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Abstract: The Northeast region of Brazil (NEB) has a high rate of deaths from lightning strikes (18%
of the country’s total). The region has states, such as Piauí, with high mortality rates (1.8 deaths
per million), much higher than the national rate (0.8) and the NEB rate (0.5). In this sense, the
present work analyzes the microphysical characteristics of clouds with and without the occurrence of
total lightning. For this purpose, data from the Lightning Imaging Sensor (LIS), TRMM Microwave
Imager (TMI) and Precipitation Radar (PR), aboard the Tropical Rainfall Measuring Mission (TRMM)
satellite from 1998 to 2013 were used. The TRMM data were analyzed to establish a relationship
between the occurrence of lightning and the clouds’ microphysical characteristics, comparing them
as a function of lightning occurrence classes, spatial location and atmospheric profiles. A higher
lightning occurrence is associated with higher values of ice water path (>38.9 kg m−2), rain water path
(>2 kg m−2), convective precipitation (>5 mm h−1) and surface precipitation (>7 mm h−1), in addition
to slightly higher freezing level height values. Reflectivity observations (>36 dBZ) demonstrated
typical convective profile curves, with higher values associated with classes with higher lightning
densities (class with more than 6.8 flash km−2 year−1).

Keywords: LIS; TRMM; cloud microphysics; thunderclouds; remote sensing

1. Introduction

Northeast Brazil (NEB) is a predominantly semiarid region, where society and agri-
cultural productivity can be significantly impacted by climate variability [1–3]. Thus,
meteorological systems that cause intense precipitation are extremely important to fill
reservoirs that provide water during the dry period [4,5]. However, some of these systems,
especially those composed of clouds with extensive vertical development, high amounts of
ice and strong updrafts, have the potential to produce electrical charges inside the clouds
and, consequently, lightning [6–8].

The major problems that lightning can cause to society (blackouts, fires, accidents re-
lated to transport such as planes and ships, damage to telecommunications systems, deaths
of humans and animals) combined with the destructive characteristics of lightning, make
it the target of numerous studies developed by the global academic community [7,9–14].
Although scientific knowledge about lightning has evolved significantly in recent decades,
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the ability to represent its spatial and temporal variability, in addition to its relationship
with other environmental and microphysical variables, remains a key challenge.

Lightning provides a direct and accurate indication of convective activity in clouds,
which makes its integration with remote sensing cloud observation systems very useful for
the diagnosis and prognosis of storm strength [15]. Several papers were published deepen-
ing knowledge about the relationship between lightning and the characteristics of precipi-
tation systems, in different locations around the globe, such as China [16], Bangladesh [17],
Kolkata-India [18], France [19] and Brazil [7,20,21]. Some studies have indicated that al-
though the relationship between precipitation regime and lightning is highly dependent, a
more robust relationship can be found between lightning and microphysics [22].

As demonstrated through previous studies [20,22–27], the electrical charges gener-
ated inside clouds, and consequent separation of charges and lightning generation, are
intrinsically related to clouds’ thermodynamic, dynamic and microphysical processes.

The study of the microphysics of a cloud is based on the analysis of the hydrometeors
that compose it, how they are classified and how they change over time, because these
particles—liquid or solid (ice)—vary greatly in size and shape, so the growth of the cloud
particles, as well as any transformation of their phase, is determined considering the
physics of condensation, collision–coalescence and nucleation. These various physical
processes operate in a peculiarly dynamic and complex environment [28,29]. Knowledge
of the microphysical structure of the convection-forming cloud is essential to predict a
severe meteorological event. In this sense, the study of lightning activity provides a way to
evaluate convection [18].

Searching for polarimetric and multi-Doppler radar-based lightning rate parameteri-
zations inferred from microphysical (graupel volume, graupel mass, 35 dBZ volume) and
kinematic (upstream volume, maximum velocity of updraft) parameters, Carey et al. [30]
found that for low flash rates, relations based on kinematic parameters have larger errors
compared to those based on microphysical ones, and the flash rate parameterization based
on graupel volume has the best overall performance.

The mapping of lightning and cloud properties through orbital data in the 1990s [31–33]
made it possible to derive more empirical relationships. These relationships are based
on several parameters, including the convective mass flow and convective precipitation
rate [34], Ice Water Path (IWP) [35], updraft intensity [36], updraft volume [37] and precipi-
tation mass [38].

Researchers have documented that large ice particles develop in cumulonimbus
clouds as a result of robust mixed-phase processes modulated by convective updrafts.
Thus vertical flows of ice particles and the proportionality between ice charge generation
rates and lightning rates, indicate a linear to the slightly nonlinear relationship between
lightning rate and IWP [25].

Other research has indicated that the relationship between IWP and lightning density
is relatively invariant between the terrestrial, oceanic and coastal regimes [39], having
a high correlation with lightning density (R > 0.97). This prompted authors to include
lightning data in algorithms for the recovery of frozen water content [35]. This was later
corroborated when it was observed that categories with higher lightning rates tend to have
higher reflectivity (i.e., larger ice particles), 85.5 GHz colder brightness temperature (higher
IWP), and higher surface reflectivity (larger Surface Precipitation-SP) [39].

Investigating adapted lightning parameterizations to predict flash rates for storms
in Colorado USA, Basarab et al. [40] updated several flash rate parameterization schemes
based on the relationship between total lightning flash rate and bulk storm parameters.
The authors developed a successful scheme that predicts flash rate based on radar-derived
mixed-phase 35 dBZ echo volume, which indicates the amount of ice necessary to sustain
frequent lightning discharges. Results agreed with recent findings by Hayashi et al. [41] for
10 isolated thunderstorm cases over the Kanto Plain, Japan.

Cloud ice dynamics also are associated with the amount of lightning, a fact docu-
mented by Deierling et al. [38] in studying ice flow in 11 storms. The authors found a
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high correlation between precipitable and non-precipitable ice masses (R = 0.9 and 0.8,
respectively). Finney et al. [42] proposed a new parameterization of chemical transport
models using lightning data.

For South America, Morales Rodriguez [43] indicated that the partition of the cloud,
which is composed of ice and super-cooled water droplets, in the mixed region controls
the storm’s efficiency in producing lightning. Mattos and Machado [44] performed a
comparison between high-frequency microwave channels and lightning data. The results
indicated the existence of a strong relationship between the IWP and particle size with the
lightning occurrence, with Pearson correlation coefficients of 0.86 and 0.96, respectively. De-
termination of the difference in polarization at 85 GHz showed potential as a technique for
identifying regions of more intense convection associated with ice particles, preferentially
oriented vertically.

Establishing the relation between lightning occurrence and the effective diameter of
ice particles, Mattos and Machado [44] concluded that the occurrences of cloud-to-ground
lightning are observed in association with the categories that contained the largest sizes of
ice particles, being more significant for sizes larger than 0.92 mm, gradually increasing up
to the size of 1.85 mm. This factor can be associated with the observed dependence of the
amount of charge transferred by a collision between the ice particles as a function of the
size and speed of impact between them [8,43,45,46].

When verifying the effect of aerosols on electrical activity over China, Zhao et al. [47]
concluded that an increase in aerosol loading delayed the formation of warm cloud rain
and increased convection intensity due to the cloud droplet size, where many smaller
droplets were transported to the freezing region by currents within the cloud, forming
more ice particles and more hail. The particles participated in the electrification process,
resulting in storms with intense electrical activity.

Chatterjee and Das [18] also described significant differences for several cloud mi-
crophysical parameters, in situations with and without lightning in the region of Kolkata,
India. On that occasion, cloud top temperature, effective droplet size, radar reflectivity and
rain attenuation were evaluated. For the Gansu region in China, it is possible to use CG
lightning quantification to estimate the Convective Precipitation-CP, where the average
precipitation intensity is equal to 1.69 times the natural logarithm of the amount of CG
lightning, minus 0.27, where obtaining r = 0.86 [16]. For South America, more specifically
for the La Plata Basin region, Rasmussen and Houze [48] concluded, from a case study,
that a storm had 663 lightning strikes and a large percentage of convective rain (94%).

Studies have shown that clouds evolve into storm clouds in terms of microphysical
characteristics that produce the first intra-cloud (IC) and CG lightning. For example,
Mattos et al. [24] reached this conclusion from the observation of 46 compact (<20 km)
and isolated storms during the spring/summer of 2011–2012 in the Southeast region of
Brazil, where fundamental parameters in the cloud vertical structure produced the initial
electrification and lightning activity. The results also indicated that clouds with heavy
lightning have a predominance of ice particles vertically oriented by a strong electric field.

However, the results found in previous studies were restricted to the Southeast region
of Brazil, so in a pioneering study of NEB, Abreu et al. [7] reported maximum values of
44.57 flash km−2 year−1, with the states of Piauí, Maranhão and Bahia having the points
with the highest lightning densities, occurring mainly during the summer and autumn in
the southern hemisphere.

In this context, this study is unprecedented in the sense of investigating the possible
relationship between lightning and microphysical properties in NEB, which has the largest
number of states [49] and accounts for 18% of annual deaths associated with this phe-
nomenon in Brazil [10]. Thus, the main objective of this study was to analyze the behavior
of the microphysical properties of clouds in situations of occurrence and non-occurrence
of lightning in the Northeast region of Brazil, as well as the spatial distribution of these
characteristics in the region.
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2. Materials and Methods
2.1. Study Region

The Northeast region of Brazil (NEB), represented in Figure 1, is located approximately
between the geographic coordinates 01◦ S and 18◦ S; 34◦ W and 49◦ W. NEB comprises
nine Brazilian states: Maranhão (MA), Piauí (PI), Ceará (CE), Rio Grande do Norte (RN),
Paraíba (PB), Pernambuco (PE), Sergipe (SE), Alagoas (AL) and Bahia (BA). The region has
a total area of 1,554,291 km2 and population of more than 53 million inhabitants [49].
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Figure 1. Geographical location of NEB and topography (m) with state division. The red circles represent the location of
the state capitals. The boxes denote the main topographic formations: (1) Borborema Plateau; (2) Chapada (high plains)
Diamantina; and (3) Chapada das Mangabeiras and Serra [mountain range] Geral do Goiás.

NEB is a region with high climatic variability due to a set of physiographic factors and
atmospheric systems that act at different scales. Despite its location, it does not present a
typical rainfall distribution in equatorial areas [50–52].

A division was described by Rodrigues et al. [53], who after performing cluster
analysis with daily precipitation data proposed the subdivision into five regions: (a) north
of NEB; (b) most of the Brazilian semiarid region; (c) east of NEB; (d) southwest of NEB and
(e) southeast of NEB. It is necessary to clarify that, unlike previous articles, Rodrigues et al.
(2020) subdivided NEB according to daily rainfall accumulation instead of according to
monthly or annual accumulation, as other authors have previously carried out.

Due to its large territorial extension, NEB is influenced by several atmospheric systems
related to the production of lightning, the main systems being the Intertropical Conver-
gence Zone (ITCZ) [54,55]; Upper tropospheric cyclonic vortices (UTCV) [56,57]; Mesoscale
Convective Systems (MCS) [58,59]; Frontal Zones (FZ) [60,61] and Easterly Wave Distur-
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bances (EWD) [62,63]. These systems can occur in different seasons of the year, in addition
to influencing different sub-regions in NEB.

2.2. Data
2.2.1. LIS Data

The LIS is an instrument used to detect the distribution and spatial and temporal
variability of total lightning (intra-cloud and cloud-to-ground), by measuring the amount,
rate and radiant energy of lightning during the day and night. Two LIS sensors were built
in the 1990s. The first was installed on the TRMM satellite, while the spare was installed on
the International Space Station (ISS). The first operated successfully for over 17 years [64].

The LIS sensor is a lightning detector that groups various events in space and time.
The LIS has a charge-coupled device (CCD) that detects lightning emissions in the 777.4 nm
channel (neutral oxygen line) that exceed a threshold at the cloud top at a rate of 2 millisec-
onds. Pixels that exceed the radiance threshold are called events; contiguous events in a
single frame are called groups; in turn, groups coherent in time and space are aggregated
and called flashes. The temporal and spatial thresholds are 330 ms and 5.5 km, respec-
tively [7,31,65–68]. As described by Christian et al. [67] the LIS has a spatial resolution of
approximately 5 km, with an array size of 128 × 128 pixels and detection efficiency of 90%
of all events.

The LIS data used in this study were obtained through NASA’s digital platform, con-
sisting of data from each orbit from January 1998 to December 2013. Data after this period
are not included in the analyses, since the TRMM started its trajectory decommissioning in
2014, with multiple instrument interruptions, possibly introducing errors [9]. The complete
dataset is available for download from the NASA Earth Observing System (EOSDIS) Global
Hydrology Resource Center (GHRC): https://lightning.nsstc.nasa.gov/lisib/lissearch.html
(accessed on 7 November 2018).

2.2.2. 2A-Clim and 2A25 TRMM Products

Data from products 2A-Clim (from the TRMM Microwave Imager–TMI) and 2A25
(from the Precipitation Radar–PR) were used, both associated with the TRMM satellite,
which refers to the surface precipitation and vertical profiles of hydrometeors provided by
the STORM platform, https://storm.pps.eosdis.nasa.gov/storm/ (accessed on 7 November
2018). By applying the Goddard Profiling Algorithm 2014 (GPROF2014) to the TMI bright-
ness temperature data, it is possible to obtain information about the vertical structure of
clouds, and the amount of ice and/or water particles [69]. Table 1 describes the parameters
of this product used in this study. To ensure PR, TMI and LIS data reliability, only data in
the period from January 1998 to December 2013 were used.

The TMI sensor is a passive microwave multichannel radiometer that operated at five
frequencies, four with double polarization (10.65; 19.35; 37 and 85.5 GHz) and one with
single-polarization (21.3 GHz). The antenna beam focused on the Earth’s surface with a
tilt angle of 52.8◦, which allowed for a conical-shaped sweep and allowed coverage of
720 km (878 km after boost). This antenna rotated around an axis in a nadir position at a
speed of 31.6 rpm, but only the front 130◦ of the circle described by the antenna was used
to collect the data [70]. In the present work, four parameters originating from this sensor
were evaluated: Ice Water Path (IWP), Rain Water Path (RWP), Convective Precipitation
(CP) and Surface Precipitation (SP).

PR provides the data for product 2A25. This sensor was the first rain radar to be placed
in orbit, and its main objectives were: (i) to elucidate the three-dimensional structure of
precipitation, particularly the vertical distribution; (ii) to obtain quantitative measurements
of precipitation over land and ocean; and (iii) to improve the overall accuracy of the TRMM
precipitation measurement by using combined data from active (PR) and passive (TMI and
VIRS) sensors [33].

This instrument is an active 13.8 GHz radar, recording energy reflected from atmo-
spheric and surface targets, having an electronic sweep endowed with a bandwidth of

https://lightning.nsstc.nasa.gov/lisib/lissearch.html
https://storm.pps.eosdis.nasa.gov/storm/
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215 km pre-boost and 247 km post-boost [71]. The sensor produces an estimate of the
vertical precipitation rate profile for each radar beam, and this estimate is given in each
of its resolution cells, also using the radar database installed on the Earth’s surface for
comparison purposes [72]. From this sensor, two parameters were used: Freezing Level
Height (FH) and Reflectivity (dBZ), both extracted from the 2A25 product.

Table 1. Attributes of 2A-CLIM and 2A25 products.

Feature Pre-Boost
(before 7 August 2001)

Post-Boost
(after 24 August 2001)

Temporal coverage 8 December 1997 to 7 August 2001 24 August 2001 to 8 April 2015
Temporal coverage used in this work 1 January 1998 to 31 December 2013

Geographic coverage Latitude: 38◦ S–38◦ N/Longitude: 180◦ W–180◦ E
Temporal resolution ~16 orbits/day

Spatial resolution ~4.4 km ~5.1 km

Variables used in this
work (Products)

Ice Water Path (2A-CLIM);
Convective Precipitation (2A-CLIM);

Rain Water Path (2A-CLIM);
Surface Precipitation (2A-CLIM);

Freezing Level Heigth (2A25);
Reflectivity (2A25).

2.3. Methodological Procedures
2.3.1. Cloud Microphysical Characteristics

To assess the relationship between the occurrence of lightning and the microphysical
characteristics of clouds, we used a method similar to that of Chatterjee and Das [18]. The
TRMM product database (2A-CLIM and 2A25) was submitted to a spatiotemporal filter,
where the lightning identification data (LIS) were related to the microphysical data. The
orbits in which no lightning was recorded were selected and a cutout was applied to the
study area. Therefore, the pixels on the NEB in which there was no lightning record formed
the database called “No Lightning Occurrence”.

Then, the orbits in which lightning was identified (according to the LIS) were sub-
mitted to a new location filter (latitude and longitude) being captured only data of pixels
that coincided with the lightning occurrence (forming the database called “Lightning
Occurrence”). For this purpose, pixel data were captured within a distance of 0.04◦ (ap-
proximately 4 km) from the centroid of lightning location. This value was chosen because
it is similar to the resolution of the 2A-CLIM and 2A25 products.

After filtering, two separate databases were obtained, one with the microphysics
information of the clouds when lightning occurred and the other when there was no light-
ning. The first database had a total of 4945 orbits, while the second one had 23,691 orbits.
The comparison method used is similar to that adopted by Mattos and Machado [44]
and Wang et al. [39]. This information was then represented in histograms and evaluated
according to the Student t-test, to obtain knowledge about the differences between the
means of the distributions, a method also used by Rodrigues et al. [53].

As specified by Albrecht et al. [9] in their supplementary document, the vast majority
of the NEB is located under the same view time of TRMM, so there is no region-dependent
bias in the number of observations.

2.3.2. Quantile Technique and Analysis of Variance (ANOVA)

The quantile technique was applied to the total distribution of lightning density data,
similar to that applied by Abreu et al. [7]. These data were previously standardized as a
function of the LIS view time, as described by Albrecht et al. [9]. For this, the sample was
divided into tertiles (33.33% percentiles) and thus the division into four sub-regions was
obtained, with one corresponding to the region with a density equal to zero and the other
three corresponding to the tertiles of the frequency distribution.

Quantiles are points taken at regular intervals from a data series, dividing them into
subsets of equal size. The main quantiles are quartiles (series divided into four equal parts),
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percentiles (series divided into 100 equal parts) and deciles (series divided into 10 equal
parts) [51,73,74].

Oliveira et al. [51] corroborated the finding of Wilks [74], standing that the quan-
tile technique has a big advantage over the techniques traditionally used since they use
normalization by mean and standard deviation, which are largely dependent on the hy-
pothesis that the distribution is normal, which does not always happen in atmospheric
parameter series.

To verify whether there was a statistical difference in terms of lightning density be-
tween the microphysical parameters of each NEB sub-region, an analysis of variance
(ANOVA) was used. This technique tests, through the sum of squares of differences, the
differences between two pairs of means. The idea is to derive the total variability of infor-
mation into components, according to the statistical model used by Chambers et al. [75],
represented by Equation (1).

yij = µ + ti + εij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , r

(1)

where µ : effect common to all treatments; ti : effect of each sub-region; εij : random error;
a: number of sub-regions; and r: number of observations within each sub-region.

The ANOVA result determines whether the distribution of the studied parameter
of at least one sub-region differs from the others, but does not indicate between which
sub-regions the difference is significant. Thus, when the hypothesis of equality of means of
ANOVA was rejected, the Tukey multiple comparisons test was performed [76,77]. The
test statistic is given by Equation (2).

Tα = qα(a, N − a)

√
Mean Square Error

r
(2)

where qα(a, N − a) is the tabulated value, as a function of the number of sub-regions (a)
and the number of the residual degrees of freedom (N − a), at the level of significance (∝).
The Mean Square Error (MSE) is defined by Equation (3).

MSE =

(
r

a

∑
i=1

(yi. − y..)
2 =

1
r

a

∑
i=1

y2
i. −

y2
..

N

)
/(a − 1) (3)

where yi. is the average of each microphysical parameter in each sub-region; y.. is the
average of each microphysical parameter; yi. is the sum of each microphysical parameter
in each sub-region; and y.. is the sum of each microphysical parameter and N is the total
number of observations.

For the ANOVA and Tukey test results to be valid, it is necessary for the residuals of the
ANOVA model to have a normal distribution, constant variance and independence. These
assumptions were confirmed, respectively, through the Shapiro–Wilk [78], Levene [79] and
Ljung–Box [80] tests and the result was plotted for pairwise comparison of the sub-regions.
A method similar to that used by Rodrigues [81] was used to compare clusters generated
for precipitation extremes in NEB.

To improve the analysis, the error bar of data referring to tertiles was also produced.
Error bars are graphical representations of data variability, used to indicate uncertainty in
a reported measurement. Error bars can be represented by standard deviation, standard
error or confidence interval. In this study, error bars were represented by the standard
error. The standard error is a measure of the variation of a sample mean relative to the
population mean. To obtain an estimate of the standard error, simply divide the standard
deviation by the square root of the sample size [82].
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2.3.3. Spatial Distribution of Clouds’ Microphysical Properties

In order to identify spatial and seasonal patterns, the spatialization of the clouds’
microphysical characteristics was performed. For this purpose, the database called “Light-
ning Occurrence” was used, and the data were divided by season: summer (DJF), autumn
(MAM), winter (JJA) and spring (SON) for the Southern Hemisphere.

After dividing into seasons, a 0.04◦ × 0.04◦ grid (approximately 4 km) was constructed
and then averaged for all records within each pixel. These values, in turn, were graphically
represented by maps constructed with the aid of geographic information systems.

2.3.4. Vertical Reflectivity Profiles (Z)

In this step, the relationship between the vertical structure of clouds and lightning
frequency was evaluated. The vertical structure was analyzed using the values of the
parameter correct Z factor of the 2A25 product. The data for this product consist of vertical
reflectivity profiles with 80 levels (one every 250 m), with Z values ranging between 0 and
80 dBZ. Each LIS lightning record was combined with the 2A25 reflectivity profiles. For
this, the vertical Z profiles that occurred at a distance of 4 km from the lightning (native
resolution of the product) were analyzed.

The average profile was calculated considering the maximum reflectivity (Zmax)
for each of the 80 levels, a method also used by Palharini and Vila [83]. The data were
then divided according to the tertiles generated previously and comparative profiles were
created between these sub-regions. Similar methods were used by Mattos et al. [84] when
comparing different classes of lightning density; in addition to other researchers aimed at
understanding the composition of clouds [39,43,85,86].

Two limits were used to determine the phases of thunderclouds. The first limit sepa-
rates the warm and mixed phases and is equivalent to the 0 ◦C isotherm. It was determined
from the values of the 2a25 TRMM product, which determines the freezing level height, by
adopting the average value of approximately 4.8 km. The second limit, which separates the
mixed and glacial phases, was set to −40 ◦C [24,41,84]. The corresponding altitude was
determined from the Tropical Standard Atmosphere developed by the International Civil
Aviation Organization–ICAO [87–89], by adopting the average value of approximately
8.8 km.

3. Results
3.1. Relationship between Clouds’ Microphysical Properties and Lightning Occurrence

The analysis of microphysical parameters considered the Ice Water Path (IWP), Con-
vective Precipitation (CP), Freezing Level Height (FH), Rain Water Path (RWP) and Surface
Precipitation (SP) for the categories with and without lightning. Figure 2a shows that the
IWP has a sharp decrease for the curve without lightning, showing values close to zero.
For clouds that produced lightning, the behavior also shows a reduction of values, but
it presents a less accentuated reduction and higher IWP values (>1 kg m−2) compared
to the previous distribution. For data distribution without lightning, the 75% percentile
has values lower than 0.1 kg m−2, while for lightning-generating clouds this percentile
corresponds to values lower than 1.5 kg m−2. The means of the two distributions were
compared as a function of the Student t-test results, and at 99% confidence, it was possible
to state that the means of the two distributions are different.

The FH distribution shows that the two curves are close to the normal distribution,
with the graphical representation of data associated with lightning being more leptokurtic
(less flattened, data less dispersed) in comparison with the distribution of data when no
lightning occurred (Figure 2b). It should also be noted that the FH average for lightning
strikes is slightly higher and significantly different from the average for the other database
(no lightning), according to the Student t-test at 99% confidence.
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The RWP distributions showed decreasing values with the increase in water mass
per m2, but the distribution of data without lightning showed a more accentuated drop
(Figure 2c). After being submitted to the Student t-test at 99% confidence, the means of
the distributions showed a significant difference. The amount of total liquid water in
the atmospheric column can be subdivided into two fractions. The first corresponds to
the liquid water associated with the cloud and the second fraction corresponds to the
precipitating liquid water, thus associated with rain (here shown as RWP), which can vary
independently. In this sense, the general behavior of the frequency distribution for RWP is
very similar to the representation of surface precipitation rate measurements [90].

The SP and CP distributions are similar. Both distributions show a rapid reduction in
frequencies as precipitation rates increase, and for data without lightning, they show more
marked reductions (Figure 2d,e). For SP, when using the 75% percentile as a reference,
the distribution with lightning registers 7.25 mm h−1, while for the one without lightning
the value is only 0.25 mm h−1, 29 times smaller. For CP, using the same reference (P75%),
a value 21 times lower was recorded for the distribution without lightning (0.25 versus
5.25 mm h−1). For both variables, according to the Student t-test, it can be stated that the
means of the distributions are different, with 99% confidence.
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3.2. Spatial and Seasonal Distribution of Microphysical Characteristics

With the spatialization of the cloud microphysical parameters, it was possible to assess
the variation that exists throughout the different territories of NEB, as well as the seasonal
variations. Since they present the most distinct behavior among the other characteristics,
the discussion is centered on the FH, IWP and SP parameters.

For the spatial distribution of FH (Figure 3a–d), the season that obtained the highest
values was autumn (4896 m on average), followed by summer (4835 m), spring (4821 m) and
winter (4776 m). The two seasons with the highest (lowest) values coincide with those with
the greatest (least) lightning occurrences in the region, as established by Abreu et al. [7].

Regarding spatial variation, it was possible to verify the influence of large-scale sys-
tems, associated with the highest FH occurrence, as can be seen in the region and occurrence
periods of the ITCZ and South Atlantic Convergence Zone (SACZ), systems previously
indicated as convection boosters and consequently of electrical activity [7,9,55,91–93].

For the summer, it is also possible to highlight the high-level diffluence that oc-
curs in the region, to the detriment of UTCV occurrence, in the NEB coast and adjacent
oceanic region, and the Upper Bolivia system, which forms near the country of the same
name [55–57,94]. Regions with high FH also coincide with those highlighted by Palharini
and Vila [83] as places with the highest occurrence of convection, both shallow and deep.

Regarding the IWP variable (Figure 3e–h), the highest values (>0.3 kg m−2) represent
the vast majority of the distribution, confirming the close relationship between the lightning
rate and the amount of ice, as previously described. Some regions, such as the central-north
and south of Piauí and Maranhão, are noteworthy for having a maximum amount of
ice (values close to 40 kg m−2) especially during autumn and spring since they coincide
with the lightning hotspots of NEB pointed out by Abreu et al. [7]. The lowest values
occur mainly during the austral winter, a season characterized by rare and even absent
precipitation in most of NEB.

For the SP parameter (Figure 3i–l), it was possible to observe lightning occurrences
associated with high precipitation rates in all seasons of the year, especially during spring
(up to 59 mm h−1) and summer (up to 53 mm h−1). The large-scale atmospheric systems
mentioned above, which operate at this time of year, also have a marked interaction for
this parameter, as can be confirmed from their regions of influence

3.3. Microphysical Properties as a Function of Lightning Tertiles

After the application of the tertiles technique, the study area was divided into four
sub-regions as a function of lightning density: (T1) less than 0.1 flash.km−2 year−1; (T2)
between 0.1 and 2.8 flash.km−2 year−1; (T3) between 2.8 and 6.8 flash.km−2 year−1; and
(T4) above 6.8 flash.km−2 year−1 (Figure 4).

The results showed that the lowest lightning density values (T1) are concentrated in
the eastern coastal strip of NEB, extending from the state of Rio Grande do Norte to the
Bahia coast.

The results obtained from the microphysical characteristics existing in each of the
regions were summarized through the construction of graphs that represent the mean and
error bar of the distribution (Figure 5). The ANOVA results were statistically significant
(p-values < 0.05) for all five parameters evaluated in this study, indicating the existence of a
difference between the means obtained in at least two of the sub-regions presented. The
p-values obtained from the Tukey test, performed after ANOVA, are shown in Figure 6.
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Figure 4. Spatial representation of regions found by quantile analysis as a function of lightning
density: T1 (<0.1 flash km−2 year−1), T2 (between 0.1 and 2.8 flash km−2 year−1); T3 (between 2.8
and 6.8 flash km−2 year−1) and T4 (above 6.8 flash km−2 year−1).

For the FH parameter, which describes the height of the 0 ◦C isotherm, the values
ranged between 4200 and 5415, and the average values of the sub-regions increased as the
lightning density increased. Therefore, T4 was the largest and T1 the smallest (Figure 5a).
These results are in accordance with what was proposed by Petersen and Rutledge [25]
and Zipser and Lutz [86], by associating strong ascending currents close to the 0 ◦C
isotherm, with the consequent change in the mixed-phase of clouds and greater generation
of electrical charges.

The Tukey test for the variable showed there is no significant difference between T1
and T2, but the other sub-regions are distinct from each other (Figure 6a). These results are
consistent with those of [95] for the entire tropical range, who reported slight variations for
FH in NEB, mainly varying as a function of latitude.
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Figure 5. Mean and error bar of clouds’ microphysical properties (a) Freezing Level Height, (b) Ice Water Path, (c) Convective
Precipitation, (d) Rain Water Path, (e) Surface Precipitation as a function of tertile classes T1 (<0.1 flash km−2 year−1), T2
(between 0.1 and 2.8 flash km−2 year−1); T3 (between 2.8 and 6.8 flash km−2 year−1) and T4 (above 6.8 flash km−2 year−1).

The IWP values (Figure 5b) were highest in the T4 sub-region, followed by the T3
sub-region. This fact corroborates the importance of this variable for charge generation
in storm clouds and the consequent lightning occurrence, since the highest (smallest)
densities occurred in the sub-region with the highest (smallest) amount of ice, reinforcing
the close relationship between ice content and cloud electrification [14,20,27,35,37,84,96].
The Tukey multiple comparison test (Figure 6b), indicated that the IWC of the T4 sub-region
is statistically different from the others (p-value < 0.1) and no significant difference between
T1 and T2, and between T1 and T3.

The remaining three parameters (SP, CP and RWP) showed similar behavior with
the average surface precipitation rates and convective precipitation, in addition to inte-
grated rainwater content for each sub-region, increasing as the lightning density increases
(Figure 5c–e). Thus, sub-region T1 (T4) obtained the smallest (largest) quantity. As for the
Tukey test, it indicated no statistically significant differences between the means of T1 and
T2 for any of the variables. However, the other regions are distinct from each other for the
three parameters described (Figure 6c–e). Good relationships between lightning and CP
were also reported for the European continent [97], for the global tropical region [98] and
for China [16].
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Figure 6. Tukey test results for NEB sub-regions by microphysical parameters of lightning-generating
clouds (a) Freezing Level Height, (b) Ice Water Path, (c) Convective Precipitation, (d) Rain Water
Path, (e) Surface Precipitation. Significant values (p-value < 0.1) are represented with shades of blue,
while non-significant values have shades of red.

3.4. Vertical Structure of Clouds as a Function of Lightning Frequency

As lightning frequency increases, the Z profile along the entire column achieves higher
reflectivity values (Figure 7). The T4 sub-region has the highest reflectivity values, with
maximums of approximately 39 dBZ close to the surface, while the minimum occurs at the
upper limit of the troposphere, with values close to 21 dBZ.
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Figure 7. Average reflectivity profiles (dBZ) as a function of the lightning density categories T1
(<0.1 flash km−2 year−1; black line); T2 (between 0.1 and 2.8 flash km−2 year−1; green line); T3
(between 2.8 and 6.8 flash km−2 year−1; blue line); and T4 (above 6.8 flash km−2 year−1; red line).
The regions highlighted in shades of gray indicate the microphysical layers: warm (white), mixed
(light gray) and glacial phase (dark gray).

At the other extreme, the T1 region, with little or no electrical activity recorded during
the TRMM orbits in the studied period, has maximum values of approximately 36 dBZ
near the surface, and minimum values of 19 dBZ also at the upper limit of the troposphere.

4. Discussion
4.1. Relationship between Clouds’ Microphysical Properties and Lightning Occurrence

The distinct behavior of IWP distributions supports the hypothesis of a strong corre-
lation between the generation of electrical charges, and consequent lightning production,
with the frozen water particle mass inside the storm clouds [99]. Steiner and Smith [100]
established the relationship of ice particles and convective clouds, finding that the exis-
tence of high-density ice particles is indicative of convective precipitation, and graupel
can be considered as particles that mark the boundary between convective and stratiform
precipitation. The growth of high-density graupel particles requires updrafts on the order
of 2–3 m s−1, which corroborates commonly held classifications.

With regard to the order of magnitude of the FH values found, they are consistent with
a previous survey carried out with radar data obtained by the TRMM and compared to that
obtained from temperature data from the National Centers for Environmental Prediction
(NCEP) [95], where the average values for regions in NEB vary between 4500 and 5000 m.
It should be noted that since the currents within these clouds vary, the FH tends to vary
accordingly, showing a slight increase (decrease) along with the updrafts (downdrafts).

When storm clouds present intense updrafts, with velocities greater than 6 m s−1 near
the FH, the elevation of this is forced, bringing changes in the microphysics of the cloud’s
mixed phase, with more electrical charges generated and consequently more lightning
strikes [20,25,86,101].
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It is noteworthy that the curves of FH found in this study for the two situations (with
and without lightning) are very close since a large number of lightning strikes occur during
the maturation phase [24]. However, even so, the values are higher when lightning strikes
in NEB.

The SP results obtained in this work are compatible with the relationships already
established in the literature between the variable and the occurrence of lightning. A strong
correlation coefficient between CG lightning incidence was recorded in the Gansu region
of China, with r = 0.86 [16]. The authors indicated the precipitation estimate from CG
lightning, especially in regions without radar coverage. For the same area, Abreu et al. [7]
demonstrated a close relationship between lightning density and precipitation estimated by
Xavier et al. [102] in different scenarios, such as for the entire NEB, for clusters developed
from the lightning density and for classes of different altitudes.

Regarding the CP values, the results are in agreement with those of Takayabu [103],
who found a good correlation (r = 0.55) between rain-yields per flash and convective rain,
for the entire range of coverage of the LIS and PR (tropics). The study indicated that large
amounts of convective rain are fundamentally associated with intense updrafts, capable of
sustaining vigorous lightning activity.

4.2. Microphysical Properties as a Function of Lightning Tertiles

The lowest lightning density values are concentrated in the eastern coastal strip of
NEB, extending from the state of Rio Grande do Norte to the Bahia coast due to warm
clouds predominance and lower convective activity in the region [83]. These clouds are not
vertically extensive, without sufficient ice and strong updrafts, fundamental conditions for
the formation and occurrence of lightning [6].

Further from the coast (increase in longitude), the increase in lightning density be-
comes noticeable and with this, the upper tertiles are more represented. A noteworthy
feature in this area is the Planalto da Borborema region, extending through the states
of RN, PB and PE, with a large representation of the highest tertile, in addition to Cha-
pada Diamantina in Bahia and the Serra Geral do Goiás, a fact that may be related to
topography [7,104,105].

For this region (T4), it is possible to associate the high lightning density with large
and mesoscale systems. For the northern portion of NEB, it is possible to associate the
occurrence of lightning with the area of influence of the ITCZ [9,106,107], which has deep
convective and electrically charged clouds. For the more interior portions of the continent,
MCS occurrence increases, which is very characteristic in the region, especially during the
austral summer [59,108].

Results found in this work agree with the results documented through cluster analysis
by Abreu et al. [7]. The data differ spatially in some regions, a fact that can be explained by
the techniques used since cluster analysis takes into account the quantity of lightning and
the geographic location to perform the grouping of points, while the percentile technique
uses only the quantitative lightning density.

Regarding the microphysical characteristics existing in each of the regions, when
looking for the relationship between CG lightning density and SP in six regions of the
south-central United States, Sheridan et al. [109] found a highly variable relationship, with
a correlation coefficient ranging from 0.12 (Baton Rouge) to 0.60 (Dallas). However, the
authors highlighted the Gulf of Mexico’s influence on regions with lower correlation indices
and generally concluded that on the daily time scale, there is a defined linear correlation
between the total number of CG lightning discharges occurring in a region and mean SP.

Other researchers have reported a positive correlation between lightning density and
SP, such as Dewan et al. [17], who found a strong positive correlation on the monthly scale
(r = 0.734) and in the pre-monsoon season (r = 0.701), and moderate correlation during the
monsoon (r = 0.455). For CP, the authors described a slightly higher correlation during the
monsoon (r = 0.587) compared to the pre-monsoon season (r = 0.532).
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4.3. Vertical Structure of Clouds as a Function of Lightning Frequency

Since the reflectivity has sixth power dependence on the particle diameter [110,111],
the lightning profiles have a well-developed warm and mixed-phase, with a predominance
of large liquid and ice water particles, respectively.

For this region, the possibility of occurrence of clouds with shallow convection, as
described by Palharini and Vila [83], is noteworthy. In other parts of the globe, the signifi-
cant difference in electrification between deep clouds and warm clouds has already been
described, where regions with deeper convection are associated with a greater generation
of electrical charges and consequently more frequent lightning occurrence [112].

These results are very similar to those found by Wang et al. [39] for convective pixels
in the TRMM coverage region. The authors used five years of data from the LIS, TMI and
PR instruments and also found the tendency of an increase in the reflectivity peak when
there was an increase in the flash rate (FR) in the four categories used in the study (FR = 0,
0 < FR ≤ 1 flash min−1, 1 < FR ≤ 2 flash min−1 and FR > 2 flash min−1).

The results of this study are consistent in profile behavior and in order of magnitude
with those reported by Katsanos et al. [113] for the central-eastern Mediterranean region.
The authors observed a distinction between vertical reflectivity profiles for different classes
of lightning occurrence, with the highest (smallest) Z indices being associated with the
pixels with the highest (lowest) incidence of the phenomenon. The findings of this study
are also consistent with those of Anselmo [46] and Morales Rodriguez [43]. The latter
found lower reflectivity values for convective profiles of pixels located in adjacent maritime
and oceanic regions, in comparison with the continental interiors of South America, using
PR/TRMM data associated with lightning information obtained from the Sferics Timing
And Ranging NETwork (STARNET).

Mattos et al. [84] also showed similar behavior in the São Paulo Metropolitan Region,
with the distinction between the reflectivity of lightning classes, but with a different order
of magnitude than in NEB, with classes with reflectivity greater than 50 dBZ. This difference
must be associated with the different atmospheric systems operating in the region, where
the SCM stands out.

The behavior of vertical reflectivity profiles found in this study is also consistent with
findings for convective conditions and/or lightning occurrence in other places around
the globe, such as in the states of Oklahoma and Kansas, USA [86], in Henan province,
China [114] and for several representative regions in tropical and subtropical areas [115].

5. Conclusions

This study evaluated, in pioneering fashion, the behavior of microphysical properties
as a function of occurrence and non-occurrence of lightning in the Northeast region of
Brazil, as well as the spatial distribution of these characteristics in the region. The use of
information from the TRMM satellite proved to be a fundamental alternative for regions
such as NEB, where there is a large territorial extent and no effective coverage by ground
radar and lightning location systems.

The evaluated cloud microphysical parameters showed that clouds with lightning
have characteristics quite different from those without electrical discharges. Electrified
clouds tend to have a greater amount of ice (IWP), have a slight rise in the height of the
freezing level (FH), and have higher values of SP, CP and RWP.

Large-scale atmospheric systems such as ITCZ and SACZ have a strong influence
on the spatial distribution of the microphysical characteristics evaluated in this study.
Smaller-scale systems such as UTCV and Upper Bolivia also influence these parameters by
facilitating convection, especially during the Southern Hemisphere summer.

The tertile technique proved to be of great importance for spatial division of NEB
into lightning occurrence classes, since the application of ANOVA, followed by the Tukey
test showed a significant difference between most regions (treatments) for the respective
variables measured.
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The analysis of clouds’ vertical structure through the vertical reflectivity profiles showed
the existence of differences between coastal and inland regions, in addition to highlighting
the relationship between higher reflectivity associated with higher lightning densities.

New perspectives for use of lightning measured by the Geostationary Lightning
Mapper-GLM sensor onboard the GOES satellite [116] were created from these results,
with the possibility of using data from the continuous monitoring of the area studied.
Thus, future works can observe a storm throughout its life cycle, with better temporal
resolution. In general, the assessment of convective initiation and lightning initiation
situations can help to improve the understanding of atmospheric patterns that precede
lightning occurrence and to reduce its harmful effects.
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