystem of Inner Mongolia, China. Ecol. Model. 2017, 353, 86–94. [CrossRef]

91. Liu, Q.; Zhang, Q.; Yan, Y.; Zhang, X.; Niu, J.; Svenning, J.-C. Ecological restoration is the dominant driver of the recent reversal of
desertification in the Mu Us Desert (China). J. Clean. Prod. 2020, 268, 122241. [CrossRef]

92. Shi, Y.; Jin, N.; Ma, X.L.; Wu, B.Y.; He, Q.S.; Yue, C.; Yu, Q. Attribution of climate and human activities to vegetation change in
China using machine learning techniques. Agric. For. Meteorol. 2020, 294, 108146. [CrossRef]

93. Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland type-dependent spatiotemporal characteristics of productivity in
Inner Mongolia and its response to climate factors. Sci. Total Environ. 2021, 775, 145644. [CrossRef]

94. Wu, N.; Liu, G.; Liu, A.; Bai, H.; Chao, L. Monitoring and driving force analysis of net primary productivity in native grassland:
A case study in Xilingol steppe, China. J. Appl. Ecol. 2020, 31, 1233–1240. [CrossRef]

95. Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate
change. Glob. Chang. Biol. 2015, 21, 3520–3531. [CrossRef]

http://doi.org/10.1007/s00267-020-01276-7
http://doi.org/10.1029/93JD03221
http://doi.org/10.1007/s11434-006-0457-1
http://doi.org/10.1080/01621459.1968.10480934
http://doi.org/10.1016/j.ecolind.2014.07.031
http://doi.org/10.21105/joss.01556
http://doi.org/10.2307/1907187
http://doi.org/10.1007/s10661-020-08667-7
http://www.ncbi.nlm.nih.gov/pubmed/33083919
http://doi.org/10.1016/j.ecolind.2020.107116
http://doi.org/10.1117/12.2535486
http://doi.org/10.1038/s41467-019-13462-1
http://www.ncbi.nlm.nih.gov/pubmed/31804470
http://doi.org/10.1016/j.ecolind.2017.11.026
http://doi.org/10.1016/j.rse.2003.06.005
http://doi.org/10.11834/jrs.20050344
http://doi.org/10.11686/cyxb20130302
http://doi.org/10.3390/rs11091088
http://doi.org/10.3390/rs4123857
http://doi.org/10.3390/su10124730
http://doi.org/10.1016/j.ecolmodel.2016.07.019
http://doi.org/10.1016/j.jclepro.2020.122241
http://doi.org/10.1016/j.agrformet.2020.108146
http://doi.org/10.1016/j.scitotenv.2021.145644
http://doi.org/10.13287/j.1001-9332.202004.014
http://doi.org/10.1111/gcb.12945

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources 
	NDVI Data 
	Meteorological Data 
	Land-Cover Data 
	NPP Observation Data 

	Research Method 
	Estimation of NPP Based on the CASA Model 
	Analysis of the NPP Change Volatility and Trends 
	Analysis of the Main Influencing Factors 


	Results 
	Characteristics and Variation of LUCC in Inner Mongolia 
	Spatial and Temporal Distribution of Grassland NPP in Inner Mongolia 
	Validation of the NPP Calculation 
	Characteristics of the Grassland NPP Distribution 
	The Change Trend Distribution of Grassland NPP 

	Influence of LUCC on the Change of Grassland NPP in Inner Mongolia 
	Correlation between Grassland NPP and Meteorological Factors 

	Discussion 
	Uncertainty Analysis 
	LUCC and the NPP Response to LUCC 
	NPP Response to the Meteorological Factors 
	Importance of the Segmented Long Time Series Study and GEE 

	Conclusions 
	References

