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Abstract: Prompt monitoring of maize dwarf mosaic virus (MDMV) is critical for the prevention and
control of disease and to ensure high crop yield and quality. Here, we first analyzed the spectral
differences between MDMV-infected red leaves and healthy leaves and constructed a sensitive
index (SI) for measurements. Next, based on the characteristic bands (Rλ) associated with leaf
anthocyanins (Anth), we determined vegetation indices (VIs) commonly used in plant physiological
and biochemical parameter inversion and established a vegetation index (VIc) by utilizing the
combination of two arbitrary bands following the construction principles of NDVI, DVI, RVI, and
SAVI. Furthermore, we developed classification models based on linear discriminant analysis (LDA)
and support vector machine (SVM) in order to distinguish the red leaves from healthy leaves.
Finally, we performed UR, MLR, PLSR, PCR, and SVM simulations on Anth based on Rλ, VIs,
VIc, and Rλ + VIs + VIc and indirectly estimated the severity of MDMV infection based on the
relationship between the reflection spectra and Anth. Distinct from those of the normal leaves, the
spectra of red leaves showed strong reflectance characteristics at 640 nm, and SI increased with
increasing Anth. Moreover, the accuracy of the two VIc-based classification models was 100%, which
is significantly higher than that of the VIs and Rλ-based models. Among the Anth regression models,
the accuracy of the MLR model based on Rλ + VIs + VIc was the highest (R2

c = 0.85; R2
v = 0.74). The

developed models could accurately identify MDMV and estimate the severity of its infection, laying
the theoretical foundation for large-scale remote sensing-based monitoring of this virus in the future.

Keywords: plant disease; band selection; machine learning; anthocyanin; hyperspectral reflectance;
linear discriminant analysis; precision crop protection

1. Introduction

As one of the most important food crops in the world, maize covered the largest
area planted in China from 2015 to 2019, with more than 40 million hectares planted each
year [1]. Therefore, guaranteeing healthy growths of maize is crucial for ensuring food
security and achieving sustainable agricultural development worldwide [2]. However,
maize dwarf mosaic virus (MDMV) infection adversely affects the growth and development
of this crop, and it has become one of the major destructive diseases in the world, including
China [3,4]. In 1962, MDMV was first detected in Ohio, USA, and had spread throughout
the state by 1964, damaging 5 million corn plants in a dozen counties [5]. In 1965, Janson
named the pathogen “maize dwarf mosaic virus” [6]. In 1968, MDMV was reported
for the first time on a large scale in Xinxiang, Huixian, and other regions in the Henan
Province of China, resulting in the loss of nearly 25 million kilograms of grain. In the 1980s,
the disease was effectively prevented and controlled thanks to the promotion of specific
resistant varieties and agronomic cultivation measures. However, since the 1990s, due to
the increased acreage of MDMV-susceptible varieties, MDMV has become prevalent once
again, occurring very frequently in China and causing substantial crop losses. Therefore,
prompt and accurate identification of MDMV is crucial for proper field management in
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order to prevent and control disease spread, and regular yield assessments are essential to
devise marketing plans [7–9].

MDMV infection can occur throughout the maize growth period. At the early stages
of disease, many elliptical chlorotic spots or markings appear near the veins at the base of
the heart lobe, arranged along the veins into intermittent strips of varying lengths. With
further progression of the disease, wide chlorotic stripes formed on the leaves, particularly
on the young ones [2]. After contracting the disease, the chlorophyll (Chl) content of
leaves reduces, turning them yellow. In some cases, the symptoms start to develop from
the tip and edge of the leaves, appearing as red-purple stripes; eventually, the entire leaf
becomes red and dries. However, these red-purple streaks are mainly a result of color
rendering by high concentrations of anthocyanins (Anth) in the infected leaves following
Chl degradation [10,11]. As an important pigment, Anth confers all colors, except green,
in plants and is sensitive to environmental and biological stresses [12–15]. In addition,
pathogen infection can induce anthocyanin biosynthesis in plants, and the more severe the
pathogen infection, the stronger the induction ability [16]. Ludmerszki et al. observed the
fourth leaf of MDMV-infected maize and found that the observed leaf gradually turned
red over time and that the content of anthocyanin in MDMV-infected leaves increased
while the content of chlorophyll decreased by using fluorescence technology [17]. Singh
and Sharma reported in 1998 that anthocyanins and phenols increase Chkahao resistance
to a variety of common rice diseases (e.g., root rot, narrow brown spot, stem rot, false
smut, bacterial leaf streaks, and bacterial leaf blight) and rice pests (e.g., stem borer, rice
bug, green horned caterpillar, and rice skipper) [18]. Fasahat et al. reported in 2012 that
a Malaysian colored rice, Oryza Rufipogon, containing anthocyanin pigment was highly
resistant to bacterial leaf blight and brown plant hopper [19]. Therefore, we used red leaf
Anth as a measure to indicate the severity of MDMV infection given the close association
between Anth and plant disease.

Traditional MDMV monitoring methods include field observations and laboratory
measurements, which are time-consuming and expensive. In addition, chemical methods
are destructive, and they cannot reflect progressive changes in the disease status in the same
leaf over time [20]. In contrast, remote sensing (RS) is a non-destructive technique for rapid
monitoring at different scales. Moreover, owing to its high spatial resolution, hyperspectral
technology can identify invisible symptoms reflecting the physiological status of plants at
the initial stages of disease and has been widely used in crop pest and disease detection
in recent years [21–23]. For instance, Mirik et al. classified Landsat 5 Thematic Mapper
(TM) images of two cities in Texas from 2006 to 2008 by using the maximum likelihood
method and achieved an overall classification accuracy of 89.47–99.07% for wheat streak
mosaic virus [24]. Furthermore, Camino et al. coupled a spatial spread model with an RS-
driven support vector for estimating the probability of Xylella fastidiosa (XF) infection and
obtained highly accurate predictions of the spatial distribution of plant disease in almond
trees [25]. Martins et al. conducted field surveys and small-format aerial photography
(SFAP) with different cameras to obtain visible and near-infrared images and estimated
the spatial distribution of ink disease in Northern Portugal during 1995–2004 by using
a geostatistical method [26]. Liu et al. collected rice reflectance spectra in the field and
laboratory and estimated the severity of brown rice spot disease based on the reflectance
ratio [27]. These previous studies monitored plant diseases at different scales based on
satellite, unmanned aerial vehicle (UAV), and near-ground platforms, achieving satisfactory
results. Simultaneously, other plant diseases, including wheat stripe rust, rice spikelet
rot disease, and maize stripe rust, have also been studied by using RS technology [28–30].
However, only Beverly et al. compared the spectra (400–2700) of healthy, MDMV-infected,
and Helminthosporium maydis-infected maize leaves, laying the foundation for RS-based
research on MDMV [31], and to our best knowledge, there have been no further studies
on MDMV using RS technology. Therefore, RS-based research on MDMV is of paramount
importance.



Remote Sens. 2021, 13, 4560 3 of 19

Furthermore, reliable physical and empirical models of leaf reflectance and a range
of physiological parameters, such as leaf water content, leaf area, and pigment content
(including Anth), have been established [32,33]. Therefore, we can indirectly assess the
severity of MDMV infection by establishing the relationship between the reflectance spec-
trum and Anth. To this end, by analyzing the spectral characteristics of infected leaves
through RS, we aimed to build a suitable model for the detection and monitoring of MDMV
for minimizing its adverse effects and ensuring high crop quality and yield.

2. Materials and Methods
2.1. Study Area

The present study was conducted in an established research facility, which is part of
the Northwest A&F University, located in the Shaanxi Province of China (34◦15′−34◦20′

N, 107◦56′−108◦7′ E; 460 m a.s.l.). The region has warm, temperate, and continental
monsoon climate. The study area was divided into 20 subplots, each with an area of
5.5 × 6 m2, occupying a total area of 69 × 12 m2. The maize cultivar “Dafeng 26” used in
the experiment, and the cropping system was the rotation of winter wheat and summer
maize. Five nitrogen (0, 45, 90, 135, and 180 kg N·ha−1) and five phosphorus (0, 30, 60,
90, and 120 kg P2O5·ha−1) application levels were set in the subplots. All fertilizers were
applied at the time of sowing, and other management measures followed local practices.
The location of the study area, plot setting and fertilization are shown in Figure 1.

Figure 1. Location of study area and fertilization of plot.

2.2. Data Acquisition and Processing

Data collection and measurements were performed at the R2 blister stage period
(14 September 2017); it is not only the peak season of MDMV but also an important
period for yield estimation. Two healthy corn samples were collected from each plot,
and destructive samples were obtained from the upper, middle, and lower layers (three
pieces from each layer). Moreover, 360 healthy leaves and 72 MDMV-infected red leaves
(hereinafter referred to as red leaves) were collected throughout the study area. All blades
were placed in plastic bags and transported to the laboratory in an incubator. The collected
red leaf samples are presented in Figure 2.
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Figure 2. Maize plants and leaves infected with MDMV.

2.2.1. Anth Quantification

Leaf Anth was quantified with Dualex 4 (France), a new multifunctional blade mea-
surement tool that calculates the absorbance of plants in the green region to obtain Anth
(µg·cm−2). This tool can also accurately measure leaf Chl, surface flavonoid, and nitrogen
content and is easy to use for real-time and non-destructive measurements. Each leaf was
measured 10 times to obtain the representative value of Anth. The Anth measurement of
healthy leaves was not required, except in the samples from the leaf vein; in infected leaves,
Anth was only measured in parts that had turned red.

2.2.2. Hyperspectral Data Acquisition

The reflectance spectra of maize leaves were determined in an indoor measurement
unit using a spectroradiometer (SVC HR~1024 i) with a spectral range of 350–2500 nm and
a view of 25◦. First, the reflectivity of the white reference plate was measured for spectral
correction. Then, the leaves were placed into the clamp to measure 10 spectra of each leaf,
and the average value was calculated as the actual spectrum. Finally, the spectral resolution
was resampled to 1 nm and then a continuous smooth reflection spectrum was obtained
by Savitzky–Golay smoothing. Considering that the wavelengths of plant pigments are
concentrated in the visible and near-infrared regions and that the constituent wavelengths
of vegetation indices commonly used for estimating plant physiological and biochemical
parameters are within these region [34], we only studied the spectra at 400–1000 nm.

2.3. Analytical Methods
2.3.1. Definition of Sensitivity Index (SI)

We constructed an SI based on the ratio and difference algorithm to measure the
spectral difference between healthy and red leaves. The closer SI is to 0, the smaller the
spectral difference between the two leaves and vice versa. The specific formula is as
follows:

SI =
Rλ − Rh

Rh
(1)

where Rλ is the reflectance of the red leaf spectrum at wavelength λ, and Rh is the average
reflectance of the healthy spectrum at wavelength λ.

2.3.2. Construction of Vegetation Indices with Two Arbitrary Bands

Vegetation indices have been widely used in the RS-based estimation of plant growth
parameters. A VI constituting several bands can effectively minimize the errors associated
with sensor specifications, atmosphere, and background differences, thus enhancing the
description of the observation target [35,36]. However, due to the lack of disease specificity
of these indicators, the quantification or identification of specific diseases based on common
vegetation indices is currently impossible. Therefore, we combined different wavelengths
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to construct a VI (VIc) for simplifying the spectral detection of plant diseases. Specifically,
we used the normalized difference vegetation index (NDVI), ratio vegetation index (RVI),
differential vegetation index (DVI), and soil-adjusted vegetation index (SAVI), defined as
follows:

NDVI =
(

Ri − Rj
)
/
(

Ri + Rj
)

(2)

RVI = Ri/Rj (3)

DVI = Ri − Rj (4)

SAVI = 1.5
(

Ri − Rj
)
/
(

Ri + Rj + 0.5
)

(5)

where Ri and Rj are the reflectance at i and j nm over the entire reflectance spectrum.

2.3.3. Linear Discriminant Analysis (LDA) Classification Model

The LDA model uses a linear combination of features as the classification standard to
project data from the higher-dimensional to the lower-dimensional space, while ensuring
that the intra-class variance of each class after the projection is small but the mean difference
between the classes is large. It can be used for both classification and dimension reduction
and is better suited for the linear classification of smaller data volumes and fewer indicators.
In the present study, 48 red leaf spectra and 240 healthy leaf spectra were randomly
selected from all the spectra as the calibration set, and the remaining 24 red leaf spectra
and 120 healthy leaf spectra were used as the validation set. The LDA model was built
using The Unscrambler X 10.4.

2.3.4. Support Vector Machine (SVM) Classification Model

In principle, SVM uses a kernel function to project the spectral information of samples
in higher-dimensional space, constructs the hyperplane with the largest classification
interval, and then accurately identifies different types of samples. It is better suited
for linearly indivisible sample data, specifically using relaxation variables and kernel
functions. In the present study, C-SVM discriminant analysis was performed on data from
the calibration and validation sets using The Unscrambler X 10.4. The kernel type was a
radial basis function (RBF), and the penalty coefficient (C) was 1. We adopted a 10-fold
cross validation during modeling in order to improve the stability of the classification
model.

2.3.5. Regression Models

In general, hyperspectral data can be used to explore specific wavelengths and/or
indices that are particularly useful for the assessment of plant and ecosystem variables [37].
These wavelengths and/or indices can be used to estimate plant variables based on mul-
tivariable statistical methods, such as multiple linear regression (MLR), principal com-
ponent regression (PCR), partial least squares regression (PLSR), and SVM regression
(SVMR) [38,39]. When introducing new independent variables into an MLR model, a
collinearity check is essential on the substituted independent variables, and until then, no
new variables can be introduced or no existing ones can be removed. The equation is simple
and can effectively avoid collinearity between variables. PCR combines multiple features in
a high-dimensional space into a few irrelevant principal components and contains most of
the variation information in the original data, effectively reducing the amount of data and
simplifying operations. PLSR combines the characteristics of MLR, canonical correlation
analysis (CCA), and PCR; can avoid the multicollinearity problem; and offers advantages
that classic regression methods do not. SVMR uses an inner product kernel function to
replace nonlinear mapping in the higher-dimensional space, but it is still better suited
when the feature dimension is larger than the sample number. Moreover, SVMR, based on
the principle of minimizing the structural risk, avoids overlearning problems and shows
high generalizability.



Remote Sens. 2021, 13, 4560 6 of 19

2.4. Evaluation of Precision

In order to compare the predictive performance of various spectral parameters and
methods, we used statistical indicators, such as the coefficient of determination (R2), root
mean square error (RMSE), and relative error of prediction (REP), defined as follows:

R2 =
n

∑
i=1

(ŷi − y)2/
n

∑
i=1

(yi − y)2 (6)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/n (7)

REP =
100RMSE

y
(8)

where yi is the measured values, y is the average of the measured values, ŷi is the predicted
value, and n is the number of samples. The closer the value of R2 is to 1, the smaller RMSE
and REP are, and the better the model accuracy. We applied 20-fold cross validation to
assess the robustness of the estimation models.

2.5. Analytical Framework

Figure 3 presents the data, methods, and processing steps for the identification of
MDMV and severity monitoring of its infection. First, the spectral differences between the
healthy and infected leaves with different degrees of reddening were analyzed in order
to explore the spectral response characteristics of MDMV-infected leaves, which were the
basis for further analyses in the present study. Then, the LDA and SVM classification
models for MDMV were constructed based on single-band spectral information (Rλ), two-
or three-band VIs, and full-spectrum arbitrary two-band combined vegetation index (VIc).
Finally, high-precision Anth estimation models for healthy and red leaves were constructed
based on three types of spectral parameters. The details are provided in Results.

Figure 3. Analysis process of this study.

3. Results
3.1. Leaf Anth Statistics

The results of the statistical analysis are reported in Table 1. The range of Anth in red
leaves was 0.04–0.76 µg·cm−2, which was wider than that in healthy leaves
(0.03–0.11 µg·cm−2), although the Anth of two leaves overlapped. The average Anth
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of red leaves (0.19 µg·cm−2) was much higher than that of healthy leaves (0.06 µg·cm−2).
SD, variance, and CV of healthy leaves were small, their Anth distribution was concen-
trated, and the spatial variability in values was low. In contrast, SD, variance, and CV of
red leaves were large, their Anth distribution was scattered, and the spatial variability in
values was high.

Table 1. Anth statistics of healthy and red leaves.

Type N Min
(µg·cm−2)

Max
(µg·cm−2)

Mean
(µg·cm−2) SD Variance CV (%)

healthy 360 0.03 0.11 0.06 0.02 3.24 × 10−4 29.36
red 72 0.04 0.76 0.19 0.18 0.03 94.74

3.2. Characteristics of Reflectance Spectra

The spectral characteristics of plants are affected by their internal tissue structure,
biochemical composition, and morphological features, which together constitute the bio-
physical and biochemical responses of plants to light. Figure 4a shows the spectra of the red
and healthy leaves and SI of red leaves. Evidently, the variation in the spectral reflectance of
healthy leaves is smaller than that of red leaves. In the 580–670 nm range, a new reflection
peak appeared in the red leaf spectra, which was rather different from that in the healthy
leaf spectra. The large SI values were mainly distributed in the 595–764 nm regions, and
SI gradually increased with increases in Anth, reaching the maximum value exceeding
three. At Anth values of 0.28, 0.58, and 0.68, SI showed obvious bimodal characteristics,
and when the Anth value reached 0.75, the bimodal characteristic disappeared. The band
corresponding to the maximum SI value appeared near 700 nm.

1 
 

  
(a) (b) 

Fig4 
 
 

  
(a) (b) 

Figure 4. (a) Spectra of healthy and red leaves and SI of red leaves; (b) spectra and red edge of red leaves with different
Anth.

Selected spectral characteristics of infected leaves with different degrees of reddening
(Anth = 0.29, 0.58, 0.68, and 0.75 µg·cm−2) compared with the spectral characteristics of
healthy leaves (Anth = 0.06 µg·cm−2) are presented in Figure 4b. The differences were
mainly concentrated in the visible and near-infrared ranges (400–750 nm). The spectral
curve of healthy leaves (Anth = 0.06 µg·cm−2) showed an obvious absorption valley in
the blue band at 450 nm and in the red band at 680 nm, as well as a strong reflection
peak in the green band at 550 nm, which is consistent with the typical reflectance spectral
characteristics of green plants. However, the spectral curve of red leaves exhibited obvious
bimodal characteristics in the visible range (380–760 nm), with the left peak near 550 nm
and the right peak near 640 nm. At Anth values of 0.29 and 0.58 µg·cm−2, the reflectance
of the left peak was higher than that of the right peak. However, at higher Anth values
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of 0.68 and 0.75 µg·cm−2, the left peak disappeared, and the right peak increased sharply,
forming a characteristic that is obviously different from the spectrum of healthy leaves.
With the increase in Anth, the reflectance of the right peak continued to increase, whereas
the absorption valley at 680 nm weakened until disappearing. The first-order differential of
the original spectrum in the 640–760 nm range was calculated in Figure 4b. With an increase
in Anth, the position of the red edge (wavelength corresponding to the maximum value of
the first-order differential spectrum) moved in the short-wave direction; this trend is similar
to that observed in cotton with different degrees of aphid damage [40]. As such, the higher
the Anth is, the more severe the MDMV infection is, resulting in poor photosynthesis and
low consumption of long-wave photons.

3.3. Correlation between Anth and Spectral Reflectance

The correlation between spectral reflectance and Anth of the two types of leaves was
examined, as shown in Figure 5. The spectral reflectance of red leaves was negatively
correlated with Anth in the 520–563 nm region but positively correlated with Anth in
the 400–519 and 564–1000 nm regions. In the 400–449 and 587–753 nm regions, there
was a strong correlation (P&lt; 0.01), with the maximum correlation coefficient of 0.76 at
695 nm. The spectral reflectance of healthy leaves was positively correlated with Anth in the
400–1000 nm, and all correlations were strong (P&lt; 0.01), with the maximum correlation
coefficient of 0.68 at 554 nm.

Figure 5. Correlation between Anth and spectral reflectance of healthy and red leaves.

In the 444–620 nm region, the correlation between the reflectance and Anth was
stronger in healthy leaves than in red leaves, due to the strong reflection of Chl in this
region, while anthocyanins had little effect on the reflectance of the spectrum in this region.
The maximum difference in the correlation coefficient was recorded near 550 nm, coinciding
with the position of the reflection peak of the healthy leaf spectrum shown in Figure 4b.
In the 400–443, 621–748 and 776–1000 nm regions, the correlation between reflectance
and Anth was stronger in red leaves than in healthy leaves due to the strong reflection of
anthocyanins in this region. The maximum difference in the correlation coefficient was
recorded near 680 nm, coinciding with the position of the right reflection peak of the red
leaf spectrum shown in Figure 4b.

3.4. Vegetation Indices
3.4.1. Various Vegetation Indices

The vegetation index can reduce the influence of sensors and environment on the
target through normalization and derivative processing as well as by improving data
utilization efficiency through the use of several selected bands [41]. Numerous vegetation
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indices have been constructed to estimate the biophysical and biochemical properties of
plants. In the present study, 12 vegetation indices with good correlation to Anth were
selected, as shown in Table 2. Seven two-band vegetation indices and five three-band
vegetation indices were included. The bands used in the vegetation indices are marked
in Figure 4a. Specifically, the selected bands were mainly concentrated around 500–575,
670–725, 750, and 800 nm.

Table 2. Two-band and three-band vegetation indices.

VIs Equations Bands References VIs Equations Band References

SR R800/R680 2 [42] SIPI (R680 − R500)/R750 3 [43]
NDVI (R800 − R670)/(R800 + R670) 2 [44] GNDVI (R800 − R550)/(R800 + R550) 2 [45]

TVI 0.5(120(R750 − R550) −
200(R670 − R550)) 3 [46] MCARI R700 ((R700 − R670) −

0.2(R700 − R550))/R670
3 [47]

CHLI R700/(R700 + R710 − 1) 2 [48] MCARI1 1.2(2.5(R800 − R670) −
1.3(R800 − R550)) 3 [49]

VRI R740/R720 2 [50] PSRI (R680 − R500)/R750 3 [51]
PRI (R531 − R570)/(R531 + R570) 2 [52] RNDVI (R750 − R705)/(R750 + R705) 2 [53]

The correlations between the vegetation indices and Anth are shown in Figure 6.
Among the two-band VIs, CHLI (700,710), VRI (740,720), and RNDVI (750,705) showed
a strong correlation with the Anth of healthy and red leaves. Among the three-band
vegetation indices, PSRI was strongly correlated with the Anth of red leaves, and MCARI
was strongly correlated with the Anth of healthy leaves. There were significant correlations
between the vegetation indices and Anth in healthy leaves (P&lt; 0.01), with GNDVI
achieving the highest correlation coefficient of −0.73. In red leaves, CHLI achieves the
highest correlation coefficient of −0.75.

Figure 6. (a) Correlation analysis of healthy leaf VIs; (b) correlation analysis of red leaf VIs.

3.4.2. VIc Based on Two Arbitrary Bands

The coefficients of determination (R2) between plant-specific variables, and VIc can
reflect the predictive power of two independent band combinations. Figure 7 shows the
contour maps of R2 between Anth and NDVI, RVI, DVI, and SAVI using all combinations
of two wavebands at i and j nm, which are very useful for selecting effective bandwidths
and various combinations of wavelengths. For healthy leaves, the most significant areas
noted around NDVIh, RVIh, DVIh, and SAVIh were (R573, R507), (R572, R507), (R547, R522),
and (R547, R518), respectively, and DVIh was the most significant VIc with an R2 of 0.65. The
contour map of NDVIh was very similar to that of RVIh, and their significant bands and
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maximum R2 values were close. For red leaves, the most significant areas noted around
NDVIr, RVIr, DVIr, and SAVIr were (R689, R461), (R460, R692), (R690, R656), and (R685, R667),
respectively, and DVIr was the most significant VIc with an R2 of 0.68. With the exception of
RVIh and RVIr, the other vegetation indices showed symmetric spatial distribution patterns
of R2.

Figure 7. Contour maps of R2 between Anth and VIc of healthy and red leaves.

3.5. MDMV Identification

The results of the LDA and SVM classification models constructed based on Rλ, VIs,
and VIc are shown in Table 3. All models could identify healthy leaves, and the models
primarily differed in terms of their identification accuracy of red (i.e., infected) leaves. Both
LDA and SVM classification models based on Rλ showed low accuracy, and the number
of red leaves identified by the LDA-Rλ model was even lower than zero. Therefore, Rλ

is not suitable for the RS-based identification of MDMV-infected leaves. Based on VIs,
the SVM model performed better than the LDA model, and the recognition accuracy of
the calibration and validation sets exceeded 75% for the former. This is because the SVM
algorithm has high classification accuracy and generalizability when the sample size is
small, and it performs better in solving classification problems with high-dimensional
features [54,55]. In addition, the RBF kernel function used by the SVM algorithm can be
adjusted by using a grid search to obtain a better classification model [56,57]. The accuracy
of both LDA and SVM classification models based on VIc was 100%, which is significantly
higher than that of models based on Rλ and VIs and shows obvious superiority in the
RS-based detection of MDMV. This is because the input parameter VIc is constructed
based on the spectrum of normal leaf and red leaf at any two bands in the 400–1000 nm
region, which has its uniqueness. Moreover, in the VIc contour maps of the red leaves, the
most significant areas noted around NDVIh, RVIh, DVIh, and SAVIh were (R573, R507),
(R572, R507), (R547, R522), and (R547, R518). In the VIc contour maps of the healthy
leaves, the most significant areas around NDVIr, RVIr, DVIr, and SAVIr were (R689, R461),
(R460, R692), (R690, R656), and (R685, R667). These bands are located in the wavelength
region corresponding to the high SI value, and there is a large difference between the two
leaves in this region. In addition, the difference was further enhanced by using difference
and ratio calculation to construct the vegetation index, thus achieving the high-precision
identification of MDMV-infected and healthy leaves.
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Table 3. LDA and SVM classification models.

Models Parameters
Calibration Set (nr = 48, nh = 240) Validation Set (nr = 24, nh = 120)

Red Healthy Accuracy/% Red Healthy Accuracy/%

LDA
Rλ 6 240 56.3 6 120 62.5

VIs 34 240 85.4 12 120 75.0

VIc 48 240 100.0 24 120 100.0

SVM
Rλ 0 240 50.0 0 120 50.0

VIs 36 240 87.5 16 120 83.3

VIc 48 240 100.0 24 120 100.0

Note: Rλ is the spectral reflectance of red leaves at 695 nm and healthy leaves at 554 nm; VIs is the narrow-band vegetation indices; VIc is
the vegetation index constructed based on two arbitrary bands; nr and nh are the number of samples of red and healthy leaves, respectively.

3.6. Classic Regression Analysis Based on a Sensitive Band

In the present study, random stratified sampling was used to divide the dataset at
a ratio of 2:1 for obtaining representative samples for calibration and validation. The
statistics of the calibration and validation datasets are shown in Figure 8a. The statistics
of the calibration and validation datasets were similar for red leaves (max = 0.76 and
0.73; min = 0.05 and 0.04; mean = 0.20 and 0.18; SD = 0.19% and 0.17%; and CV = 96.48%
and 95.60%, respectively). For healthy leaves, the maximum values of the calibration and
validation datasets were 0.11 and 0.10, respectively, and the remaining statistical parameters
were identical between the two datasets. Furthermore, the distribution of calibration and
validation data was consistent with that of all data.

1 
 

  
(a) (b) 

Fig4 
 
 

  
(a) (b) 

Figure 8. (a) Statistical analysis of calibration set and validation set; (b) precision comparison of UR models based on Rλ.

Exponent, linear, exponential, polynomial, and power regression models for Anth
were built based on the spectral reflectance of red leaves at 665 nm (R695) and healthy
leaves at 554 nm (R554). The R2

c, R2
v, RMSEc, and RMSEv for each model are shown

in Figure 8b. For the same sample, while the differences in RMSEc and RMSEv were
small, R2

c and R2
v were significantly different among the various models. Among the

models for healthy leaves, the exponential and polynomial models produced reliable results
(R2

c = 0.48, R2
v = 0.46). Among the models for red leaves, the linear model produced the

most reliable results (R2
c = 0.62, R2

v = 0.44). The R2
c and R2

v values of the univariate
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regression (UR) model for Anth based on Rλ were high (p < 0.01); however, model accuracy
remained low, and it could not accurately estimate the anthocyanin content of leaves.

3.7. Anth Regression Models Based on VIs, VIc, and VIs + VIc + Rλ

The Anth estimation models for red and healthy leaves based on VIs, VIc, and VIs +
VIc + Rλ and constructed using MLR, PCR, PLSR, and SVMR are shown in Figure 9. The
range of R2

c and R2
v values of the Anth models for red leaves was 0.63–0.85 and 0.57–0.74,

respectively. Among the models based on VIs, the PLSR model (R2
c = 0.73, R2

v = 0.61)
showed the highest accuracy, followed by the MLR model. Among the VIc-based models,
the R2

c of the MLR, PCA, and PLSR models was equal, and the difference in R2
v was small.

The SVMR model showed the highest accuracy (R2
c = 0.68, R2

v = 0.62). Among the models
based on VIs + VIc + Rλ, the MLR model showed the highest R2

c, followed by the SVMR
model. However, there was overfitting in the SVMR model, with a small R2

v; this can
be attributed to the small number of red leaf spectra and a few outliers in the samples
that affected the optimal classification hyperplane of the SVM. The most accurate Anth
estimation model for red leaves was the MLR model based on VIs + VIc + Rλ (R2

c = 0.85,
R2

v = 0.74), which can be used for the quantitative estimation of Anth in red leaves as a
measure of MDMV infection severity.

The range of R2
c and R2

v values in the Anth models for healthy leaves was 0.62–0.68
and 0.60–0.66, respectively. Among the models based on VIs, the MLR model (R2

c = 0.67,
R2

v = 0.64) showed the highest accuracy. Among the models based on VIc, the R2
c and

R2
v of the MLR, PCA, and PLSR models were identical (R2

c = 0.65, R2
v = 0.64), and the

modeling method showed little effect on accuracy. Among the models based on VIs + VIc +
Rλ, the SVMR model showed the highest accuracy (R2

c = 0.68, R2
v = 0.66), which can be

used to accurately estimate the Anth of healthy leaves for promptly monitoring the health
status of maize.

In the distribution diagram of the measured and predicted values of red leaves, most
points with small Anth were concentrated near the 1:1 line. However, the points with large
Anth were distributed far from the 1:1 line, and the red leaf models showed satisfactory
predictive performance for the small values of Anth but poor performance for large values.
First of all, most of the leaf samples collected in this study were mildly infected with MDMV,
and their Anth content was small. Only a few samples were seriously infected with MDMV
and had high Anth. Moreover, MDMV-infected leaves were randomly collected in the
entire study area, which had nothing to do with the fertilization situation in the plot and
also resulted in the uneven distribution of sample data. As shown in Figure 9a, the model
input parameter VIs includes a vegetation index with good effects in previous studies on
the biophysical and biochemical parameters of healthy leaves (with low Anth content). It
is not reconstructed for MDMV-infected leaves so that the model has a poor fitting effect
on the high value of Anth. In the models of Figure 9b, only the reflectivity of 400–1000 nm
was considered in the construction of the input parameter VIc, which did not make full use
of all the spectral information that could be detected by the spectroradiometer. Therefore,
the ability of these models to estimate Anth is limited. The model in Figure 9c uses Rλ +
VIs + VIc as input to estimate Anth in red leaves. Compared with the model in Figure 9a,b,
the accuracy is improved to some extent, but the good fitting effect is still a low Anth.

In the distribution diagram of the measured and predicted values of healthy leaves,
all points were evenly distributed on both sides of the 1:1 line, and the healthy leaf models
showed a better fit to the Anth values than the red leaf models. This is because healthy
leaves were collected in plots with different fertilization; Anth data were evenly distributed
and showed no obvious aggregation. Therefore, the models in Figure 9d–f had good fitting
effects on both high and low values. MDMV-infected leaves were mainly distributed in
the plots with 0 kg P2O5·ha−1 + 90 kg N·ha−1, 60 kg P2O5·ha−1 + 90 kgN·ha−1, 90 kg
P2O5·ha−1 + 90 kg N·ha−1, and 120 kg P2O5·ha−1 + 90kg N·ha−1. It can be easily observed
that the spatial distribution of MDMV-infected maize has a high degree of aggregation, but
there is no obvious rule with the fertilization situation in the plots. Meanwhile, the results
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also ruled out the possibility that phosphorus deficiency was responsible for the reddening
of leaves in the study area.

Figure 9. Anth estimation models of red and healthy leaves. (a–c) represent MLR, PCR, PLSR, and SVMR models of red
leaves Anth based on VIs, VIc, and Rλ + VIs + VIc, respectively. (d–f) show MLR, PCR, PLSR, and SVMR estimation models
of healthy leaf Anth based on VIs, VIc, and Rλ + VIs + VIc, respectively.
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4. Discussion
4.1. Link between Spectral Reflectance and Plant Disease

Multispectral or hyperspectral RS technologies based on near-ground, low-altitude
UAV and satellite platforms offer multiple opportunities to improve the productivity of
agricultural production systems and provide an automatic and objective alternative to the
visual assessment of plant diseases [58–60]. The utility of RS techniques in the field of plant
disease detection has been well documented, and the potential of spectral sensors in the
detection of fungal diseases has been proven [61–63]. In the present study, at Anth values
below 0.58, the difference in the reflectance characteristics between red and healthy leaves
in the visible range was small, and the spectral characteristics were similar; this result is
consistent with the lack of significant differences in the spectra of MDMV-infected and
healthy leaves of corn exhibiting mild mosaic symptoms in a study by Beverly [30]. At the
Anth values exceeding 0.58, however, the spectra of MDMV-infected and healthy leaves
differed significantly in both visible and near-infrared regions, which is also consistent
with Beverly’s speculation that the near-infrared region is critical for studying MDMV [30].

However, in order to effectively use spectral reflectance measurements for disease
detection, the key is to identify the most important spectral wavelengths that are closely
linked to a particular disease. Only a few bands of the reflectance spectrum are of interest
depending on the type of disease and the range of application. In the present study, bands
closely linked to MDMV infection were mainly concentrated at 611–743 nm, with the
maximum correlation coefficient of 0.76.

4.2. Application of Vegetation Indices Based on Two Arbitrary Bands

Vegetation indices have been commonly used for analyzing and detecting changes
in plant physiology and biochemistry. These indices, based on information at specific
wavelengths, have been developed to reflect diverse plant parameters, such as pigment
content, water content, and leaf area. Moreover, vegetation indices can be used as a
measure of plant diseases. However, the quantitative analysis or identification of a specific
disease based on the commonly used vegetation indices is not possible at present due
the lack of disease specificity of the available indices. Therefore, we combined different
wavelengths to construct vegetation indices (VIc) for simplifying disease detection by
using spectral sensors, since each disease influences a spectral signature in a characteristic
manner. In the present study, compared with the commonly used vegetation indices, the
newly developed VIc showed improved classification accuracy for the red leaf spectrum
(Table 3) and enhanced monitoring accuracy for MDMV severity (Figure 9). Inoue et al. [21]
constructed a vegetation index based on two-band combinations for monitoring rice canopy
nitrogen content and found that the RSI (D740, D522) model constructed based on the first-
order differential spectra at 740 and 522 nm showed better performance. Mahlein et al. [64]
created contour maps of correlation coefficients for the disease severity of Cercospora leaf
spot, rust, and powdery mildew in beet based on the NDVI of two arbitrary bands to
identify and monitor plant diseases. The strongly correlated bands used for NDVI in their
study were mainly concentrated at 500–500 nm, close to the optimal bands for NDVIr based
on VIc in the present study.

4.3. RS-Based Identification of MDMV-Infected Leaves

In the present study, among the LDA and SVM models, the classification model
based on VIc showed the highest accuracy, followed by the models based on VIs and
Rλ. Additionally, in the classification models based on VIs, SVM performed better than
LDA, which is consistent with the trends reported by Shi et al. in the identification of
wheat stripe rust, by Shang et al. in the classification of Australian virgin forest species,
and by Calderón et al. in the early identification of olive Verticillium wilt [65–67]. SVM
classifiers are constructed based on the threshold discriminant rules, which map samples
to an appropriate feature space and can solve nonlinear and small-sample classification
problems well. Both LDA and SVM classification models based on Rλ showed low accuracy



Remote Sens. 2021, 13, 4560 15 of 19

mainly because Rλ offers very little spectral information for accurately identifying the
target.

4.4. Application of Machine Learning Algorithms in Precision Agriculture

The major RS-based estimation methods in plant physiology and biochemistry include
the physical radiative transfer models and empirical statistical models [68–70]. The physical
model simulates the reflectivity of a leaf blade based on a limited number of variables
according to different mathematical and physical principles. The greatest advantages of
this approach are that it is based on the radiative transmission model of electromagnetic
waves and the ecological theory of vegetation and that it is not affected by vegetation type
and other factors. However, despite being powerful, these models require a large amount
of local perception data related to biotic and abiotic factors for calibration [71], thus limiting
their applicability in the large-scale monitoring of crop growth [72].

Most empirical statistical models are constructed based on vegetation indices, and they
are relatively simple and diverse in structure. However, these models are susceptible to
vegetation type, light conditions, and canopy structure and are sensitive to soil background;
thus, the universality of these models is poor. Among the empirical statistical models, the
machine learning models have the advantage of realizing the high-precision prediction
of leaf pigments by analyzing the relationship between leaf nutrient drivers and pigment
content, without relying on specific crop parameters. Moreover, with the advantages of
RS technology, some machine learning algorithms can assess crop growth at a regional
scale from satellite images. However, the inversion results obtained by linear models are
typically not reliable, and nonlinear machine learning algorithms, such as MLR, PLSR,
PCA, SVM, and RF, can analyze complex relationships between vegetation indices and
multiple factors of crop growth [73,74]. In the present study, the MLR, PCR, PLSR, and
SVMR models based on machine learning algorithms showed significant differences in
their accuracy with different modeling parameters; however, the predictive performance of
the four models was satisfactory, as evidenced by the high R2

c and R2
v values, and their

accuracy was significantly higher than that of the simple regression model.
Rapid and large-scale monitoring of crop diseases can effectively reduce the pressure

on plant protectors and is an important means to prevent and control diseases and to ensure
food health. In addition, such efforts have made significant contributions in eliminating
hunger, ensuring global food security, improving nutrition, and achieving sustainable
development goals for food proposed by the United Nations [75].

5. Conclusions

The key to the effective identification of MDMV based on spectral reflectance is to find
the appropriate wavelength that is closely linked to the disease. In the present study, we
first analyzed the spectral differences between red and healthy leaves and determined the
band region of the observed spectral difference between the two types of leaves. Next, by
comparing the spectra of leaves with different severities of MDMV infection (as indicated
by different Anth values), we obtained the variation rule of the reflectance spectra for
MDMV infection severity and the band with the strongest correlation with Anth (Rλ).
However, single-band spectra are not sufficient for fully characterizing plants. Therefore,
in order to detect plant growth statuses, we selected 12 vegetation indices that are closely
correlated with Anth for MDMV monitoring. Following the construction principle of NDVI,
RVI, DVI, and SAVI, we constructed VIc based on the combination two arbitrary bands.
Furthermore, we constructed LDA and SVM classification models for MDMV based on
Rλ, VIs, and VIc and identified a classification model that could accurately distinguish red
leaves from the healthy ones. In addition, we constructed the Anth regression model based
on three spectral parameters in order to accurately assess the severity of MDMV infection.
The major conclusions are as follows:

(1) The spectral differences between red and healthy leaves were mainly concentrated in
the 493–764 nm region, and the maximum difference was recorded near 700 nm.
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(2) The red leaf spectrum showed bimodal characteristics in the visible range. With the
aggravation of the disease (i.e., increase in Anth), the reflectance of the left peak of
the spectrum (550 nm) gradually decreased until it disappeared. Simultaneously, the
reflectance of the right peak increased gradually, and the absorption characteristics
near 680 nm disappeared. With worsening MDMV infection, the position of the red
edge of the reflectance spectrum appeared as a “blue shift.”

(3) The LAD and SVM models constructed based on VIc performed better in recognizing
MDMV, with the classification accuracy of 100%, followed by the models based on
VIs; the models based on Rλ showed the poorest classification accuracy.

(4) The MLR model based on Rλ + VIs + VIc (R2
c = 0.85, R2

v = 0.74) was the best for
monitoring the severity of MDMV infection, while the SVMR model based on Rλ +
VIs + VIc (R2

c = 0.68, R2
v = 0.66) was the best for the estimation of Anth in healthy

maize leaves.
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