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Abstract: Fire severity represents fire-induced environmental changes and is an important variable
for modeling fire emissions and planning post-fire rehabilitation. Remotely sensed fire severity is
traditionally evaluated using the differenced normalized burn ratio (dNBR) derived from multispec-
tral imagery. This spectral index is based on bi-temporal differenced reflectance changes caused by
fires in the near-infrared (NIR) and short-wave infrared (SWIR) spectral regions. Our study aims to
evaluate the spectral sensitivity of the dNBR using hyperspectral imagery by identifying the optimal
bi-spectral NIR SWIR combination. This assessment made use of a rare opportunity arising from the
pre- and post-fire airborne image acquisitions over the 2013 Rim and 2014 King fires in California
with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. The 224 contiguous bands
of this sensor allow for 5760 unique combinations of the dNBR at a high spatial resolution of ap-
proximately 15 m. The performance of the hyperspectral dNBR was assessed by comparison against
field data and the spectral optimality statistic. The field data is composed of 83 in situ measurements
of fire severity using the Geometrically structured Composite Burn Index (GeoCBI) protocol. The
optimality statistic ranges between zero and one, with one denoting an optimal measurement of the
fire-induced spectral change. We also combined the field and optimality assessments into a combined
score. The hyperspectral dNBR combinations demonstrated strong relationships with GeoCBI field
data. The best performance of the dNBR combination was derived from bands 63, centered at 0.962
µm, and 218, centered at 2.382 µm. This bi-spectral combination yielded a strong relationship with
GeoCBI field data of R2 = 0.70 based on a saturated growth model and a median spectral index
optimality statistic of 0.31. Our hyperspectral sensitivity analysis revealed optimal NIR and SWIR
bands for the composition of the dNBR that are outside the ranges of the NIR and SWIR bands of
the Landsat 8 and Sentinel-2 sensors. With the launch of the Precursore Iperspettrale Della Missione
Applicativa (PRISMA) in 2019 and several planned spaceborne hyperspectral missions, such as the
Environmental Mapping and Analysis Program (EnMAP) and Surface Biology and Geology (SBG),
our study provides a timely assessment of the potential and sensitivity of hyperspectral data for
assessing fire severity.

Keywords: fire severity; differenced normalized burn ratio; composite burn index; spectral index
optimality; hyperspectral imagery; Airborne Visible/Infrared Imaging Spectrometer

1. Introduction

Post-fire effects assessments are crucial for the evaluation of fire-induced alterations
within ecosystems [1]. Fire severity and burn severity are broadly defined as the amount
of physical, chemical, and biological damage or the degree of fire-induced alterations to an
ecosystem [2–7]. Here, we adopted the fire disturbance continuum framework by Jain [8] to
separate the term fire severity from burn severity. Fire severity quantifies immediate changes
in the post-fire ecosystem and, as such, identifies fuel consumption, charcoal production, and
soil alterations [9–11]. In contrast, burn severity incorporates first- and second-order effects
and thus addresses longer-term ecosystem trajectories including delayed tree mortality and
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vegetation recovery [9,12,13]. Therefore, burn severity differs from fire severity because it
adds a longer term component of fire dynamics in ecosystems [12–14]. Fire severity includes
effects on vegetation and soil; hence, assessments may also be of interest for wildfire emissions
modeling [10,15,16].

The differenced normalized burn ratio (dNBR) has become the standard for quan-
tifying and mapping fire severity using remote sensing data from Landsat or Sentinel-2
satellite sensors [15–19]. The dNBR takes advantage of fire-induces alterations to vegeta-
tion and soils using the bi-temporal differenced reflectance from the near infrared (NIR,
0.7–1.2 µm) and short-wave infrared (SWIR, 1.2–2.5 µm) spectral regions [17]. Fire alters
the spectral reflectance signatures, and SWIR spectral bands often display an increase
in reflectance after fire, whereas the reflectance of the NIR spectral bands usually drops
after fire. Although the dNBR has proven to be successful in previous studies, it remains
prone to some shortcomings and has been criticized [15,20–23]. For example, the dNBR
remains sensitive to spectral changes that are not related to fire [10,12]. Additionally, the
relationship between the observed fire severity in the field and the dNBR saturates for
high-severity plots. Lastly, another drawback of the dNBR approach is that fire severity is
ecosystem-specific, and without field calibration, it lacks bio-physical meaning [16,20].

The dNBR approach has been calculated primarily from multispectral broadband
remote sensing imagery. Broadband multispectral imagers acquire calibrated radiance over
a limited number of non-contiguous spectral bands, often covering a spectral range wider
than 20 µm. This allows for a limited number of dNBR indices per sensors. In contrast,
hyperspectral imagery, also referred to as imaging spectroscopy or imaging spectrometry,
is the simultaneous acquisition of remotely sensed images in many narrow, spectrally
contiguous bands [17,24,25]. Consequently, the imaging spectrometer data collection
method facilitates quantitative and qualitative characterization of the Earth’s surface and
atmosphere using geometrically coherent spectral measurements [26–28]. Hyperspectral
imagery allows for several band combinations, resulting in many slightly different defi-
nitions of the dNBR. Until today, limited acquisitions of hyperspectral imagery over fires
have hampered the analysis of the hyperspectral sensitivity of the dNBR [27].

Prior airborne hyperspectral studies have provided promising results in various other
Earth science investigations [23–25]. The higher dimensionality created by a detailed
spectral signature and the ability to capture narrow spectral features may be beneficial
for fire severity assessments [13], and the well-established concept of the dNBR is easily
transferable to hyperspectral data due to its straightforward approach and computational
simplicity. For the calculation of the dNBR, pre- and post-fire hyperspectral paired images
are required. The majority of studies have relied on airborne imagers such as the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) [29] and thus have been limited in spatial
and temporal continuity [26]; as a result, there have been limited chances to examine
the sensitivity of hyperspectral dNBR combinations [27,30]. Other studies have used
imagery from the hyperspectral Hyperion spaceborne imager on Earth Observing One
between 2000 and 2017 [31]. Hyperion was part of a sampling mission with a narrow
swath width of 7.7 km, thereby limiting the spatial coverage of its images [32]. In 2019, the
Precursore Iperspettrale Della Missione Applicativa (PRISMA) [33] and the Hyperspectral
Imager Suite (HISUI) [34] were launched. PRISMA and HISUI are also hyperspectral
sampling missions with limited spatial coverage. More spaceborne hyperspectral missions
are expected to be launched in the next few years, such as the Environmental Mapping
And Analysis Program (EnMAP) [35], Surface Biology and Geology (SBG) [36], and the
Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM) [37]. Thus,
current and upcoming hyperspectral missions will considerably increase the availability of
hyperspectral imagery [27].

With this upcoming increase in hyperspectral imagery, our study aims to assess
the spectral sensitivity of the hyperspectral dNBR. Our study used pre- and post-fire
hyperspectral paired datasets acquired by the AVIRIS sensor as part of the Hyperspectral
Infrared Imager (HyspIRI, now renamed to SBG) preparatory airborne campaigns over
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two fires in California [29,33,34]. We tested all available hyperspectral dNBR combinations.
The dNBR combinations were evaluated based on a comparison with 83 Geometrically
structured Composite Burn Index (GeoCBI) field measurements of fire severity and an
optimality statistic calculated for fire-induced spectral displacements [12,38–41].

2. Materials and Methods

We used field measurements of fire severity and a spectral optimality metric to assess
the hyperspectral dNBR. We evaluated 5760 different spectral index combinations capi-
talizing upon the hyperspectral imagery acquisition over two Californian fires. Here, we
summarize the collection of fire severity field data measured in 85 plots over two field
campaigns (Section 2.3) and briefly describe the spectral optimality concept (Section 2.4).
More details can be found in van Gerrevink and Veraverbeke [42].

2.1. Study Areas

Our study included the 2013 Rim and 2014 King fires in California’s Sierra Nevada
Mountain range (Appendix A, Figure A1). The Rim fire burned ~104,000 ha across Yosemite
National Park and the Stanislaus National Forest (Appendix A, Figure A1a, Step 1 Figure 1).
The King fire burned ~40,000 ha in the Eldorado National Forest (Appendix A, Figure A1b,
Step 1 Figure 1). The fires burned through patchy vegetation dominated by dense mature
forests of ponderosa pine (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), and incense
cedar (Calocedrus decurrens) [28,42–44].
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Figure 1. Methodological workflow. The components highlight three different phases of this study: Step 1 includes the data
retrieval and pre-processing, Step 2 represents the spectral band selections and index construction, and Step 3 describes the
index evaluation approaches using field measurements of fire severity and the spectral index optimality theory.

2.2. Airborne Visible/Infrared Imaging Spectrometer Imagery

The sensitivity of the hyperspectral dNBR to assess fire severity was evaluated using
airborne imagery from the AVIRIS sensor. The AVIRIS sensor acquires narrowband data
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in 224 contiguous spectral channels that span the 0.4 µm to 2.5 µm spectral range [29].
The bandwidth of the AVIRIS sensor within the NIR spectral region is 9.4 nm, and within
the SWIR spectral region, the bandwidth is 9.7 nm. Over the Rim fire, spectral imagery
was acquired with a spatial resolution of 14.6 m. For the King fire, the spatial resolution
was 14.8 m [29,32,45]. We calculated all unique hyperspectral dNBR combinations using
the AVIRIS bands in the NIR and SWIR spectral regions. We excluded bands in the main
water vapor absorption regions. This resulted in the exclusion of bands 33 to 36, 103 to
114, 142 to 143, and 153 to 168. In total, 156 bands were retained in this study, of which
60 were NIR bands and 96 were SWIR bands [28]. This allowed for 5760 unique dNBR
combinations. We used Level 2 surface reflectance data [46]. The AVIRIS spectral channels
were atmospherically corrected using the Atmosphere Removal Algorithm (ATREM) [47].
All surface reflectance bands were further topographically corrected using 1 m digital
orthophoto images resampled to the AVIRIS resolution [46]. Prior to mosaicking, images
were normalized to reduce discrepancies in bi-directional reflectance distribution functions
using a modified version of the Canty normalization algorithm [45]. The images were
acquired at near anniversary dates for both fires; thus, phenological differences between
images were minimal (Step 1 Figure 1). The June 2013 AVIRIS acquisition over the Rim fire
(pre-fire) covered roughly 64% of the fire perimeter with a two km buffer in the months
preceding ignition. Post-fire coverage of the AVIRIS sensor approximates 96% of the fire
perimeter, including the buffer. For the King fire, both pre- and post-fire flight lines fully
covered the fire perimeter, including a two km buffer [46].

2.3. Field Measurements of Fire Severity

To assess in situ fire severity, we used the Geometrically structured Composite Burn
Index (GeoCBI) protocol [40,41]. GeoCBI divides the ecosystem into five different strata
using one substrate and four vegetation strata [10]. In each stratum, different fire severity
characteristics, such as char height, percentage altered foliage, and soil and rock cover
and color changes are rated. Fire severity is scored on a continuous scale between zero
and three based on semi-quantitative expert judgement approach. Scores of zero represent
unburned field plots, while a score of three marks a high fire severity plot. Based on the
stratum averages and corresponding fractions of cover, plot-level fire severity is expressed
by the strata weighted average. In total 85 plots were sampled across the Rim (n = 33)
and King (n = 52) fires [42]. Two field data plots of the Rim fire campaign were excluded
from our assessment, as they were outside the extent of the AVIRIS images. Field plot
locations were chosen to represent the observed range of fire severity in mixed conifer
forests. Furthermore, plots were selected in homogeneous areas with regards to pre-fire
vegetation and fire severity; because of accessibility, plots were often sampled in vicinity of
roads and trails but at least 100 m away from those.

2.4. Spectral Index Optimality

Spectral index optimality quantifies the index’s sensitivity to monitor a change of inter-
est, in this case, fire-induced ecosystem changes [10,12]. The spectral optimality is thereby
defined by the direction and magnitude of pixel displacements that form an unburned
to a burned pixel, in reference to what an optimal pixel displacement in the bi-spectral
space [38]. An optimal pixel displacement is perpendicular to the index isolines, while
displacements along index isolines represent noise. Based on these pixel displacements, a
spectral index optimality metric has been defined [14,42,44]. An optimality value of one
denotes an optimally sensed bi-temporal pixel displacement, whereas an optimality value
of zero means that the spectral index is insensitive to the bi-temporal pixel displacement.

2.5. Statistical Analysis

We retrieved the average surface reflectance over the field plots using three-by-three-
pixel windows for which the coordinates of the centers of the field plots were located
within the center pixels of the three-by-three windows. The center of each pixel window
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intersects with the recorded centroids of the GeoCBI 30 by 30 m field plot location. This
approach reduces the effects of potential satellite misregistration [48].

Furthermore, to describe the relationship between the field measurements and re-
motely sensed dNBR we employed a non-linear saturated growth model [49]. Regression
results were evaluated using the coefficient of determination R2 and the root mean squared
error (RMSE) as goodness-of-fit parameters. The optimality statistics of all burned pixels
were evaluated for each index combination using the median statistic [42].

Ideally, the overall best-performing bi-spectral combination has a high correlation
with field data and monitors the change of interest well. Both the regression R2 and the
median optimality strength tests in our assessment resulted in scores between zero and one.
Hence, we used the mean scores across both strength tests to identify the overall ideal NIR–
SWIR combination. Therefore, the overall performance of each index is a dimensionless
score between zero and one. A performance score of one indicates a perfect relationship
with field data and perfect monitoring of the change of interest. A score of zero means
that there is no relationship with field data and complete insensitivity to fire-induced
spectral changes.

3. Results
3.1. Relationships between Field and Airborne Data

The best-performing dNBR index resulted in an R2 of 0.71 (Figure 2). The optimal
AVIRIS based index was constructed using band 63 (0.962 µm) and band 203 (2.246 µm) of
the AVIRIS sensor (Figure 2a,d). Figure 2b,c show the strongest spectral index relationships
with the GeoCBI for the individual fire scars. The Rim (n = 31) and King (n = 52) fires
demonstrated reasonably strong (0.50 < R2 < 0.80) to very strong (R2 ≥ 0.80) relationships
with the GeoCBI field data throughout the entire NIR–SWIR bi-spectral space (Appendix B,
Figure A2). However, significant differences in the form of the relationships were observed
between the two fire scars. There were differences in the location of the most optimal
NIR and SWIR. The dNBR combination with the strongest relationship with field data for
the Rim fire was constructed with bands 62 (NIR = 0.953 µm) and 224 (SWIR = 2.45 µm).
This combination demonstrated a very strong relationship with GeoCBI, as it yielded an
R2 score of 0.86 (Figure 2b). The King fire’s best fitting dNBR returned a R2 score of 0.71,
using bands 96 (NIR = 1.25 µm) and 152 (SWIR = 1.774 µm).

3.2. dNBR Optimality

The median optimality of the best-performing dNBR was 0.23 over the Rim
fire (NIR = 0.962 µm, SWIR = 2.004 µm) and 0.51 over the King fire (NIR = 0.765 µm,
SWIR = 2.169 µm) (Figure 3b,c). Using data from both fires, the highest median optimality
was 0.33 for the dNBR combination of the NIR band centered at 0.765 µm and the SWIR band
centered at 2.382 µm (Figure 3a,d). Figure 3b–d show the histograms with the optimality
values for the best-performing dNBR for the Rim fire, King fire, and both fires. Both datasets
recorded many pixels with optimality values lower than 0.1. Moreover, the Rim and King
fires display opposite trends with relationship to pixels optimality values higher than 0.1. The
Rim fire showed a declining trend, where an inclining trend was recorded for the King fire
toward more pixels with higher optimality values. Combining data from the Rim and King
fires resulted in a slight declining trend for pixels with optimality values higher than 0.1.

3.3. Overall Performance

The hyperspectral dNBR that performed best in our analysis, considering both the
relationship with field data and the spectral optimality of the index, was constructed with
band 63 (NIR, centered at 0.962 µm) and band 218 (SWIR, centered at 2.382 µm) (Figure
4a). The dNBR yielded an R2 score of 0.70 (Figure 4b). The median spectral optimality
was 0.31 (Figure 4c). The field data exhibited dNBR values ranging from −0.318 to 1.335.
Our model predictions encounter an RMSE of 0.27, which is roughly one-seventh of the
total GeoCBI variation in our field data. The predicted GeoCBI values thus substantially
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diverged from the observations. The optimality maps of the best-performing hyperspectral
dNBR are displayed in Figure 5a,b. The median optimality of the dNBR was 0.20 for the
Rim fire (Figure 5a) and 0.46 for the King fire (Figure 5b).
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Figure 2. Regression results of the saturated growth model for GeoCBI field data in relation to spectral indices. (a) Matrix
of the coefficient of determination results R2 of all hyperspectral dNBR combinations. (b) Scatter plot and regression line
between the GeoCBI field data and the best-performing dNBR index for the Rim fire (NIR = 0.953 µm, SWIR = 2.45 µm).
(c) Scatter plot and regression line between the GeoCBI field data and the best-performing dNBR index for the King
fire (NIR = 1.25 µm, SWIR = 1.774 µm). (d) Scatter plot and regression line between the GeoCBI field data and the
best-performing dNBR index across the pooled data set (NIR = 0.962 µm, SWIR = 2.246 µm). The white spaces in panel
(a) represents the wavelength at which bands were excluded. (NIR: near infrared, SWIR: short-wave infrared, dNBR:
differenced normalized burn ratio, GeoCBI: geometrically structured composite burn index).
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Figure 5. Spectral index optimality and pre- and post-fire differenced maps of both the Rim and King fire with the overall
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The hyperspectral dNBR values were bi-temporally differenced (Step 2 Figure 1).
These differenced maps are shown in Figure 5c,d. Furthermore, it is apparent that a
significant number of pixels with a recorded optimality values lower than 0.2 correspond
to unburned areas within the fire scar, as can be seen in the dNBR maps.

4. Discussion

The results of the hyperspectral dNBR display strong relationships with GeoCBI field
data for a temperate environment, such as California, USA. Depending on the studied
datasets and fires, the best hyperspectral dNBR relationships with GeoCBI field resulted
in R2 of 0.70 (Figure 4). The model results fall within the ranges observed in previous
GeoCBI–dNBR studies based on multispectral data [20,26,28]. The inter-comparison across
different fires shows the same large variability in the form of relationships as confirmed
in previous crossfire field data and airborne relationship studies [19,26,44,50]. Van Ger-
revink and Veraverbeke (2021) [42] assessed the GeoCBI–dNBR relation over the same
fires with multispectral data from MODIS/ASTER (Moderate Resolution Imaging Spec-
trometer/Advanced Spaceborne Thermal Emission and Reflection Radiometer) Airborne
Simulator (MASTER) instrument. The hyperspectral dNBR (R2 of 0.71) (Figure 2d) reported
in this study slightly outperformed van Gerrevink and Veraverbeke’s multispectral dNBR
(R2 of 0.67) (Appendix C, Figure A3). The improved overall dNBR–GeoCBI form of rela-
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tionship can be partly explained by the improvements across the Rim fire. Multispectral
data yielded an R2 of 0.52, whereas hyperspectral data results demonstrated an R2 of
0.86 for the Rim fire. However, significant residual variability among the fitted models,
as shown in Figure 4b,c, suggests relatively high uncertainty in estimated fire severity
similar to earlier studies with multispectral data [26,28,46]. The uncertainty arises from
several shortcomings inherent to the dNBR. For example, the dNBR is sensitive to non-fire
induced spectral alterations [10,12]. Additionally, GeoCBI–dNBR models demonstrate
asymptotic behavior. This demonstrates difficulties of the dNBR to differentiate between
high severity plots [49].

In addition, our optimality results across the Rim and King fires re-affirm a large variability
in dNBR optimality across fires [12,43]. The combined dataset recorded a median statistic
of 0.33 for the best NIR–SWIR combination. The optimality results are highly comparable
with the results presented by Roy et al. [12] and Escuin et al. [21]. Roy et al. [12] assessed
the optimality of the dNBR from MODIS images over fires across different biomes; however,
this analysis included unburned pixels. Their mean optimality result fell within the range of
0.24 to 0.33. Escuin et al. [21] conducted an optimality assessment of fire severity using the
dNBR from Landsat imagery. Including unburned pixels resulted in a decrease in median
optimality scores between 0.09 and 0.49 [21]. Both Roy et al. [12] and Escuin et al. [21] reported
a significant percentage of pixels with an optimality score lower than 0.1, when unburned
pixels were incorporated into their optimality assessments. Our hyperspectral dNBR optimality
analysis reported similar percentages of pixels with an optimality score lower than 0.1. The
dNBR maps in Figure 5c,d show many pixels with low dNBR values that approach zero.
These low dNBR pixels were enclosed in the fire perimeter, and this suggests that unburned
pixels with consequent low optimality were included in our analysis. The low performance
of wavebands located between 1.25 µm and 1.78 µm is consistent with the pre- and post-fire
differenced AVIRIS spectral reflectance across all fire severity categories from van Wagtendonk
et al. (2004) [23].

Van Gerrevink and Veraverbeke [42] conducted an optimality assessment using the
dNBR from multispectral MASTER imagery over the same fires. They also found a compa-
rably high percentage of pixels with optimality scores lower than 0.1; however, the median
optimality values exceeded the values of our current hyperspectral study. The median
spectral optimality was 0.56 for the Rim fire and 0.60 for the King fire [42]. The difference in
optimality distributions may be caused by a proportional difference in cloud cover between
the MASTER and AVIRIS imagery. Cloud cover can significantly affect the optimality
performance. Large cloudy areas constrained our optimality analysis, because of which
several patches of pixels were excluded from the optimality analysis. Inaccuracies in the
cloud cover map that we used may have resulted in the inclusion of cloud-affected pixels
in our analysis. This seems especially apparent for the Rim fire, where many cloud-affected
areas were present (Figure 5a,b). The number of cloud-affected pixels partly explains the
significant discrepancy in the median statistic between the two fires. Moreover, hyper-
spectral imagery is inherently more sensitive to noise due to its narrow bandwidth [50,51].
This lower signal-to-noise ratio with hyperspectral imagery may have further deteriorated
optimality performances.

Van Wagtendonk et al. [23] provided a rare example that capitalized upon earlier pre-
and post-fire hyperspectral airborne image acquisitions for fire severity assessments. They
compared AVIRIS and Landsat detection capabilities over the 2001 Hoover fire in California,
USA. The hyperspectral results agreed well with fire severity detections using multispectral
sensors but unveiled no increased sensitivity of the hyperspectral assessment compared to
the multispectral assessment [23,27]. To derive the hyperspectral dNBR, van Wagtendonk
et al. [23] investigated one hyperspectral band combination. This selection was based on
the maximum bi-temporal response in spectral reflectance regions. The AVIRIS bands
47 (NIR, centered at 0.788 µm) and 210 (SWIR, centered at 2.370 µm) were selected for their
hyperspectral dNBR [23]. Additionally, they conclude that the NIR and SWIR Landsat
ETM+ bands were not optimally located for fire severity assessments as other spectral
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regions sampled by AVIRIS demonstrated great potential for fire severity quantifications.
Our study extends the work of van Wagtendonk et al. [23], as it assesses the full potential of
all possible hyperspectral NIR–SWIR bi-spectral combinations. Landsat 8 and Sentinel-2 are
currently the most commonly used broadband sensors for fire severity assessments [16,18].
For Landsat 8, the dNBR is calculated using band 5 (NIR, between 0.85 and 0.88 µm) and
band 7 (NIR, between 2.11 and 2.29 µm). For Sentinel-2, the equivalent bands are band
8A (NIR, between 0.855 µm and 0.875 µm) and band 12 (SWIR, between 2.100 µm and
2.280 µm). Our hyperspectral analysis revealed other responsive portions within the NIR–
SWIR bi-spectral space, which are not sampled by current broadband sensors like Landsat
8 and Sentinel-2. The hyperspectral dNBR with the best performance was constructed
with longer NIR (centered at 0.962 µm) and SWIR (centered at 2.382 µm) wavelengths
than those available from Landsat 8 and Sentinel-2 (Figure 4a). The spectral location of
the SWIR band from our best-performing index is remarkably close to the SWIR band
location identified by van Wagtendonk et al. [23] using the maximum bi-temporal response
signatures. The spectral locations of the best-performing NIR band is more different
between our study and that of van Wagtendonk et al. [23]. However, the bi-temporal
response signature of AVIRIS sensor demonstrates the potential for sampling NIR spectral
bands in vicinity of 0.912 µm [13,23]. Van Wagtendonk et al. [23] did not evaluate the use
of NIR bands at these longer wavelengths in the context of change detection. Therefore,
our study re-affirms the findings of van Wagtendonk et al. [23] that hyperspectral sensors
that image outside the broadband ranges may outperform fire severity assessments from
multispectral broadband sensors.

Despite the relative success of the dNBR approach in fire severity mapping, our
analyses of the hyperspectral dNBR showed large variability in the form of relationships
with field data between fires (Figure 2) [19,20,26,50]. The spectral sensitivity of the SWIR
region to difference in soil brightness and moisture conditions partly explains the spatial
and temporal variability in the dNBR response [12,52]. While the dNBR is a powerful
proxy that captures the bio-physical properties of fire-induced change to the landscape,
it only uses spectral information from two bands [10,19,24]. By doing so, dNBR fire
severity studies do not capitalize on the advantage of the wealth of available spectral
information. Spectral mixture analysis (SMA) has been applied in multispectral post-
fire fire severity studies; however, some studies have capitalized upon hyperspectral
data [27,28,53–60]. The main advantage of SMA in fire severity assessments is that it
does not require field data calibrations as it quantifies the abundance of ground cover
classes. The estimates of green vegetation and charcoal fractions correlate significantly
with ground measurements of fire severity, providing a valuable alternative in the absence
of pre- and post-fire hyperspectral pairs [17,24,29]. Tane et al. [28] mapped the fire severity
over the Rim fire from hyperspectral image using Multiple Endmember Spectral Mixture
Analysis (MESMA), which is a SMA technique that accounts for end-member variability.
The fractional cover maps derived from MESMA were validated with high-resolution
WorldView-2 imagery. A comparison with the high-resolution fire severity estimates
from Worldview-2 resulted in reasonably strong relationships with the MESMA-derived
ash cover (R2 of 0.741). This performance is similar to our relationship between the
hyperspectral dNBR and the GeoCBI. Furthermore, light detection and ranging (LiDAR)
imagery can be used to derive the waveform area relative change (WARC) metric [61]. This
newly developed fire severity assessment technique capitalizes upon changes in vegetation
structure among changes in leaf and soil colors. The WARC metric has successfully been
validated over the King fire. Synergistic use of spectral indices and LiDAR could improve
the assessment of post-fire damages and contribute to a more detailed long-term fire
severity evaluation [61].

Potential inaccuracies that hampered our analysis may emerge from both field and
remotely sensed observations [42]. GeoCBI field data analysis preferentially requires a
stratified sampling approach. Therefore, the number of plots per fuel type should be
closely correlated with the proportion of the total burned area for each fuel type. Due to
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accessibility limitations, we were unable to fulfill this criterion. Secondly, the divergence of
remotely sensed estimates and in situ field measurements of fire severity is partially because
both observation methods are imperfect proxies of fire severity. Field data observations of
GeoCBI are based on semi-quantitative judgements approaches, thus inherently prone to
some degree of subjectivity, specifically with assessments by different field teams, as was
the case in our study. Our optimality results revealed a substantial amount of noise within
the spectral indices, as the median statistics of both fires were substantially lower than the
optimal score of one. The occurrence of noise in remotely sensed change detection can
result from minor differences in phenology between image acquisitions, and imperfections
raised in the pre-processing of images, including identifying and removing clouds from the
analysis. Hyperspectral imagery in multi-temporal differenced fire severity assessments has
long been limited by complexities of airborne data acquisition. As such, pre- and post-fire
hyperspectral imagery over ground-truthed fires have remained rare [24,27,33]. Our study
is therefore timely, as it identifies opportunities that may arise from hyperspectral fire
severity mapping now that more frequent pre- and post-fire imagery will become available
from ongoing (PRISMA, HISUI) and upcoming (EnMAP, SBG, SHALOM) spaceborne
hyperspectral missions.

5. Conclusions

Based on relationships with field measurements and optimality of spectral index
optimality, our study is one of the first to assess the hyperspectral sensitivity of the dNBR
for assessing fire severity. Broadly, our results re-affirm the strength of the dNBR for
capturing large parts of the variability observed in field observation of fire severity, as
demonstrated earlier with multispectral assessments. However, we also found that the
spectral locations of the NIR and SWIR bands of the best-performing hyperspectral dNBR
combination are positioned outside the wavelength range of the bands that constitute
the dNBR from spaceborne multispectral missions such as Landsat 8 and Sentinel-2. We
therefore tested 5760 dNBR combinations in total, using 60 unique NIR and 96 SWIR
spectral bands. The overall best-performing hyperspectral dNBR was based on band 63
(NIR, centered at 0.962 µm) and band 218 (SWIR, centered at 2.382 µm). Our study made
use of pre- and post-fire airborne acquisitions over the Rim and King fires in California
from the AVIRIS sensor. By doing so, this study is the first to evaluate full potential of
the NIR–SWIR bi-spectral space with hyperspectral data for assessing fire severity. With
the increasing availability of hyperspectral data from recently launched and upcoming
spaceborne imaging spectroradiometers, the calculation of the hyperspectral dNBR will
become more widespread. We provided a first assessment of the hyperspectral dNBR over
two fires in temperate forest ecosystems, and further analysis should evaluate whether
hyperspectral sensitivity may be different across ecosystems.
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Appendix C. Scatter Plot of GeoCBI Field Data AVIRIS Sensor vs.
MASTER Instrument
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