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Abstract: This study evaluates the skills of two types of drone-based point clouds, derived from
LiDAR and photogrammetric techniques, in estimating ground elevation, vegetation height, and
vegetation density on a highly vegetated salt marsh. The proposed formulation is calibrated and
tested using data measured on a Spartina alterniflora-dominated salt marsh in Little Sapelo Island,
USA. The method produces high-resolution (ground sampling distance = 0.40 m) maps of ground ele-
vation and vegetation characteristics and captures the large gradients in the proximity of tidal creeks.
Our results show that LiDAR-based techniques provide more accurate reconstructions of marsh
vegetation (height: MAEVH = 12.6 cm and RMSEVH = 17.5 cm; density: MAEVD = 6.9 stems m−2

and RMSEVD = 9.4 stems m−2) and morphology (MAEM = 4.2 cm; RMSEM = 5.9 cm) than Digital
Aerial Photogrammetry (DAP) (MAEVH = 31.1 cm; RMSEVH = 38.1 cm; MAEVD = 12.7 stems m−2;
RMSEVD = 16.6 stems m−2; MAEM = 11.3 cm; RMSEM = 17.2 cm). The accuracy of the classifi-
cation procedure for vegetation calculation negligibly improves when RGB images are used as
input parameters together with the LiDAR-UAV point cloud (MAEVH = 6.9 cm; RMSEVH = 9.4 cm;
MAEVD = 10.0 stems m−2; RMSEVD = 14.0 stems m−2). However, it improves when used together
with the DAP-UAV point cloud (MAEVH = 21.7 cm; RMSEVH = 25.8 cm; MAEVD = 15.2 stems m−2;
RMSEVD = 18.7 stems m−2). Thus, we discourage using DAP-UAV-derived point clouds for high-
resolution vegetation mapping of coastal areas, if not coupled with other data sources.

Keywords: salt marshes; Unmanned Aerial Vehicle (UAV); Light Detection and Ranging (LiDAR);
Digital Aerial Photogrammetry (DAP); ground elevation; vegetation height; vegetation density;
land cover

1. Introduction

Salt marshes are essential environments that provide ecological and anthropologic
functions, such as storm attenuation [1,2], carbon sequestration, and water quality enhance-
ment [3–6]. In the last decades, coastal marsh systems suffered a progressive conversion
to open water areas and mudflats due to sea-level rise (SLR), climate change, and anthro-
pogenic impact [4,7–10]. Additionally, it is estimated that, by 2100, up to 50% of global
wetland will be lost, depending on the evolution of SLR, human activity, and the avail-
ability of accommodation space facilitating wetland migration [4,10–12]. The reduction
in salt marsh extent limits the ecosystem functions, endangering human communities
living in coastal areas. In the US alone, coastal communities represent ~30% of the total
population [13].

Effective monitoring methods are required to address the loss of these valuable habi-
tats. Monitoring marsh morphology and vegetation can provide insight into the response of
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these ecosystems to environmental and anthropogenic stressors. Ground elevation dictates
the tidal prism [14], and the marsh hydroperiod [15], thus regulating vegetation growth
over the marsh. Vegetation mitigates the impact of meteorological and hydrodynamic
forcing [16], controls organic and inorganic deposition rates in the marsh system [17],
and deflects water fluxes over less vegetated regions, thus modulating marsh platform
flooding [18,19]. Accurate knowledge of these processes is fundamental to maximize the
effectiveness of marshland preservation and management. This is generally achieved
using numerical models [20–22]. Because an accurate description of both ground elevation
and vegetation will improve the models, this will also have beneficial implications on
marsh preservation.

Traditional approaches to determine marsh ground elevation and vegetation charac-
teristics are based on in situ surveys [23–25]. Although these approaches allow collecting
precise data on the marshland, they are intrusive, are limited by domain accessibility, and
require significant effort to collect and process a dataset [26]. Alternative non-intrusive
remote sensing technologies are used to study coastal environments. These methods
mostly use imagery, multispectral, and point clouds datasets, coupled with statistical
analysis, machine learning techniques, and custom methods to evaluate ground elevation,
as well as vegetation characteristics in various environments. In the past, several studies
had been based on satellite images to estimate morphology and vegetation properties of
salt marshes [6,26,27]. However, due to the limited spatial resolution of the datasets, and
the high dependency on atmospheric conditions of these technologies [26,28–31], they had
been progressively replaced by or coupled with manned or Unmanned Aerial Vehicles
(UAVs) [19,31–33]. In particular, due to their rapid technological advancement, UAVs are
becoming standard technology for high-resolution coastal [34–36] and agricultural [37,38]
survey and mapping.

Light Detection and Ranging (LiDAR) is a remote sensing technology based on lasers.
It is usually associated with aircraft or UAVs to monitor land surfaces. Aircraft are generally
preferred to UAVs to survey larger areas rapidly, at the expense of the spatial resolution of
the collected datasets [39]. Airborne LiDARs have been widely used to survey coastal wet-
lands [31,40], and salt meadows [32], as well as for forestry applications [41–45]. Airborne
LiDAR had also been coupled with other remote sensing datasets, which lack tridimen-
sionality and adequate spatial resolution to supply this information. Satellite data were
associated with LiDAR to map wetland flooding [46], vernal pools [47], and coastal wet-
lands landscape and vegetation characteristics [48–52]. Optical images were also coupled
with LiDAR point clouds for vegetation classification purposes [53–55].

In the last decade, airborne LiDARs have valuably increased their spatial resolution,
reaching point densities of 50–120 points m−2 [42,56]. However, their resolution is still not
comparable with UAV-based LiDAR, which can reach point densities >500 points m−2 [57].
A possible solution to increase airborne LiDAR’s resolution is to scan the same area multiple
times, which inevitably increases the monetary and analysis cost of the survey. Another
solution is to reduce the flight altitude of the aircraft, which reduces the laser beam footprint
and consequently increases the time and the cost of the survey. Especially in vegetated
coastal areas, where a large density of points is necessary to resolve large gradients in
bed elevation and vegetation characteristics and to minimize the screening effect of the
dense vegetation on the creek levees [19,23], UAVs are generally preferred to aircraft. This
depends on the elevated density of the collected point clouds, but also on the capability
UAVs have to follow the path of meandering rivers and tidal creeks, and on the low cost
and flexibility of the surveys [23,58].

An alternative technique used to survey point clouds is based on Terrestrial Laser
Scanners (TLS). TLSs gave good results in estimating vegetation in different habitats [59,60].
However, they suffer the following limitations. To survey large areas, many TLSs are
required. This is because the point cloud should be surveyed at the same time, or in a short
time frame. The use of a large number of TLSs implies: (i) a higher cost of the survey; (ii) a
higher cost, in terms of time and people needed to dispose and remove the TLSs in the
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field; (iii) a higher impact of the survey on the surveyed area, due to the movement of
surveyor and tools in the field. In addition, previous studies underlined that TLSs suffer
strong limitations in areas where dense ground vegetation predominates [59,60], such as
salt marshes. Dense vegetation layers reduce the penetration of laser beams, especially
in the areas scanned with a high incident angle. Indeed, laser penetration is high only in
the limited area close to the scanner, where laser beams are perpendicular to the ground.
The effect of the incident angle is low using UAVs, which allow to survey the area from a
nadir perspective.

A low-cost alternative to LiDAR to acquire point clouds is Structure from Motion
(SfM) photogrammetry [61,62] (or Digital Aerial Photogrammetry, DAP). This technique
reconstructs 3D point clouds by overlapping multiple 2D images and using the distances
calculated between the image key points [63]. DAP applications are various and include
agricultural mapping [64], 3D modeling of complex structures [65], and the identification
of vegetation structures [66,67]. DAP has shorter and less intricate flight paths than LiDAR.
Moreover, it has lower errors on vertical elements and the adjacent area [68]. In addition,
DAP is scale-invariant [69], and the camera resolution is the only limit of the output
images and point clouds [63]. However, compared with LiDAR, DAP shows: (i) lower
performances to estimate forest variables [70,71] due to low accuracy, even if in some
cases, the two data sources demonstrated to be interchangeable or complementary [72,73];
(ii) higher errors due to glares and shadows [74]; (iii) possible surface discontinuities in
the collected datasets [75]; (iv) higher time-consuming data processes [68,76–78], even if,
due to the substantial research conducted on remote sensing image mosaicking, and the
presence of numerous commercial software [78], this limitation has been partially reduced;
(v) the lower penetration of dense vegetation layers in comparison with LiDAR [75,79].

Many studies compared the performances SfM and LiDAR point clouds have when
they are used to describe topographic and vegetation features on urban environments [68],
forests, [71,72,80–82], and post-mining applications [73,75]. For example, recent studies
analyzed the possibility to extract accurate Digital Elevation Models (DEMs) and Digital
Terrain Models (DTMs) from UAV-DAP point clouds under open forest canopies, by using
different approaches, based on classification, and ground-points filtering methods [83–87].
Accuracies of the DEMs and DTMs derived from DAP-UAV are generally evaluated against
ground filtered Aerial LiDAR datasets, by using statistical predictors, such as root-mean-
square error (RMSE). For example, Graham et al. [85] found RMSE lower than 1.50 m
for the DTM defined in a conifer forest. Jensen et al. [87] found that SfM overestimates
lidar-modeled ground height with a mean difference of 0.19 m. In addition, Guerra-
Hernández et al. [86], found an RMSE of 0.19 m estimating tree height in a Pinus pinea
plantation using an SfM technique. An analysis between RMSE, ground slope, and canopy
cover distributions, underlines their strong relationship [83,85]. In addition, a few studies
estimated ground elevation and vegetation characteristics in a salt marsh using either
LiDAR- or DAP-UAV point clouds [23,49,79,88].

However, a study comparing the results obtained using LiDAR- and DAP-UAV point
clouds, in a cordgrass-populated salt marsh, does not exist. For this reason, our work
consists of the first comparison between LiDAR and Photogrammetry in a salt marsh
environment. With our work, we aim to fill this gap, by comparing the spatial distribution
of ground elevation and vegetation characteristics (height and density) obtained from
a LiDAR- and a DAP-UAV dataset we collected on a Spartina alterniflora vegetated salt
marsh system in Little Sapelo Island, Georgia, USA, (Figure 1). The LiDAR and DAP
point clouds are georeferenced using a Total station and 27 Ground Control Points (GCPs),
respectively. The ground elevation and vegetation characteristics (height and density)
distributions are obtained by applying the machine learning algorithm (Genetic Algorithm,
GA) proposed in Pinton et al. (2020) [23] to both point clouds. The algorithm is previously
trained, validated, and tested for both point clouds, through a rigorous leave-one-out cross-
validation (LOOCV) procedure, by using ground elevation data, which were collected
using an RTK-GPS, vegetation density, and vegetation height data, which were manually
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collected in the marsh. LiDAR- and DAP-UAV distributions are then compared, and the
RMSE of the differences obtained for each variable is calculated.

2. Data and Methods
2.1. Study Site

Our study site is located at the south-eastern boundary of Little Sapelo Island, Georgia,
USA (Figure 1b), and is located in the Georgia Coastal Ecosystem Long Term Ecological
Research (GCELTER) (Figure 1a). The site is a 0.26 km2 portion of a vegetated marsh
system, which is flanked by the Duplin River at the eastern side and crossed by eleven
creeks. Various cordgrass species populate the environment, but the predominant one is
Spartina alterniflora [89,90]. It occupies the creek banks, the low marsh, and the marsh edge
with heights up to 2 m [91], and the high marsh with heights up to 0.60 m. The local tide
gauge (NOAA, n. #8675761) indicates that the tide has a semi-diurnal cycle and can reach a
water level of ~1.6 m MSL during spring tides, submerging the marsh with a water layer of
~1 m.

Figure 1. (a) The boundaries of the Georgia Coastal Ecosystem Long Term Ecological Research
(GCELTER, in green). (b) Our study area, placed at the south-eastern boundary of Little Sapelo
Island, in Georgia, USA (continuous red lines).

2.2. Field Measurements

Field measurements were performed on the 22 November 2019, at low tide, to limit
the presence of water on the marsh platform and the creeks, and its interference on
the fieldwork.

2.2.1. Ground Control Points

In the study area, we placed twenty-seven Ground Control Points (GCPs). The GCPs
were uniformly distributed to cover the entire salt marsh system. The upper part of the
GCPs was a 0.30 m × 0.30 m target, made of a wooden panel. The panel was painted with
red and black matte paint (Figure 2a), to make it visible in the imagery dataset we collected,
and to avoid possible glares and reflections due to the sun. The wooden plate was set on a
2-m-tall T-post. To avoid being covered by water and tall Spartina alterniflora, each GCP
was placed in the ground for half of the pole’s length. Once we set the GCPs, we collected
the geographic position of their midpoint using a Trimble R6 GNSS GPS-RTK, which has
±2 cm of vertical accuracy, and ±1 cm horizontal accuracy.
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2.2.2. Ground Elevation and Vegetation Survey

We laid out and surveyed sixty-eight 0.40 m × 0.40 m plots (Figure 2b) over the
study area. In each plot, we surveyed the geographic position of the midpoint with the
GPS-RTK system. For each location, the midpoint of the plot (Figure 2b) was identified as
the intersection of the two diagonals, obtained by intersecting a couple of nylon strings.
Once the midpoint of the plot was identified, a 5 cm × 5 cm × 0.2 cm plastic plate was
placed on its position, gently pressed in the soil for its thickness (0.2 cm). The RTK-GPS
measurement was obtained by placing the lower part of the pole on this plate, to avoid
its sink. The average PDOP and HDOP we observed for the survey are equal to 2.54 and
1.45, respectively. The respective standard deviations are equal to 0.254 and 0.093. The
vegetation height and density were manually taken. They correspond to the average height
and the total number of stems in each plot, respectively. The spatial distribution of the plots
was chosen to uniformly cover both the domain area and the range of the vegetation height
and density in the marsh system. We also added nine plots to the dataset. Because these
plots were placed in unvegetated areas located close to the creek heads, we assigned null
vegetation height and density values to them. Those plots were not originally included in
the RTK-GPS survey and have been added a posteriori to increase the size of the dataset.

Figure 2. (a) A ground control point (GCP). (b) The plot we used for the field survey. (c) The UAV
(DJI Matrice 600) we used to collect the LiDAR point cloud.

2.3. Remote Sensing Survey
2.3.1. LiDAR-UAV Point Cloud

A UAV-borne LiDAR was employed to survey the study domain on the 22nd of
November 2019. The survey was performed at low tide, to avoid water on the marsh plat-
form and the creeks. To perform the survey, we employed a custom-built LiDAR system,
based on a Velodyne VLP-16 Puck LiDAR, and mounted on a DJI Matrice 600 airframe
(Figure 2c). The Velodyne sensor we used has a 903 nm wavelength. The scanner has
16 beams, acquires ~600,000 points s−1, and is georeferenced by a GNSS receiver and
a Novatel STIM-300 Intertial Measurement Unit. We post-processed the GNSS data us-
ing a local base station and OPUS (https://www.ngs.noaa.gov/OPUS/ (accessed on 7
November 2021)).

To acquire our data, the flight altitude and line spacing were set to 40 m and 50 m,
respectively. The average density of the collected point cloud is ~500 points m−2. The
dataset was collected in the UTM WGS84 17N geodetic system, considering the WGS84
ellipsoid for the elevation data. To test the LiDAR-UAV point cloud accuracy, we identified
the geographic coordinates (X, Y, and Z) of the GCPs centroids, and we compared them
with the values surveyed in the field using the RTK-GPS (see Section 2.2.1). The mean
absolute horizontal and vertical error corresponds to 0.019 m and 0.050 m, respectively.
The horizontal and vertical RMSE correspond to 0.023 m and 0.062 m, respectively.

Finally, although the short vegetation did not allow the differentiation between dif-
ferent returns of the laser impulse, Pinton et al. (2020) [23] showed that a single return is
sufficient to describe both the ground elevation, vegetation height, and density in a coastal
marsh. The results obtained by D. Wang et al. (2017) [92] in densely vegetated grasslands

https://www.ngs.noaa.gov/OPUS/
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and Nie et al. (2018) [40] in coastal wetlands, using a single return laser impulse, confirm
this assumption.

2.3.2. Imagery Dataset

On the 26th of October 2019, we flew a DJI Phantom 4 Pro UAV on the study domain,
to collect the imagery (RGB) dataset. Images were collected from a nadir perspective, at the
highest resolution (5472 × 3648 pixels), with a 3:2 aspect ratio, by using the 20-megapixel
camera mounted on the UAV gimbal. Images were collected with a lateral and longitudinal
overlap of 80%. We chose a flight altitude of 105 m. Consequently, images have a footprint
of ~175 m × 115 m on the ground, and a pixel spacing of ~3 cm.

We used the collected RGB images as inputs for the Pix4DMapper software (Release
4.4.12), which gave us a point cloud as output. We used the default software settings
to determine the point cloud, which had an average density of ~500 points m−2. This
density is very close to the density of the LiDAR-UAV point cloud (see Section 2.3), and
corresponds, on average, to a GSD of ~4 cm. Pix4DMapper used the coordinates of the
GCPs to georectify the point cloud in their geographic and vertical elevation systems.
The program uses a semi-automated georeferencing approach, which requires manual
identification of the GCPs. We identified each GCP midpoint in different groups of seven
images. To circumvent distortion errors, we avoided images containing the GCPs on their
sides. The calculated point cloud lays on the same reference system as the LiDAR-UAV
point cloud.

To test the DAP-UAV point cloud accuracy, we identified the geographic coordinates
(X, Y, and Z) of the GCPs centroids, and we compared them with the values surveyed in
the field using the RTK-GPS (see Section 2.2.1). The mean absolute horizontal and vertical
error corresponds to 0.032 m and 0.089 m, respectively. The horizontal and vertical RMSE
correspond to 0.050 m and 0.104 m, respectively.

2.3.3. Point Clouds Post-Processing

We used the same procedure to filter both the LiDAR- and DAP-UAV point clouds.
We first applied a filter to remove the points lower than 1.20 m below MSL and higher than
2.50 m above MSL. These points described the Duplin River surface and the freshwater
forest located at the north-western edge of the domain, respectively. We then applied a
second filter to remove the points outside the study domain. We performed the filters using
the CloudCompare software (Release 2.11).

We then divided the LiDAR- and DAP-UAV point clouds into subsets by using a
2737 × 1379 grid, of 0.40 m × 0.40 m cells. Gridlines are oriented northward and eastward,
and each cell is identified by the indices “n” (north) and “e” (east). We defined the subset of
points of the chosen cloud (LiDAR- and DAP-UAV) in the cell (n,e), and the 3× 3 cell stencil
centered in (n,e) as PCn,e, and STn,e, respectively. Here, we use the term "stencil" as it is used
in computational fluid dynamics, i.e., in the sense of a geometric arrangement of nodes (our
grid cell centers) that relate to the node of interest [93,94]. As in Pinton et al. (2020) [23],
we select a 1.20 m × 1.20 m stencil, which was shown to minimize the estimation error in
both flat and non-flat areas.

2.4. Ground Elevation and Vegetation Properties Estimation
2.4.1. Point Cloud Transformation Algorithm

In this study, to perform our analysis, we used the algorithm proposed by Pinton et al.
(2020) [23]. In the following, we recall only some relevant background from our earlier
paper ([23]). The algorithm structure is fully reported in Appendix A.

The algorithm improves the estimate of ground elevation and vegetation characteris-
tics for sloping ground. Standard approaches that employ point clouds use the minimum
elevation of the points over a specific area (or “cell”) to estimate the ground elevation.
This estimate is assigned to the center of the cell. The area has to be small enough so
that the minimum elevation represents the elevation at its center, and large enough to
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increase the chance that at least a point describes the ground. For a non-flat ground, these
approaches can produce a large error, since a point located in a less elevated region is taken
as the minimum and assigned to the center. To avoid this problem, the algorithm uses
the point cloud to estimate a real ground surface approximation and uses this approxima-
tion to transform a sloping-ground case into a flat-ground case. The minimum elevation
(zmin

STn,e
, see Appendix A) was taken on this transformed point cloud, thus reducing the

estimation error.
The algorithm was applied to both the LiDAR- and DAP-UAV point clouds. To

determine the bed elevation, we performed a linear regression (Section 3.1) between zmin
STn,e

and the surveyed ground elevations. The vegetation characteristics (height and density)
were obtained from the machine learning technique described in the next section, which
uses as inputs (i.e., predictors) the statistical quantities we estimated from the transformed
point clouds (see Section 2.5.2) and the imagery dataset (see Section 2.5.3).

2.4.2. Genetic Algorithm

We used a regression model based on a Genetic Algorithm to calculate vegetation char-
acteristics (height and density) at each cell (n,e). The GA simulates a biological evolution
process, where an initial population, constituted of random individuals, evolves over con-
secutive stages until it reaches the optimal composition, which resembles the composition
of the target population [95]. At each generational step, the individuals composing the next
step are chosen by a fitness function, which is calibrated on the target population. In our
study: (i) the individuals were the predictors calculated from the LiDAR-UAV, DAP-UAV,
and RGB datasets (see Table 1), (ii) the population changes based on the fitness function (iii),
which was the linear regression function the algorithm used to fit the input data, and it was
calibrated using as evaluation metric the Root Mean Square Error (RMSE). Finally, (iv) the
target population was the ground elevation and vegetation characteristic data collected at
each plot.

Table 1. List of the model predictors we used to determine vegetation height and density by using the genetic algorithm. By
“Point Clouds” we mean the LiDAR- and the Digital Aerial Photogrammetry (DAP)-UAV point clouds.

Datasets Point Clouds RGB

Model
predictors

Mn,e Number of points
Rmin

n,e , Rmax
n,e ,

Rmean
n,e

Red minimum,
maximum, and mean

intensity values
σn,e

Elevation standard
deviation

Sn,e Elevation skewness Gmin
n,e , Gmax

n,e ,
Gmean

n,e

Green minimum,
maximum, and mean

intensity valuesKn,e Elevation kurtosis

zmax
n,e Maximum elevation Bmin

n,e , Bmax
n,e ,

Bmean
n,e

Blue minimum,
maximum, and mean

intensity valueszmean
n,e Mean elevation

zmode
n,e Mode elevation GRAYmin

n,e , GRAYmax
n,e ,

GRAYmean
n,e

Grayscale minimum,
maximum, and mean

intensity valueszmedian
n,e Median elevation

Genetic algorithms have many advantages over traditional optimization algorithms [96,97].
In particular, the reasons why we preferred a GA to other techniques are: (i) the possibility
to be used even with small datasets; (ii) the possibility to obtain as output a formulation,
which is based on the assigned model predictors and could be directly adopted for classifi-
cation procedures. This could be directly adopted for classification procedures and allows
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an immediate interpretation of the contribution of the model predictors to describe the
considered target population.

Some limitations of GA are: (i) the high computational cost, which is compensated
by its possibility to be parallelized; (ii) the correct choice of appropriate model predictors,
because any inappropriate choice will limit the algorithm converge or it increases the
chance to obtain meaningless results [96]. This limitation was resolved by using the most
informative predictors obtainable from our datasets (Section 2.5.1).

2.5. Leave-One-Out Cross-Validation Procedure

To train and validate the transformation method and the GA, we used to estimate
ground elevation, vegetation height, vegetation density, and we performed a LOOCV.
Thus, we split the dataset in two: the training/validation and the test subsets, respectively.
The training/validation subset contains ~75% of the “TV” data points collected on the
field. With this subset, we trained the algorithms using TV-1 data points, we validate the
algorithms on the remaining data points, and we calculate the training and prediction
errors. We repeated this procedure for all the TV permutations of the training/validation
subset. We then used the average prediction and training errors to verify the performances
of the models at the training and validation steps. Once the algorithms are validated, we
tested them on an independent dataset, constituted of the remaining ~25% of the fieldwork
dataset. Once the algorithms were tested, we finally used the whole dataset to determine
the regression formulas and calculate the ground elevation and vegetation characteristics.

We used the 68 plots where the ground elevation was surveyed using the GPS-RTK
(see Section 2.2.2) to train, validate, and test the algorithm used to calculate the bed
elevation. The data collected in 50 and 18 plots, corresponding to ~75% and ~25% of
the dataset, compose the validation and test subsets, respectively. To train, validate, and
test the algorithm used to calculate the vegetation characteristics, we used the 77-plot
dataset constituted of the 68 plots where the ground elevation was surveyed and the nine
plots at the creek heads, where vegetation height and density are set equal to zero (see
Section 2.2.2). The 68 plots were divided as we did for the ground elevation (50 + 18 plots).
We then randomly split the 9 additional plots, and we assigned 7 (~75%) points to the
training/validation dataset and the remaining 2 (~25%) to the test dataset. By doing that,
the resulting training/validation dataset contains 57 points and the test dataset 20 points.

2.5.1. Model Predictors

The following sections list and describe the twenty predictors (i.e., input data) of the
GA, we identified from the remote sensing datasets. In particular, we calculated eight of
them from the transformed point clouds (see Appendix A, Equation (A6)), and 12 from
the imagery (RGB) dataset. The list of the model predictors, for each dataset, is reported
in Table 1. Notice that the predictors we used in this paper do not differ from the ones
commonly used in the literature for land classification purposes, using LiDAR and imagery
datasets [89,90,92,98]. The main difference is in the higher resolution of these data, and
consequently, the higher amount of information they can provide the GA to describe the
local topography and vegetation characteristics.

The following equation describes the standardization procedure we used for on each
predictor P:

P̂ =
P− P
SDP

, (1)

where P̂, P, and SDP are the standardized value, the mean, and the standard deviation of
the model predictor, respectively.

2.5.2. Model Predictors from the Point Clouds

This section summarizes the model predictors we computed in STn,e, by using the
relative elevations (see Appendix A, Equation (A6)) of the transformed LiDAR- and DAP-
UAV point clouds. For readability, hereinafter, “n,e” replaces STn,e when it is used as a
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subscript. Moreover, we used the index “s” to indicate the generic point of the transformed
point cloud contained in STn,e.

The maximum elevation zmax
n,e reads:

zmax
n,e = max

s∈STn,e

[
zrel

s

]
. (2)

Considering that zmin
n,e is null for the transformed point clouds, ∆zn,e corresponds to zmax

n,e .
The mean elevation value zmean

n,e is calculated as:

zmean
n,e =

∑s∈STn,e

[
zrel

s

]
Mn,e

, (3)

where Mn,e is the number of points of the point cloud in STn,e.
The standard deviation σn,e is expressed as:

σn,e =

√√√√∑s∈STn,e

(
zrel

s − zmean
n,e

)2

Mn,e − 1
. (4)

The skewness Sn,e is calculated as:

Sn,e =

1
Mn,e

∑s∈STn,e

(
zrel

s − zmean
n,e

)3

(
1

Mn,e
∑s∈STn,e

(
zrel

s − zmean
n,e

)2
)3/2 . (5)

The kurtosis Kn,e reads:

Kn,e =

1
Mn,e

∑s∈STn,e

(
zrel

s − zmean
n,e

)4

(
1

Mn,e
∑s∈STn,e

(
zrel

s − zmean
n,e

)2
)2 . (6)

We also calculate the mode zmode
n,e and the median zmedian

n,e for the point cloud in STn,e.
To calculate the mode, we divide the transformed point cloud belonging to STn,e into six
equivalent vertical layers. We then identified the layer containing the maximum number
of points, and we indicated its average elevation as the mode. Finally, we identified the
median as the elevation separating the higher and the lower halves of the point cloud in
each STn,e. The value is unique for odd Mn,e. For even Mn,e instead, we averaged the two
middle elevation values.

The first column of Table 1 contains all these predictors.

2.5.3. Model Predictors from the Imagery (RGB) Dataset

To calculate the RGB predictors, we first divided the orthomosaic we created from
the collected imagery database (see Section 2.3.2) by using the same regular 2737 × 1379
grid of 0.40 m × 0.40 m cells we used to divide the point clouds. For each (n,e) cell, we
identified the R (red), G (green), B (blue), and GRAY (grayscale) intensity value of the pixels
contained in the 3 × 3 stencil (STn,e) centered in (n,e). The predictors are the minimum
(min), maximum (max), and mean of these intensity values.

The second column of Table 1 contains these predictors.
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2.6. Error Analysis

The error of the estimated ground elevation and vegetation characteristics was esti-
mated using the Mean Absolute Error (MAE) and the RMSE. When MAE and RMSE are
close to zero, the model has good estimation skills. Values were calculated as:

MAE =
∑N

i=1
(
yo − ypr

)
N

, (7)

RMSE =

√
∑N

i=1
(
yo − ypr

)2

N
, (8)

where yo are the observed data and ypr are the predicted quantities in the ith sampling
location. N is the dimension of the dataset.

3. Results
3.1. Ground Elevation Estimate

The method proposed by Pinton et al. (2020) [23] was used to calculate ground eleva-
tion from transformed LiDAR- and DAP-UAV point clouds. To evaluate the performance
of the model, we used the LOOCV procedure reported in Section 2.5. To estimate bed
elevation (BLmethod

n,e,cloud), we performed a linear regression between surveyed and computed
ground elevations values. The regression reads:

BLmethod
n,e,cloud = a + b · zmin,method

n,e,cloud , (9)

where zmin,method
n,e,cloud are the bed elevations corresponding to: (method 1) the elevation of

the lowest point of the non-transformed point cloud belonging to STn,e; (method 2) the
elevation of the lowest point of the transformed point clouds belonging to STn,e. The trans-
formation is performed by using the regression plane in Equation (A2) (see Appendix A).
The methods are applied to both LiDAR- and DAP-UAV point clouds. In Equation (9),
“a” and “b” are the linear regression coefficients. We set b = 1 [23], which means that we are
looking for a shift equal to “a” that corrects the bias over the entire marsh, independently
from the ground elevation.

Table 2 shows the values of MAE and RMSE for all the steps of the cross-validation
procedure of the two regression methods applied to both LiDAR- and DAP-UAV point
clouds. The errors show similar trends for the two point clouds. Errors are higher for the
creek samples than for the marsh samples. Errors obtained for the whole dataset are similar
to the ones obtained for the marsh samples. For both the marsh and the entire dataset,
DAP error is mostly ~50–150% larger than LiDAR errors, but in two cases, it reaches ~200%.
For the creek dataset, DAP errors are ~5–110% larger than LiDAR ones. Values of MAE
and RMSE obtained for the test and training/validation phase with the LiDAR database
are similar (difference in the errors smaller than 30%), thus confirming the accuracy of
the survey method. On the contrary, significant differences in the errors for the test and
training/validation phases are seen for the DAP-UAV database (difference ±75%).

The regression methods were then applied to the entire dataset for both the LiDAR-
and DAP-UAV datasets, obtaining the coefficients in Table 3. The coefficient “a” is the
intercept of the linear regression formula and the bias of the regression model. When
the ground elevation is calculated using the original (i.e., non-transformed) point cloud
in STn,e, the coefficient “a” is equal to 1.3 and 5.5 cm for the LiDAR- and DAP-UAV
datasets, respectively (Table 3, first row). When the ground elevation is calculated using
the transformed point cloud, “a” is equal to -1.8 and -0.7 cm for the LiDAR- and DAP-UAV
datasets, respectively (Table 3, second row).
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Table 2. The errors we obtained for the training (Tr), validation (Va), and Test phases of the LOOCV procedure we performed
to validate the linear regression between surveyed and computed ground elevations. Groud elevation is computed from the
LiDAR- (LiD) and the Digital Aerial Photogrammetry (DAP)-UAV point clouds (PoC) in STn,e as: (i) the minimum elevation
of the non-transformed point clouds; (ii) the minimum elevation of the point clouds transformed using a regression plane.
Results are displayed for the regression in Equation (9) using the data collected in the marshes, creeks, and both. The errors
are reported in centimeters.

PoC Method
Metrics

[cm]
Marsh Creeks Marsh + Creeks

Tr Va Test Tr Va Test Tr Va Test

LiD

STn,e
minimum

RMSE 5.6 5.5 7.2 12.6 11.9 13.9 8.3 6.5 7.8

MAE 5.3 5.5 5.2 11.2 11.9 13.9 6.2 6.5 4.7

Transformed
point cloud

RMSE 6.1 5.2 5.8 7.9 7.6 10.3 6.1 5.3 5.9

MAE 5.1 5.2 4.2 7.3 7.6 10.3 5.1 5.3 4.2

DAP

STn,e
minimum

RMSE 12.3 9.6 16.4 15.4 12.7 3.3 12.8 10.0 16.0

MAE 9.4 9.6 11.6 11.6 12.7 3.2 9.6 10.0 10.7

Transformed
point cloud

RMSE 12.6 10.1 17.7 16.6 14.8 5.2 13.3 10.9 17.2

MAE 9.8 10.1 11.6 13.4 14.8 5.2 10.4 10.9 11.3

Table 3. Coefficients of the linear regression we performed between the ground elevation surveyed
on the marsh system, and the one calculated in STn,e by using: (i) the elevation of the lowest point of
the non-transformed point clouds (first row); (ii) the elevation of the lowest point of the point clouds
transformed by using a regression plane (second row). Results are reported for the LiDAR- and the
Digital Aerial Photogrammetry (DAP)-UAV point clouds.

Method
LiDAR-UAV DAP-UAV

a [m] b a [m] b

STn,e minimum 0.013 1 0.055 1
Transformed point cloud −0.018 1 −0.007 1

Figure 3a,b compare the measured ground elevation with the values calculated by
the non-transformed and transformed LiDAR-UAV point clouds, respectively. The values
related to plots surveyed in the marsh platform and on the creeks are reported in blue
and red, respectively. The values of RMSE and MAE obtained for the two methods and
distinguished between the creek, marsh, and creek plus marsh plots, are reported in
the “Test” columns of Table 2, for the dataset indicated as LiD (LiDAR). From Figure 3a,b,
a significant underestimation of ground elevation is not observed for the LiDAR-UAV point
cloud due to the higher penetration into the vegetation layer and the precise georeferencing
of the point cloud due to the employed collection procedure (Section 2.3). For the non-
transformed point cloud, a larger underestimation is obtained on the creek banks (red points
in Figure 3a). The transformation method (Figure 3b) produces a small overestimation of
the ground elevation (second row in Table 3). Figure 3b shows that the transformation
strongly reduces the errors for the surveys next to the creeks (red dots). Figure 4a confirms,
for the LiDAR-UAV dataset, the dependency of the ground estimation error on the local
ground slope, whose value is higher for the plots surveyed close to the creeks (red dots)
than in the marsh platform (blue dots). Figure 4b confirms that our model reduces the
effect of ground slope on the ground elevation estimation error for the LiDAR-UAV dataset,
and makes them comparable to the ones observed in the marsh platform.
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Figure 3. Scatter plots comparing the surveyed ground elevations and the bed elevations calculated
as: (a) The elevation of the lowest point of the non-transformed LiDAR-UAV point cloud. (b) The
elevation of the lowest point of the LiDAR-UAV point cloud we transformed by using the transforma-
tion method of Pinton et al. (2020) [23]. (c) The elevation of the lowest point of the non-transformed
Digital Aerial Photogrammetry (DAP)-UAV point cloud. (d) The elevation of the lowest point of
the DAP-UAV point cloud we transformed by using the transformation method of Pinton et al.
(2020) [23]. Blue dots refer to the points surveyed on the marsh platform. Red and green dots refer to
the points surveyed on the creek edges.

Figure 4. Comparison between the bed elevation errors and the ground slope calculated at surveyed
locations close to the creeks (red dots) and at the marsh platform (blue dots) by using (a) the non-
transformed LiDAR-UAV point cloud and (b) the LiDAR-UAV point cloud we transformed by using
the transformation method of Pinton et al. (2020).
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Figure 3c compares the measured ground elevation with the values calculated from
the non-transformed DAP-UAV point cloud. The values of RMSE and MAE obtained for
this method and distinguished between the creek, marsh, and creek plus marsh plots, are
reported in the “Test” columns of Table 2, in the first row related to the DAP-UAV dataset.
The comparison in Figure 3c shows a marked misestimation of the ground elevation
(>±10 cm) in many of the surveyed points, and a higher tendency of ground level to be
underestimated. The strongest underestimation is obtained for the points located on the
creek banks (red points in Figure 3c). This happens because, for a 1.20 m × 1.20 m stencil
located on the creek bank, the minimum elevation of the point cloud can be given by points
on the creek bed, which is ~0.4-0.5 m below the levee elevation. When the ground slope
is used to transform the DAP-UAV point cloud (Figure 3d), the error for the creek points
is slightly reduced or even amplified in some cases. This is also observed in the values of
RMSE and MAE obtained for this method (fourth row) in the creek, marsh, and creek plus
marsh plots, as indicated in the “Test” columns of Table 2. These variations happen because
a non-accurate estimate of the ground elevation in the nine cells’ center of the stencil (see
Appendix A, green dots in Figure 3b) implies a non-accurate estimate of the ground slope
through Equation (A2) (see Appendix A). We observed that, for the points located on the
creek banks, the upper part of the vegetation is correctly described by the point cloud. We
obtained this point by applying the method proposed by Pinton et al. (2020) [23] on the
local maxima instead of the minima. We then calculated the ground elevation for each plot
by subtracting the maximum vegetation height we manually collected in the field from the
elevation of the local maxima we obtained from the LiDAR-UAV point cloud. The results,
reported in Figure 3d using green dots, underline a slight improvement, compared to the
standard method (red dots). Indeed, in the figure, the MAE observed for the point on the
creek banks decreased from 33.4 to 16.4 cm. Finally, for points surveyed on the marsh
platform (blue points in Figure 3d), the error is generally low. This happens because, in
this area, the low vegetation density and height facilitate the identification of points closer
to the marsh ground. Moreover, the low slope of the marsh platform reduces the impact of
the point cloud transformation on the error, which indeed shows a negligible difference
compared to the one obtained when the transformation is not performed.

For a comparative purpose, the distribution of the ground elevation was estimated by
using both the transformed LiDAR- and DAP-UAV point clouds.

3.2. Vegetation Height and Density Estimates

In this section, we present the GA results we obtained by using the predictors derived
from the transformed LiDAR- and DAP-UAV point clouds and the RGB images, to estimate
the vegetation height and density. The evaluation metrics, corresponding to RMSE and
MAE, are reported in Table 4 for all the steps of the validation procedure (train, validation,
and test) and all the considered datasets (LiDAR-UAV, DAP-UAV, LiDAR-UAV plus RGB,
DAP-UAV plus RGB). Table 4 contains the results for both vegetation height and density.
The results of the LiDAR-UAV-based datasets are taken from Pinton et al. (2020) and are
reported for a comparative purpose.

For the vegetation height, the metrics have similar values in all the phases of the
validation procedure. Here, we comment only on the values obtained in the test phase of
the LOOCV. The first row of Table 4 shows that the GA has good predictive skills when
it uses only LiDAR predictors to estimate vegetation height. This is due to the higher
penetration of LiDAR than DAP in vegetation, which allows the collection of a denser and
more accurate point cloud in the vegetation layer. In particular, we obtained an MAE and
RMSE equal to 12.6 m and 17.5 cm, respectively. The third row of Table 4 shows that the
addition of RGB to LiDAR-UAV-derived predictors slightly reduces the errors obtained
using only the LiDAR-UAV predictors. Thus, MAE and RMSE decrease to 10.0 cm and
14.0 cm, respectively. Extremely poor predictive capabilities are obtained by using the
DAP-UAV point cloud (Table 4, second row) to estimate vegetation height. The resulting
MAE and RMSE are equal to 31.1 cm and 38.1 cm, respectively. Finally, the fourth row of
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Table 4 shows that the combination of RGB and DAP-UAV-derived predictors gives MAE
and RMSE equal to 21.7 cm and 25.8 cm, respectively, which are ~10 cm lower than those
obtained for the DAP-UAV dataset.

We estimate vegetation density using the additional predictor Bn,e (as in Pinton et al.,
2020 [23]), which is a proxy for the biomass, and is defined as:

Bn,e = ∆zn,e·VD
n,esurveyed , (10)

where VD
n,esurveyed is the vegetation density measured on the marsh.

There is a good agreement between the evaluation metrics of the test and validation
stages for the vegetation density. As for the vegetation height, we comment only on the
results obtained for the test phase of the LOOCV. The first and third rows of Table 4 show
that the MAE and RMSE obtained from the LiDAR-UAV and the LiDAR-UAV plus RGB
datasets predictors, are the same. Their value is equal to 6.9 stems m−2 and 9.4 stems m−2,
respectively. Because the surveyed range for vegetation density is ~200 stems m−2, the
error is ~5%. We consider this a good result. In addition, the error for the DAP-UAV and
DAP-UAV plus RGB datasets show similar results (Table 4, second and fourth rows), but
higher than the ones observed for the LiDAR-UAV datasets. In particular, the RMSE is
equal to 16.6 and 18.7 stems m−2, and the MAE is equal to 12.7 and 15.2 stems m−2.

Table 4. Evaluation metrics (reported in centimeters for the vegetation height, and in stems m−2 for the vegetation density)
we obtained for the estimated vegetation height. The metrics are reported for all the steps of the validation procedure
applied to the genetic algorithm and are rounded at the first decimal unit. The errors are reported for the LiDAR-UAV,
Digital Aerial Photogrammetry (DAP)-UAV, LiDAR-UAV plus RGB, and DAP-UAV plus RGB predictors. The list of the
predictors obtained from each dataset is reported in Table 1.

Input Dataset Steps
Vegetation Height Vegetation Density

RMSE
[cm]

MAE
[cm]

RMSE
[stems m−2]

MAE
[stems m−2]

LiDAR-UAV

Training 17.6 13.7 14.4 11.9

Validation 20.3 15.8 15.0 12.5

Test 17.5 12.6 9.4 6.9

DAP-UAV

Training 36.8 28.4 23.1 17.7

Validation 41.4 31.9 26.7 20.1

Test 38.1 31.1 16.6 12.7

LiDAR-UAV
+

RGB

Training 17.1 13.4 14.4 12.5

Validation 19.9 15.3 16.2 13.1

Test 14.0 10.0 9.4 6.9

DAP-UAV
+

RGB

Training 25.9 21.2 23.4 18.0

Validation 35.5 27.5 25.6 19.6

Test 25.8 21.7 18.7 15.2

Finally, once the model was validated and tested, we used the entire database (77 samples)
and the predictors obtained from LiDAR- and DAP-UAV point clouds, to determine the
formulations describing the vegetation height and the vegetation density over the studied
salt marsh. For the LiDAR-UAV dataset, the relationships are the following ones, which
are also reported in Pinton et al. (2020) [23]:

̂VH
n,e,LiDAR = 0.92 ̂σn,e,LiDAR , (11)
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̂Bn,e,LiDAR = 0.39
(

̂σn,e,LiDAR + ̂zmedian
n,e,LiDAR

)
. (12)

For the DAP-UAV dataset we obtained the following relationship:

̂Bn,e,LiDAR = 0.39
(

̂σn,e,LiDAR + ̂zmedian
n,e,LiDAR

)
. (13)

̂Bn,e,LiDAR = 0.39
(

̂σn,e,LiDAR + ̂zmedian
n,e,LiDAR

)
. (14)

The relationships underline the importance of the ˆσn,e (i.e., the standard deviation) in
describing the vegetation properties on a densely vegetated salt marsh. Moreover, they
underline the importance the RGB parameters assume when coupled with a DAP-UAV
point cloud to estimate the vegetation properties.

3.3. Ground Elevation and Vegetation Maps

Finally, we determined the spatial distribution (maps/DEMs) of ground elevation and
vegetation characteristics (height and density) by applying Equations (9), and (11)–(14) to
the cells of the study area. Figure 5 shows the maps obtained from the LiDAR (first row)
and the DAP-UAV (second row) point clouds.

Figure 5. Cont.
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Figure 5. Maps of: (a) LiDAR-UAV-based ground elevation. (b) LiDAR-UAV-based vegetation height.
(c) LiDAR-based vegetation density. (d) Digital Aerial Photogrammetry (DAP)-UAV-based ground
elevation. (e) DAP-UAV-based vegetation height. (f) DAP-UAV-based vegetation density. The green
and blue circles in (d) indicate the areas where the imagery dataset suffers georeferentiation errors,
due to the limited presence of GCPs. The background is the USGS national map.

4. Discussion
4.1. Ground Elevation Estimate

This study evaluates the skills of two types of drone-based point clouds, derived with
LiDAR and DAP-UAV techniques, in estimating ground elevation. The point clouds are
transformed using the regression plane method proposed in Pinton et al. (2020) [23]. For
a comparative purpose, the ground elevation is computed on both the transformed and
non-transformed point clouds.

The results of the linear regression (9) applied to the LiDAR-UAV and DAP-UAV
datasets (Table 3 and Figure 3) underline that, when the transformation method is applied,
the ground elevation estimates change from underestimated to slightly overestimated,
independently on the collection method of the point cloud. The overestimation is due
to the dense vegetation populating the area. For DAP-UAV, this vegetation limits the
identification of the same ground location in consecutive high-resolution images, restricting
the construction of the point cloud on the upper part of the vegetation layer (Figure 6a).
However, in some of the surveyed plots, we observed a relative underestimation of the
ground elevation obtained from the point cloud (Figure 6b; Figure 7g,h). This could be
related to: (i) possible distortions of the images, due to significant movements of the
UAV, caused by sudden wind gusts; (ii) imprecise identification of the GCPs by the Pix4D
software, caused by glares or shadows on the images; (iii) insufficient number of GCPs at
the boundary of the study domain. The results reported in Figure 3c,d show that many
points, placed between 0.60 and 0.80 m, present a very good agreement between surveyed
and calculated ground elevation. These points generally represent low-vegetated areas
on the marsh platform, where the ground, and consequently its elevation, could be easily
identified in the collected images. Finally, Figure 6c shows that the LiDAR-UAV point cloud
accurately captures the real ground elevation, as well as the mean and maximum vegetation
height (see Sections 3.1 and 3.2 for more details), thus facilitating their identification.
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Figure 6. Visual comparison between the vertical distribution of a portion of the Digital Aerial
Photogrammetry (DAP)-UAV (a,b) and the LiDAR-UAV (c) point clouds. (b) and (c) refer to the same
survey point located on the marsh platform. The red dot represents the surveyed GPS-RTK ground
elevation. The green and blue dots represent the maximum and mean vegetation height surveyed in
the considered location.

The value of the evaluation metrics in Table 2 shows that: (i) LiDAR-UAV point
clouds have higher predictive skills than the DAP-UAV dataset in determining the ground
elevation. This is true for both the original (non-transformed) point cloud and the point
cloud transformed by using the regression plane method. (ii) For the LiDAR-UAV dataset,
when using the transformed point cloud errors reduce over the entire domain, particularly
for the creek samples, owing to the larger slopes. (iii) For the DAP-UAV point cloud, the
errors are on average unchanged when the point cloud is transformed, thus indicating that
the method does not improve or reduce the estimates obtained from this point cloud.

In conclusion, the results underline the superiority of LiDAR-UAV over DAP-UAV in
computing the bed elevation on a vegetated salt marsh.

4.2. Vegetation Height and Density Estimate

Equations (11)–(14) summarize the results obtained by the genetic algorithm.
Equations (11), (12) and (14) underline the importance of σn,e, that represents the verti-
cal spreading of the local point cloud, for the description of the vegetation characteristics.
To our knowledge, this is the first time σn,e was used to estimate vegetation height. In
previous studies, vegetation height was preferentially estimated using the maximum
(zmax

n,e ) [53,55,99–102] or mean (zmean
n,e ) [92] point cloud height, as we did in Equation (13).

The reason is the lower resolution of their point clouds, in comparison with the one we
used in this study, which makes it difficult to describe the local standard deviation of the
point’s elevation.

The formulation we obtain to calculate the vegetation height from the DAP-UAV point
cloud (Equation (13)) differs from the one obtained by Pinton et al. (2020) [23] using the
LiDAR-UAV dataset (Equation (11)). According to Equation (13), tall vegetation is observed
for high values of the mean elevation of the transformed point cloud (zmean

n,e ). This is because
the mean elevation, calculated with respect to the local minimum, is approximately half of
the vegetation height. Equation (13) also indicates that tall vegetation is associated with low
values of the local minimum green index value (Gmin

n,e ). This is appropriate considering that
low values of the Green-band indexes refer to darker pixels, which are usually associated
with tall vegetation. The presence of the predictor Gmin

n,e in the equation suggests the
inability of the DAP-UAV dataset to correctly predict the vegetation height if not coupled
with an auxiliary dataset.

To estimate the vegetation density, the GA gives partially different equations for the
LiDAR- and DAP-UAV datasets (Equations (12) and (14), respectively). Both equations
depend on the same predictor σn,e, with slightly different coefficients. The variance has
a lower importance for the DAP-UAV dataset. The coefficient reduces from 0.39 to 0.174.
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According to Equation (14), vegetation density increases with the skewness (Sn,e) of the
DAP-UAV point cloud distribution. This is likely due to the lower penetration of DAP-
UAV with higher densities. The skewness, in fact, reduces in value in tall vegetation areas,
because most of the points are obtained on the upper part of the vegetation layer. In
Equation (12), the predictor zmedian

n,e is preferred to Sn,e. As for Sn,e, the median elevation,
calculated with respect to the ground, reduces for low density vegetation, because most of
the points detected by the laser scanner hit the marsh bed. The importance of this second
parameter is higher for the DAP-UAV dataset. The coefficient increases from 0.39 to 0.784.

With this study, we examine the possible advantage of coupling UAV-based point
clouds and RGB datasets to compute vegetation height and density. Usually, point clouds
are coupled with imagery datasets, such as RGB data, to perform land cover analysis
and classification, and for vegetation mapping [53–55]. This coupling is in some cases
necessary for airborne [53,55,98,103] and UAV [104] point clouds to improve the estimates
of vegetation characteristics, due to the low classification skills related to the low point-
cloud resolution. Moffett and Gorelick (2013) [54] investigated the effect of coupling
airborne LiDAR point clouds to RGB datasets for vegetation classification, discouraging
the use of LiDAR datasets alone. In particular, they obtained the smallest estimation error
by using only imagery datasets, due to the LiDAR resolution being smaller (~1 m) than the
RGB resolution (0.30 m). This suggests that adding a point-cloud dataset is beneficial for
classification purposes only if its resolution is similar or higher than the resolution of the
initial dataset. Our results confirm this outcome. The estimates computed using LiDAR-
and LiDAR-UAV plus RGB predictors have similar accuracy, due to the high density of
the LiDAR-UAV dataset. On the contrary, the classification performances of the DAP-UAV
predictors increase when coupled with the RGB predictors, because of the low density of
the point cloud (Figure 6).

In conclusion, we showed the superiority of LiDAR-UAV over DAP-UAV in comput-
ing vegetation characteristics on a salt marsh. Moreover, we showed that when RGB data
are coupled with LiDAR-UAV data, RGB does not improve the classification skills of the
point cloud alone in computing vegetation height and density on a salt marsh. Therefore,
we suggest to use LiDAR datasets alone for wetland mapping purposes and to avoid the
additional effort of collecting and processing RGB data.

4.3. High-Resolution Maps: LiDAR-UAV vs. DAP-UAV

We can visually compare the spatial distribution of ground elevation, vegetation
height, and vegetation density in the salt marsh, obtained from the LiDAR (first row)
and DAP-UAV (second row) datasets by using the high-resolution maps in Figure 5.
Results show notable differences between the distributions. From Figure 7 instead, we can
visualize the estimation error for the ground elevation (Figure 7a,b,g,h), vegetation height
(Figure 7c,d,i,l), and vegetation density (Figure 7e,f,m,n), calculated on the plots surveyed
on the marsh platform (circles) and the tidal creeks (squares) by using the LiDAR- (first
row) and the DAP-UAV (second row) point clouds. Figure 8 shows the spatial distribution
(first row), and the frequency distributions (second row) of the ground elevation, vegetation
height, and vegetation density differences between the DAP- and LiDAR-UAV-based maps.

From the spatial distribution of ground elevation computed with both the LiDAR and
DAP-UAV point clouds (Figure 5a,d), we observe that high-elevation areas are located
at the marsh edge and the creek levees. In addition, from the LiDAR-UAV-based map
(Figure 5a), we observed that the elevation progressively reduces in the marsh platform and
reaches minimum values at the south-western side of the creeks. This suggests a preferen-
tial sediment deposition, due to tidal fluxes in which the cross-creek component goes from
north-east to south-west [19]. The difference between the two sides of the creeks is less
marked in the DAP-UAV-based map (Figure 5d), which shows lower elevations in the south-
ern side of the channels (~0.50–0.80 m MSL), in comparison with the LiDAR (~0.70–1.00 m
MSL), and similar values on the northern side. This is due to the higher underestimation
errors observed in the southern side of the creeks for the DAP-UAV dataset (−0.05–0.80 m,
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Figure 7a), in comparison with LiDAR-UAV, which instead shows low overestimation
errors (−0.05–0.10 m, Figure 7g). These differences are more marked for the creeks placed
in the southern portion of the study domain. In addition, the DAP-UAV map shows higher
ground elevations on the creek levees and the marsh edge (~1.00–1.50 m MSL), than the
LiDAR-UAV map (~0.90–1.05 m MSL). This is due to the higher overestimation observed
in most of the plots placed on the creeks for the DAP dataset (0.00–1.50 m), in comparison
with the LiDAR-UAV one (0.15–0.30 m). Finally, Figure 5a,d show comparable results on
the marsh platform, as confirmed by the comparable errors reported in Figure 7a,g for
these areas. However, the spatial distribution obtained from the LiDAR is smoother, and
thus better represents the real shape of the marsh platform. Moreover, the DAP-UAV point
cloud gives a rougher ground shape in the areas where the vegetation changes rapidly
(i.e., between high and medium vegetation, and close to the creeks). Here, the calculated
ground elevation changes suddenly (~1.05–1.50 m MSL to ~0.50–0.70 m MSL), due to the
low penetration of the DAP-UAV in the vegetation (see Figure 6 and Section 3.1), thus
creating a step. This step is not visible in the LiDAR-UAV-based results due to the higher
penetration of this survey technique in the vegetation layer. The results in Figure 8a confirm
that DAP gives high ground levels on the creek levees and the marsh edge, due to the
low penetration of the DAP-UAV point cloud in the dense vegetation layer covering these
two areas. The high values observed at the edge may be due to an additional effect of the
local slope.

Figure 7. Spatial distribution of the estimation error for: (a,b,g,h) ground elevation (in meters above
the MSL), (c,d,i,l) vegetation height (in meters), and (e,f,m,n) vegetation density (in stems m−2),
calculated on the plots surveyed on the marsh platform (circles) and the tidal creeks (squares) by
using the LiDAR- (first row) and the Digital Aerial Photogrammetry (DAP)-UAV (second row) point
clouds. Blue- and red-scale markers indicate underestimation and overestimation of the considered
variable, respectively, in comparison with the surveyed value. The purple-bounded dots indicate the
plots placed in the unvegetated creek heads (see Section 2.2.2). The green and teal boundary recall
the vegetated salt marsh and the main channel adjacent to the study area.
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Figure 8. Maps (first row), and distribution (second row) of: (a–d) Ground elevation differences
between the DAP- and LiDAR-UAV DEMs. (b–e) Vegetation height differences between the DAP-
and LiDAR-UAV DEMs. (c–f) Vegetation density differences between the DAP- and LiDAR-UAV
DEMs. The background of the images in the first rows is the USGS national map. The vertical
red-dashed lines are the mean value of the distributions.

Considering these results, we can assume that the differences between the two datasets
increase with the vegetation height, because of the different penetration skills of the two
datasets in the vegetation layer. Thus, the ground elevation obtained from the DAP- and
LiDAR-UAV has similar values in most of the low-vegetated marsh. Figure 8d confirms
this result, indicating that in ~50% of the marsh, the ground elevation difference is between
±10 cm.

In addition, DAP-UAV provides smaller values of marsh elevation than LiDAR-UAV
on the south-eastern (blue circle in Figure 5d) and the northern edge of the marsh (green
circle in Figure 5d). These erroneous results are probably due to georeferentiation errors.
The images collected in these areas are located at the boundary of the domain. The number
of GCPs visible in these images is limited due to the presence of the Duplin River (south)
and the freshwater forest (north). On the contrary, the LiDAR-UAV does not rely on GCP
for georeferencing the cloud, but on the Inertial Measurement Unit and the GNSS receiver,
both mounted on the airframe, as well as on the local base station and the service OPUS,
used to correct the data from the GNSS (Section 2.3). This system ensures a precise and
homogeneous georectification of the LiDAR-UAV dataset in the surveyed domain. The
results in Figure 8a indicates that in the northern and southern boundaries of the marsh,
the DAP-UAV point cloud estimates lower ground elevation than the LiDAR-UAV point
cloud. The same is observed at the western boundary of the study area. This is due to the
small number of GCPs in that area, and the possible interference of the local freshwater
forest. In addition, we observed that the distribution in Figure 8d is slightly skewed toward
negative values (skewness = 0.208), and has a mean value of −0.018 m.
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From Figure 5b, we observed that the Spartina alterniflora distribution obtained from
the LiDAR-UAV point cloud is consistent with the distribution usually observed in salt
marshes [89,90,105,106]. Tall Spartina alterniflora preferentially occupies the creeks, the
marsh edge, and their adjacent areas, where the bed elevation is higher, the hydroperiod
increases, and the salinity impact is lower. The vegetation height on the levees ranges
between 1.00 and 1.80 m, and progressively decreases away from the creek, reaching
~0.20 m on the marsh platform, where the hydroperiod is lower and salinity is higher [89].
While the same distribution is obtained for the DAP-UAV point cloud, the values are gen-
erally higher (Figure 5e). In particular, vegetation height is unlikely close to ~0.60–0.80 m
almost everywhere in the marsh platform, and ~1.50–2.00 m on a large area adjacent to
the creek levees and the marsh edge. This is because, while the DAP-UAV dataset largely
overestimates vegetation height in the marsh platform, the LiDAR-UAV dataset slightly un-
derestimates it, as reported in Figure 7c,i. For the LiDAR-UAV dataset, high overestimation
is generally observed at the non-vegetated creek heads (purple-bounded dots in Figure 7).
Here, the model predicts a vegetation height of ~0.15–0.45 m. This is probably due to
the proximity of high-vegetated areas, whose point cloud is partially used to compute
the vegetation height, and to the similarity of these areas with the low-vegetated marsh.
In addition, the results reported in Figure 7d,l show that the estimation errors, both positive
and negative, calculated on the plots on the creeks, are higher for the DAP-UAV than for
the LiDAR-UAV dataset. Finally, notice that both LiDAR-UAV and DAP-UAV distributions
correctly show higher values of vegetation height over the mussel mounds, in comparison
with the adjacent area.

The results in Figure 8b underline that, compared to LiDAR, DAP preferentially
estimates higher vegetation height in the marsh system. This happens in ~85% of the
marsh system, as indicated in Figure 8e. High positive differences, which can reach 2 m,
are observed close to the creeks and the marsh edge. Low negative differences are observed
in the low-vegetated marsh platform, and high negative differences are observed at the
unvegetated creek heads. The distribution in Figure 8e is asymmetrical and skewed toward
positive values (skewness = −0.847), and has a mean value of 0.215 m.

Using a LiDAR point cloud (Figure 5c), we observed that vegetation density is higher
where vegetation is not tall. Conversely, low vegetation densities were calculated in
conjunction with tall vegetation, on the creek levees, the creek heads, and on the marsh
edge. The results reported in Figure 7e,m indicate that the DAP-UAV overestimates the
vegetation density in the marsh platform (Figure 7m) more and more frequently than
LiDAR-UAV does (Figure 7e). The results reported in Figure 7f,n indicate that while DAP-
UAV underestimates vegetation density at the creeks (−5–10 stems m−2), LiDAR slightly
overestimates it (0–5 stems m−2). The overestimation observed for the DAP-UAV dataset
at the marsh platform depends on the low value of ∆zn,e estimated by the point cloud
in this area, which increases the estimate of the vegetation density from Equation (10).
Conversely, the underestimation with DAP-UAV dataset on the creeks, and in the adjacent
area, depends on the high value of ∆zn,e estimated there, which reduces the value of the
vegetation density obtained from Equation (10). In addition, both datasets overestimate
the density at the creek head (purple-bounded dots in Figure 7), because of the similarity
of these areas with the low-vegetated marsh (0–5 stems m−2).

The results reported in Figure 8c underline that, compared to LiDAR, DAP preferen-
tially estimates lower vegetation density in the marsh system. This happens in ~85% of
the marsh system, as indicated in Figure 8f. Negative differences are generally observed
close to the creeks and the marsh edge, where Spartina alterniflora is tall or medium, and
positive differences are observed especially at the creek heads. The distribution observed
in Figure 8f is asymmetrical and skewed toward negative values (skewness = 0.587) and
has a mean value of −73.00 stems m−2.
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4.4. Point Cloud Accuracy in the Literature

As indicated in the method section, we calculated the RMSE georeferencing values
of our 27 GCPs, for both the LiDAR- and the DAP-UAV point clouds. The horizontal
and vertical RMSE of the GPS measurements correspond to 0.023 and 0.062 m for the
LiDAR-UAV point cloud, and 0.050 and 0.104 m for the DAP-UAV point cloud. For the
DAP-UAV dataset, the errors are comparable with the ones observed in other studies, using
similar UAVs, whose values are reported in Table 5.

Table 5. Literature source, general information, and statistics of various studies using DAP-UAV datasets.

Source N. GCPs Vegetation RMSEX
[m]

RMSEY
[m]

RMSEZ
[m]

Guerra et al. [83] 10 Eucalyptus
plantation 0.037 0.032 0.155

Simpon et al. [107] 16 Forest 0.016 0.030 0.022
Jensen et al. [87] 200 Woodland - - <0.15

Tomaŝtik et al. [108] 9 Forest <0.10 <0.10 <0.09
Birdal et al. [109] 6 Coniferous forest - - 0.041

Doughty et al. [88] 16 Coastal wetland <0.12 <0.12 -

4.5. Limits of the Method

The following is a list of the limitations affecting our method. In addition, we reported
how to bypass them:

• Although our method detects vegetation characteristics remotely from a UAV, it
requires active walking on the marsh to (i) position the land station used to calibrate
the GNSS sensor on the drone, and (ii) survey bed elevations, vegetation height, and
vegetation density, for calibration and validation purposes. The first limitation can
be reduced by positioning the station at the boundary of the survey area, limiting
the trampling to a very restricted area of the marsh. The second limit could be only
partially bypassed by surveying ground elevation from a boat or a kayak, at the high
tide. This method could not be used to survey vegetation properties because most of it
is completely submerged during high tide. In conclusion, because this limitation could
not be completely bypassed, its effects can be reduced by reducing the number of
surveyed plots. Future research may be conducted to determine the error obtained by
using datasets of different sizes and compositions to calibrate and validate our model.

• Due to the inability of our LiDAR sensor to collect data underwater, our approach is
not used to determine the ground level and the vegetation characteristics in subtidal
coastal areas. This is the reason for the missing outputs in Figure 5. The missing
values correspond to the portion of the creeks close to the main channel, where
water is present even at low tide. This limitation could be bypassed by using dual-
frequency laser scanners, which allow the detection of both topography and (underwa-
ter) bathymetry [110,111]. Especially in the main channel, where the water turbidity
could reduce the performances of these dual-frequency LiDAR, the survey can be
done by using Unmanned Underwater Vehicles (UUV). However, this technology is
more expensive than the one used in standard topographic laser scanners, and their
precision depends on water turbidity, which is generally high in our study area.

• The short (~20–30 minutes) battery life of the aircraft limits the usage of the method to
relatively small areas. This limitation can be bypassed by using surrogate aircraft, such
as ultralight aircraft. However, the use of these aircraft (i) requires adequate landing
and take-off areas, such as an airport, reducing the flexibility of the survey obtained
with vertical take-off and landing (VTOL) UAVs; (ii) is less stable than VTOL UAVs,
thus complicating dataset collection and post-processing steps; (iii) requires human
personal onboard, nullifying the reduction of human loss risk obtained using UAVs.

• A LiDAR survey requires the presence of a licensed and expert drone pilot to be per-
formed, and the use of an adequate acquisition system (i.e., laser scanner). However,
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due to the great popularity drones are gaining in many fields, pilots’ availability is
increasing, and the cost to recreate an acquisition system similar to the one we used is
becoming more affordable.

5. Conclusions

In this study, we evaluate the possibility to estimate ground elevation and vegetation
characteristics in a highly vegetated salt marsh system, using UAV-based DAP point clouds.
The point cloud is also coupled with an imagery (RGB) dataset to verify its impact on
algorithm estimates. To estimate ground elevation and vegetation characteristics, we
employ the method proposed by Pinton et al. (2020). Results are validated using a robust
LOOCV method and compared with the results obtained in our previous study by using a
UAV-LiDAR point cloud.

Our study is the first one comparing the performances DAP- and LiDAR-UAV point
clouds when they are used to describe topographic and vegetation features in a salt
marsh system. Previous studies perform this comparison mainly in the forestal area. The
results we obtained underline the pro and cons of DAP- and LiDAR-UAV methods in this
environment, and for this reason, can help both scientists and local managers to choose
the best survey methods based on their budget and the quality of their outcomes. While
SfM datasets would appeal to users with a low budget and with a need for “ballpark”
estimates, LiDAR-UAV data would appeal to users with a higher budget and an interest in
high-accuracy data. Because LiDAR sensors are already being fully integrated with RGB
cameras, the collection of both datasets is becoming every day more common. However,
the capability to collect both datasets will be restricted only to high-cost applications.

The model outputs suggest that, while for the LiDAR-UAV point cloud the regres-
sion plane approach reduces the error introduced by non-flat ground computing ground
elevation and vegetation characteristics, the error remains on average unchanged for the
DAP-UAV point cloud. Moreover, due to the high penetration of the laser scanners in
vegetation, LiDAR-UAV captures the large gradients of the computed variables and the
vegetation characteristics, close to tidal creeks and where vegetation is tall and dense, better
than DAP-UAV.

The results (Tables 4 and 5) indicate that the accuracy of the classification procedure
notably improves when RGB images are used as input parameters together with the DAP-
UAV point cloud. Thus, we discourage using DAP-UAV point clouds for high-resolution
vegetation mapping of coastal areas if not coupled with other data sources. Conversely, the
results indicate that the accuracy of the classification procedure negligibly improves when
RGB images are used as input parameters together with the LiDAR point cloud. Thus,
in this case, the limited reduction in the estimation error does not justify the collection
and analysis of the RGB dataset. Moreover, the classification is more accurate by using
the LiDAR-UAV than the DAP-UAV dataset. The result does not change if the datasets
are coupled with the RGB images. Thus, we encourage the use of LiDAR-UAV instead of
DAP-UAV to map tidal wetlands.

With the present research, we show that our algorithm should be recalibrated if used
with point clouds collected with different techniques, even in the same location. This
assumption will likely hold for surveys performed for different locations, grass species,
and seasons. A correct recalibration of the GA needs a dataset of 50–100 vegetation samples
to be successful. However, we do not exclude the possibility to avoid the recalibration of
the algorithm when it is used for similar locations and vegetation properties, and with the
same collection technique.

Our method can be used to evaluate the temporal variation in vegetation characteris-
tics and distribution in a coastal area. This aim can be achieved by acquiring point clouds in
the same area periodically, by maintaining unchanged the survey technique and specifics.
Periodic remote sensing surveys can be also used to quantify the effects of droughts, and
extreme events (i.e., hurricanes and storms) on marsh morphology and vegetation. This
application related to extreme events requires the knowledge of where and when an ex-
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treme event will hit the coastline, which is predictable with adequate precision only in the
short-term period. Due to the flexibility of the UAV surveys, they can be performed in
the short time frame preceding the hazardous event, avoiding the adverse meteorological
conditions that accompany these events, and consequently, the risks for both the airframe
and the survey team. In addition, this aim requires a survey on the area immediately after
the hazardous event, which is generally feasible. Our method can also be used to evaluate
marsh vertical accretion due to organic and inorganic deposition in the long term. Finally,
the method presented in this study can be applied to other coastal systems to evaluate
ground elevation and vegetation characteristics. Our research interest is currently focusing
on coastal dunes.

Numerical models are generally used in coastal applications to quantify the transport
of nutrients, pollutants, and sediments. Sediments, in particular, are used to estimate the
morphological changes of coastal environments in the short-, medium-, and long-term
periods. Typically, such models are initialized with a time-invariant roughness, which is
calibrated using a sensitivity analysis and is then uniformly applied to the domain. Some
approaches, consider a nonuniform roughness and base it on the distribution of vegetation
height, stem diameter, density, biomass, or submergence rate over the domain. Considering
that spatial variations in vegetation characteristics modulate frictional resistance, modifying
the local hydrodynamics and morphodynamics, the predictive abilities of such models
will benefit from a truthful spatial description of the vegetation. With our method, we
can provide both vegetation and topographic data at high resolution by using UAV-based
surveys, thus favoring model calibration.

Future works will focus on applying the point cloud transformation algorithm to
other coastal environments, with different ground shapes and vegetation typologies, such
as coastal dunes, and the freshwater forests bounding both salt marshes and dunes en-
vironments. For instance, tracking freshwater forest landward migration can be used
as a proxy to estimate saltwater intrusion in the salt marshes, which is an indicator of
coastal threat due to SLR. In addition, tracking the evolution of tidal creeks in a marsh
environment can be beneficial to forecast future changes in the marsh hydrodynamic,
which can influence the local topography, the vegetation patterns, and the distribution
and behavior of local communities, such as ribbed mussels, which become more popular
due to their contribution to marsh accretion. Moreover, additional studies can be done to
evaluate the performances of different machine learning techniques when they are used to
estimate ground elevation and vegetation characteristics in a coastal environment from
high-resolution point clouds. This can be useful to understand if different algorithms
can provide better results for different vegetation patterns and typologies, consequently
helping scientists and data analysts to choose the algorithm maximizing the quality of
their results.

Finally, additional studies can be performed to evaluate the effect of flight altitude
on LiDAR- and DAP-UAV point cloud penetration in the dense vegetation layer covering
the salt marsh. Penetration could be described by using a Canopy Cover index. Because
Canopy Cover is not commonly used in salt marsh environments, a standardized method
to describe it will have to be determined. Future studies should focus on identifying
the flight altitude which minimizes the estimation error for ground elevation, vegetation
height, vegetation density, and aboveground biomass obtained from both LiDAR- and
DAP-UAV point clouds.
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Appendix A

Here, we report the steps of the point cloud transformation algorithm proposed in
Pinton et al. (2020) [23].

STEP 1: The point cloud is split into subsets (PCn,e, Figure A1a), which are contained
in the 0.40 m × 0.40 m regular cells (n,e) constituting the regular grid that covers the entire
study domain.

STEP 2: For each cell (n,e), the elevation of the lowest point (green dots, Figure A1) of
the related subset PCn,e is calculated as:

zmin
PCn,e

= min
p∈PCn,e

[
zp
]

, (A1)

where zp is the elevation of the generic point p belonging to the subset PCn,e.
STEP 3: The coordinates of the lowest points (green dots, Figure A1) of the nine cells

constituting STn,e are used to define a least-squares regression plane F(x, y) (green plane,
Figure A1b). The surface reads:

F(x, y) = β0,n,e + βx,n,e x + βy,n,e y , (A2)

where β0,n,e is the intercept of the plane with a vertical axis passing for the midpoint of the
stencil, and βx,n,e and βy,n,e are the regression coefficients of the plane. They represent the
eastward and northward slopes of the regression plane, respectively.

STEP 4: The vertical distance (∆zsur f ace
s , blue vertical lines, Figure A1c) between the

regression plane and the points of the point cloud contained in STn,e is calculated as:

∆zsur f ace
s = [zs − F(xs, ys)]s∈STn,e

, (A3)

where xs, ys, and zs are the coordinates of the sth point of the point cloud. The origin of the
horizontal coordinates (xs, ys) is the midpoint of STn,e.

STEP 5: For each STn,e, the transformed point cloud (Figure A1d) is obtained by
summing ∆zsur f ace

s , that was calculated for each point at STEP 4, to β0,n,e, which is the
intercept of the regression plane with a vertical axis passing for the midpoint of the stencil.
The elevation of each point “s” (ztrans

s ) is obtained as:

ztrans
s = β0,n,e + ∆zsur f ace

s , (A4)

STEP 6: The elevation of the lowest point of the transformed point cloud (zmin
STn,e

) in
STn,e is identified as:

zmin
STn,e

= min
s∈STn,e

[
ztrans

s
]

. (A5)

Finally, the relative elevation (zrel
s ) of the sth point of the transformed point cloud with

respect to the lowest point in STn,e (zmin
STn,e

) is obtained as follows:

zrel
s = ztrans

s − zmin
STn,e

. (A6)
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Figure A1. The image reports the steps of the procedure used to transform the point cloud and
calculate the ground elevation on a specific cell (n,e). (a) The point cloud is split using a regular grid
(STEP 1), and the elevation of the lowest point in each (n,e) cell (green dots) is calculated (STEP 2).
(b) The lowest points (green dots) of the cells belonging to a stencil (STn,e) are used to determine a
regression plane (STEP 3). (c) The vertical distance (∆zsur f ace

s ) between the regression plane and each
point (s) of the point cloud contained in STn,e is calculated (STEP 4). (d) The point cloud contained in
STn,e is transformed (red points) and the relative elevation (ztrans

s ) of the points is calculated, using as
reference the elevation of the lowest transformed point in STn,e (STEP 5). The elevation of the lowest
point is used as the best estimate of the ground elevation in the central cell of the stencil (STEP 6).
STEPs 4–6 are reported in 2D, for clarity. (Adapted from Pinton et al. (2020)).
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