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Abstract: Paris-CARLA-3D is a dataset of several dense colored point clouds of outdoor environments
built by a mobile LiDAR and camera system. The data are composed of two sets with synthetic data
from the open source CARLA simulator (700 million points) and real data acquired in the city of
Paris (60 million points), hence the name Paris-CARLA-3D. One of the advantages of this dataset
is to have simulated the same LiDAR and camera platform in the open source CARLA simulator
as the one used to produce the real data. In addition, manual annotation of the classes using the
semantic tags of CARLA was performed on the real data, allowing the testing of transfer methods
from the synthetic to the real data. The objective of this dataset is to provide a challenging dataset to
evaluate and improve methods on difficult vision tasks for the 3D mapping of outdoor environments:
semantic segmentation, instance segmentation, and scene completion. For each task, we describe the
evaluation protocol as well as the experiments carried out to establish a baseline.

Keywords: dataset; LiDAR; mobile mapping; laser scanning; 3D mapping; synthetic; point cloud;
outdoor; semantic; scene completion

1. Introduction

Data in the form of a 3D point cloud are becoming increasingly popular. There are
mainly three families of 3D data acquisition: photogrammetry (Structure from Motion and
Multi-View Stereo from photos), RGB-D or structured light scanners (for small objects or
indoor scenes), and static or mobile LiDARs (for outdoor scenes). The advantage of this
last family (mobile LiDARs) is their ability to acquire large volumes of data. This results in
many potential applications: city mapping, road infrastructure management, construction
of HD maps for autonomous vehicles, etc.

There are already many datasets published on the first two families, but few are
available on outdoor mapping. However, there are still many challenges in the ability to
analyze outdoor environments from mobile LiDARs. Indeed, the data contain a lot of noise
(due to the sensor but also to the mobile system) and have significant local anisotropy and
also missing parts (due to occlusion of objects).

The main contributions of this article are as follows:

• the publication of a new dataset, called Paris-CARLA-3D (PC3D in short)—synthetic
and real point clouds of outdoor environments; the dataset is available at the following
URL: https://npm3d.fr/paris-carla-3d, accessed on 15 October 2021;

• the protocol and experiments with baselines on three tasks (semantic segmentation,
instance segmentation, and scene completion) based on this dataset.
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2. Related Datasets

With the democratization of 3D sensors, there are more and more point cloud datasets
available. We can see in Table 1 a list of datasets based on 3D point clouds. We have listed
only datasets available in the form of a point cloud. We have, therefore, not listed the
datasets such as NYUv2 [1], which do not contain the poses (trajectory of the RGB-D sensor)
and thus do not allow for producing a dense point cloud of the environment. We are also
only interested in terrestrial datasets, which is why we have not listed aerial datasets such
as DALES [2], Campus3D [3] or SensatUrban [4].

First, in Table 1, we performed a separation according to the environment: the indoor
datasets (mainly from RGB-D sensors) and the outdoor datasets (mainly from LiDAR
sensors). For outdoor datasets, we also made the distinction between perception datasets
(to improve perception tasks for the autonomous vehicle) and mapping datasets (to improve
the mapping of the environment). For example, the well-known SemanticKITTI [5] consists
of a set of LiDAR scans from which it is possible to produce a dense point cloud of the
environment with the poses provided by SLAM or GPS/IMU, but the associated tasks
(such as semantic segmentation or scene completion) are only centered on a LiDAR scan
for the perception of the vehicle. This is very different from the dense point clouds of
mapping systems such as Toronto-3D [6] or our Paris-CARLA-3D dataset. For the semantic
segmentation and scene completion tasks, SemanticKITTI [7] uses only one single LiDAR
scan as input (one rotation of the LiDAR). In our dataset, we wish to find the semantic
and seek to complete the “holes” on the dense point cloud after the accumulation of all
LiDAR scans.

Table 1 thus shows that Paris-CARLA-3D is the only dataset to offer annotations and
protocols that allow for working on semantic, instance, and scene completion tasks on
dense point clouds for outdoor mapping.

Table 1. Point cloud datasets for semantic segmentation (SS), instance segmentation (IS), and scene completion (SC) tasks.
RGB means color available on all points of the point clouds. In parentheses for SS, we show only the number of classes
evaluated (the annotation can have more classes).

Scene Type Dataset (Year) World # Points RGB
Tasks

SS IS SC

In
do

or

M
ap

pi
ng

SUN3D [8] (2013) Real 8 M Yes X(11) X
SceneNet [9] (2015) Synthetic - Yes X(11) X X
S3DIS [10] (2016) Real 696 M Yes X(13) X X
ScanNet [11] (2017) Real 5581 M Yes X(11) X X
Matterport3D [12] (2017) Real 24 M Yes X(11) X X

O
ut

do
or

Pe
rc

ep
ti

on

PreSIL [13] (2019) Synthetic 3135 M Yes X(12) X
SemanticKITTI [5] (2019) Real 4549 M No X(25) X X
nuScenes-Lidarseg [14] (2019) Real 1400 M Yes X(32) X
A2D2 [15] (2020) Real 1238 M Yes X(38) X
SemanticPOSS [16] (2020) Real 216 M No X(14) X
SynLiDAR [17] (2021) Synthetic 19,482 M No X(32)
KITTI-CARLA [18] (2021) Synthetic 4500 M Yes X(23) X

M
ap

pi
ng

Oakland [19] (2009) Real 2 M No X(5)
Paris-rue-Madame [20] (2014) Real 20 M No X(17) X
iQmulus [21] (2015) Real 12 M No X(8) X
Semantic3D [7] (2017) Real 4009 M Yes X(8)
Paris-Lille-3D [22] (2018) Real 143 M No X(9) X
SynthCity [23] (2019) Synthetic 368 M Yes X(9)
Toronto-3D [6] (2020) Real 78 M Yes X(8)
TUM-MLS-2016 [24] (2020) Real 41 M No X(8)
Paris-CARLA-3D (2021) Synthetic+Real 700 + 60 M Yes X(23) X X
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3. Dataset Construction

This dataset is divided into two parts: a first set of real point clouds (60 M points)
produced by a LiDAR and camera mobile system, and a second synthetic set produced by
the open source CARLA simulator. Images of the different point clouds and annotations
are available in Appendix B.

3.1. Paris (Real Data)

To create the Paris-CARLA-3D (PC3D) dataset, we developed a prototype mobile
mapping system equipped with a LiDAR (Velodyne HDL32) tilted at 45° to the horizon
and a 360° poly-dioptric camera Ladybug5 (composed of 6 cameras). Figure 1 shows the
rear of the vehicle with the platform containing the various sensors.

Figure 1. Prototype acquisition system used to create the PC3D dataset in the city of Paris. Sensors:
Velodyne HDL32 LiDAR, Ladybug5 360° camera, Photonfocus MV1 16-band VIR and 25-band NIR
hyperspectral cameras (hyperspectral data are not available in this dataset; they cannot be used in
mobile mapping due to the limited exposure time).

The acquisition was made on a part of Saint-Michel Avenue and Soufflot Street in
Paris (a very dense urban area with many static and dynamic objects, presenting challenges
for 3D scene understanding).

Unlike autonomous vehicle platforms such as KITTI [25] or nuScenes [14], the LiDAR
is positioned at the rear and is tilted to allow scanning of the entire environment, thus
allowing the buildings and the roads to be fully mapped.

To create the dense point clouds, we aggregated the LiDAR scans using a precise SLAM
LiDAR based on IMLS-SLAM [26]. IMLS-SLAM only uses LiDAR data for the construction
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of the dataset. However, our platform is equipped with a high-precision IMU (LANDINS
iXblue) and a GPS RTK. However, in a very dense environment (with tall buildings), an
IMU + GPS-based localization (even with post-processing) achieves lower performance
than a good LiDAR odometry (thanks to the buildings). The important hyperparameters of
IMLS-SLAM used for Paris-CARLA are: n = 30 scans, s = 600 keypoints/scan, r = 0.50 m
for neighbor search (explanations of these parameters are given in [26]). The drift of the
IMLS-SLAM odometry is less than 0.40 % with no failure case (failure = no convergence of
the algorithm). The quality of the odometry makes it possible to consider this localization
as “ground truth”.

The 360° camera was synchronized and calibrated with the LiDAR. The 3D data were
colored by projecting on the image (with a timestamp as close as possible to the LiDAR
timestamp) each 3D point of the LiDAR.

The final data were split according to the timestamp of points in six files (in binary
ply format) with 10 M points in each file. Each point has many attributes stored: x, y, z,
x_lidar_position, y_lidar_position, z_lidar_position, intensity, timestamp, scan_index, scan_angle,
vertical_laser_angle, laser_index, red, green, blue, semantic, instance.

For the data annotation, this was done entirely manually with 3 people involved in
3 phases. In phase 1, the dataset was divided into two parts, with one person annotating
each part (approximately 100 h of labeling per person). In phase 2, a verification of the
annotations was performed by the other person on the part that he did not annotate with
feedback and corrections. In phase 3, a third person outside the annotation carried out the
verification of the labels on the entire dataset and a consistency check with the annotation in
CARLA. The software used for annotation and checks was CloudCompare. The total time
in human effort was approximately 300 h to obtain very high quality, as visible in Figure 2.
The annotation of the data consisted of adding the semantic information (23 classes) and
instance information for the vehicle class. The classes are the same as those defined in the
CARLA simulator, making it possible to test transfer methods from synthetic to real data.

Figure 2. Paris-CARLA-3D dataset: (left) Paris point clouds with color information on LiDAR points; (right) manual
semantic annotation of the LiDAR points (using the same tags from the CARLA simulator). We can see the large number of
details in the manual annotation.

3.2. CARLA (Synthetic Data)

The open source CARLA simulator [27] allows for the simulation of the LiDAR
and camera sensors in virtual outdoor environments. Starting from our mobile system
(with Velodyne HDL32 and Ladybug5 360° camera), we created a virtual vehicle with
the same sensors positioned in the same way as on our real platform. We then launched
simulations to generate point clouds in the seven maps of CARLA v0.9.10 (called “Town01”
to “Town07”). We finally assembled the scans using the ground truth trajectory and then
kept one point cloud with 100 million points per town.
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The 3D data were colored by projecting on the image (with a timestamp as close
as possible to the LiDAR timestamp) each 3D point of the LiDAR. We used the same
colorization process used with the real data from Paris.

The final data were stored in seven files (in binary ply format) with 100 M points in
each file (one file = one town = one map in CARLA). We kept the following attributes
per point: x, y, z, x_lidar_position, y_lidar_position, z_lidar_position, timestamp, scan_index,
cos_angle_lidar_surface, red, green, blue, semantic, instance, semantic_image.

The annotation of CARLA data was automatic, thanks to the simulator with semantic
information (23 classes) and instances (for the vehicle and pedestrian classes). We also kept
during the colorization process the semantic information available in images in the attribute
semantic_image.

3.3. Interest in Having Both Synthetic and Real Data

One of the interests of the Paris-CARLA-3D dataset is to have both synthetic and real
data. The synthetic data are built with a virtual platform as close as possible to the real
platform, allowing us to reproduce certain classic acquisition system issues (such as the
difference in point of view of LiDAR and cameras sensors, creating color artifacts on the
point cloud). Synthetic data are relatively easy to produce in large quantities (here 700 M
points) and with ground truth without additional work for various 3D vision tasks such as
classes or instances. It is thus of increasing interest to develop new methods on synthetic
data but there is no evidence that they work on real data. With Paris-CARLA-3D and
therefore with particular attention to having the same annotations between synthetic and
real data, a method can be learned on synthetic data and tested on real data (which we will
do in Section 5.2.6). However, we will see that the results remain limited. An interesting
and promising approach will be to learn on synthetic data and to develop methods of
performing unsupervised adaptation on real data. In this way, the methods will be able to
learn from the large amount of data available in synthetic and, even better, from classes or
objects that do not frequently meet in reality.

4. Dataset Properties

Paris-CARLA-3D has a linear distance of 550 m in Paris and approximately 5.8 km in
CARLA (the same order of magnitude as the number of points (×10) between synthetic
and real). For the real part, this represents three streets in the center of Paris. The area
coverage is not large but the number and variety of urban objects, pedestrian movements,
and vehicles is important: it is precisely this type of dense urban environment that is
challenging to analyze.

4.1. Statistics of Classes

Paris-CARLA-3D is split into seven point clouds for the synthetic CARLA data, Town1
(T1) to Town7 (T7), and six point clouds for the real data of Paris, Soufflot0 (S0) to Souf-
flot5 (S5).

For CARLA data, cities can be divided into two groups: urban (T1, T2, T3, and T5) and
rural (T4, T6, T7).

For the Paris data, the point clouds can be divided into two groups: those near the
Luxembourg Garden with vegetation and wide roads (S0 and S1), and those in a more
dense urban configuration with buildings on both sides (S2, S3, S4 and S5).

The detailed distribution of the classes is presented in Appendix A.

4.2. Color

The point clouds are all colored (RGB information per point coming from cameras
synchronized with the LiDAR), making it possible to test methods using geometric and/or
appearance modalities.
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4.3. Split for Training

For the different tasks presented in this article, according to the distribution of the
classes, we chose to split the dataset into the following Train/Val/Test sets:

• Training data: S1, S2 (Paris); T2, T3, T4, T5 (CARLA);
• Validation data: S4, S5 (Paris); T6 (CARLA);
• Test data: S0, S3 (Paris); T1, T7 (CARLA).

4.4. Transfer Learning

Paris-CARLA-3D is the first mapping dataset that is based on both synthetic and real
data (with the same “platform” and the same data annotation). Indeed, simulators are
becoming more and more reliable, and the fact of being able to transfer a method from a
synthetic dataset created by a simulator to a real dataset is a line of research that could be
important in the future.

We will now describe three 3D vision tasks using this new Paris-CARLA-3D dataset.

5. Semantic Segmentation (SS) Task

Semantic segmentation of point clouds is a task of increasing interest over the last
several years [4,28]. This is an important step in the analysis of dense data from mobile
LiDAR mapping systems. In Paris-CARLA-3D, the points are annotated point-wise with
23 classes whose tags are those defined in the CARLA simulator [27]. Figure 2 shows an
example of semantic annotation in the Paris data.

5.1. Task Protocol

We introduce the task protocol to perform semantic segmentation in our dataset,
allowing future work to build on the initial results presented here. We have many different
objects belonging to the same class, as it the case in towns in the real world. This increases
the complexity of the semantic segmentation task.

The evaluation of the performance in semantic segmentation tasks relies on True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN) for each
class c. These values are used to calculate the following metrics by class c: precision Pc,
recall Rc, and Intersection over Union IoUc. To describe the performance of methods, we
usually report mean IoU as mIoU Equation (1) and Overall Accuracy as OA.

mIoU =
1
C

C

∑
c=1

TPc

TPc + FNc + FPc
(1)

where C is the number of classes.

5.2. Experiments: Setting a Baseline

In this section, we present experiments performed under different configurations in
order to demonstrate the relevance and high complexity of PC3D. We provide two baselines
for all experiments with PointNet++ [29] and KPConv [30] architectures, two models widely
used in semantic segmentation and which have demonstrated good performance on differ-
ent datasets [4]. A recent survey with a detailed explanation of the different approaches
to performing semantic segmentation on point clouds from urban scenes can be found
at [28,31].

One of the challenges of dense outdoor point clouds is that they cannot be kept in
memory, due to the high number of points. In both baselines, we used a subsampling
strategy based on sphere selection. The spheres were selected using a weighted random,
with the class rates of the dataset as probability distributions. This technique permits us to
choose spheres centered in less populated classes. We evaluated different radius spheres
(r = 2, 5, 10, 20 m) and we evidenced that using r = 10 m was a good compromise between
computational cost and performance. On the one hand, small spheres are fast to process
but provide poor information about the environment. On the other hand, large spheres
provide richer information about the environment but are too expensive to process.
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5.2.1. Baseline Parameters

The first baseline is based on the Pointnet++ architecture, commonly used in deep
learning applications. We selected the architecture provided by the authors [29]. It is
composed of three abstraction layers as the feature extractor and three MLP as the last part
of the model. The number of points and neighborhood radius by layer were taken from the
PointNet++ authors for outdoor and dense environments using MSG passing.

The second baseline is based on the KPConv architecture. We selected the KP-FCNN
architecture provided by the authors for outdoor scenes [30]. It is composed of a five-layer
network, where each layer contains two convolutional blocks, as originally proposed by
the ResNet authors [32]. We used dl0 = 6 cm, inspired by the value used by the authors for
the Semantic3D dataset.

5.2.2. Implementation Details

We fixed similar training parameters between both baselines (Pointnet++ [29] and
KPConv [30]) in order to compare their performance. As pre-processing, point clouds are
sub-sampled on a grid, keeping one point per voxel (voxel size of 6 cm). Models learn,
validate, and test with these data. Then, when testing, we perform inference with the
under-sampled point clouds and then give the labels in “full resolution” with a KNN of
the probabilities (not the labels). Spheres were computed in pre-processing (before the
training stage) in order to reduce the computational cost. During training, we selected the
spheres by class (class of the center point of the sphere) so that the network considered
all the classes at each epoch, which greatly reduces the problem of class imbalance of the
dataset. At each epoch, we took one point cloud from the dataset (Ti for CARLA and Si for
Paris) and set the number of spheres seen in this point cloud to 100.

Two features were included as input: RGB color information and height of points (z).
In order to prevent overfitting, we included geometric data augmentation techniques:
elastic distortion, random Gaussian noise with σ = 0.1 m and clip at 0.05 m, random
rotations around z, anisotropic random scale between 0.8 and 1.2, and random symmetry
around the x and y axes. We included the following transformations to prevent overfitting
due to color information: chromatic jitter with σ = 0.05, and random dropout of RGB
features with a probability of 20%.

For training, we selected the loss function as the sum of Cross Entropy and Power
Jaccard with p = 2 [33]. We used a patience of 50 epochs (no progress in the validation set)
and the optimizer ADAM with a default learning rate of 0.001. Both experiments were
implemented using the Torch Points3D library [34] using a GPU NVIDIA Titan X with
12Go RAM.

Parameters presented in this section were chosen from a set of experiments varying
the loss function (Cross Entropy, Focal Loss, Jaccard, and Power Jaccard) and input features
(RGB and z coordinate or only z coordinate or only RGB or only 1 as input feature). The
best results were obtained with the reported parameters.

5.2.3. Quantitative Results

Prediction of test point clouds was performed by using a sphere-based approach
using a regular grid and maximum voting scheme. In this case, the spheres’ centers were
calculated to keep the intersections of spheres at 1/3 of their radius (r = 10 m as done
during the training).

We report the obtained results in Table 2. We obtained an overall 13.9 % mIoU for Point-
Net++ and 37.5 % mIoU for KPConv. This remains low for state-of-the-art architectures.
This shows the difficulty and the wide variety of classes present in this Paris-CARLA-3D
dataset. We can also see poorer results on synthetic data due to the greater variety of
objects between CARLA cities, while, for the real data, the test data are very close to the
training data.
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Table 2. Results in semantic segmentation task using PointNet++ and KPConv architectures on
our dataset, Paris-CARLA-3D. Results are mIoU in %. For S0 and S3, training set is S1, S2. For T1

and T7, training set is T2, T3, T4 and T5. Overall mIoU is the mean IoU on the whole test sets (real
and synthetic).

Model
Paris CARLA Overall

S0 S3 T1 T7 mIoU

PointNet++ [29] 13.9 25.8 4.0 12.0 13.9
KPConv [30] 45.2 62.9 16.7 25.3 37.5

5.2.4. Qualitative Results

Semantic segmentation of point clouds is better on Paris than on CARLA in all evalu-
ated scenarios. This is an expected behavior because class variability and scene configura-
tions are much more complex in the synthetic dataset. By way of an example, Figures 3–6
display the predicted labels and ground truth from the test sets of Paris and CARLA data.
These images were obtained from the KPConv architecture.

From the qualitative results of semantic segmentation, it is evidenced the complexity
of our proposed dataset. In the case of Paris data, color information is discriminant enough
to separate sidewalks, roads, and road-lines. This is an expected behavior because the point
clouds were from the same town and were acquired the same day. However, in CARLA
point clouds, color information in ground-like classes changed between different towns.
Additionally, in some towns, such as T2, we included rain during simulations, visible in
the color of the road. This characteristic makes the learning stage even more difficult.

Figure 3. Left, prediction in S0 test set of Paris data using KPConv model. Right, ground truth.

Figure 4. Left, prediction in S3 test set of Paris data using KPConv model. Right, ground truth.
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Figure 5. Left, prediction in T1 test set of CARLA data using KPConv model. Right, ground truth.

Figure 6. Left, prediction in T7 test set of CARLA data using KPConv model. Right, ground truth.

5.2.5. Influence of Color

We studied the influence of color information during training in the PC3D dataset. In
Table 3, we report the obtained results on the test set of semantic segmentation using the
KPConv architecture without RGB features. The rest of the training parameters were the
same as in the previous experiment. We can see that even if the colorization of the point
cloud can create artifacts during the projection step (from the difference in point of view
between the LiDAR sensor and the cameras or from the presence of moving objects), the use
of the color modality in addition to geometry clearly improved the segmentation results.

Table 3. Results in semantic segmentation task using KPConv [30] architecture on our PC3D dataset
with and without RGB colors on LiDAR points. Results are mIoU in %. For S0 and S3, training set is
S1, S2. For T1 and T7, training set is T2, T3, T4 and T5. Overall mIoU is the mean IoU on the whole
test sets (real and synthetic).

Model
Paris CARLA Overall

S0 S3 T1 T7 mIoU

KPConv w/o color 39.4 41.5 35.3 17.0 33.3
KPConv with color 45.2 62.9 16.7 25.3 37.5

5.2.6. Transfer Learning

Transfer learning (TL) was performed with the aim of demonstrating the use of
synthetic point clouds generated by CARLA to perform semantic segmentation on real-
world point clouds. We selected the model with the best performance in the point clouds
of the test set from CARLA data, i.e., taking the KPConv architecture (pre-trained on urban
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towns T2, T3, and T5 since real data are urban data). Then, we took it as a pre-training stage
with Paris data.

We carried out different types of experiments as follows: (1) Predict test point clouds
of Paris data using the best model obtained in urban towns from CARLA without training
in Paris data (no fine-tuning); (2) Freeze the whole model except the last layer; (3) Freeze
the feature extractor of the network; (4) No frozen parameters; (5) Training a model from
scratch using only Paris training data. These scenarios were selected to evaluate the
relevance of learned features in CARLA and their capacity to discriminate classes in Paris
data. Results are presented in Table 4. The best results using TL were obtained in scenario
4: the model pre-trained in CARLA without frozen parameters during fine-tuning on Paris
data. However, scenario 5 (i.e., no transfer) ultimately showed superior results.

Table 4. Results in transfer learning for the semantic segmentation task using KPConv architecture
on our PC3D dataset. Results are mIoU in %. Pre-training was done using urban towns from CARLA
(T2, T3, and T5). No fine-tuning: the model was pre-trained on CARLA data without fine-tuning on
Paris data. No frozen parameters: the model was pre-trained on CARLA without frozen parameters
during fine-tuning on Paris data. No transfer: the model was trained only on the Paris training set.

Transfer Learning Scenarios
Paris Overall

S0 S3 mIoU

No fine-tuning 20.6 17.7 19.2
Freeze except last layer 24.1 31.0 27.6
Freeze feature extractor 29.0 41.3 35.2
No frozen parameters 42.8 50.0 46.4

No transfer 45.2 62.9 51.7

From Table 4, a first finding is that the current model trained on synthetic data cannot
be directly applied to real-world data (the no fine-tuning row). This is an expected result,
because objects and class distributions in CARLA towns are different from real-world ones.

We may also observe that the performance of no frozen parameters is lower than that
of no transfer: pre-training the network on the synthetic and fine-tuning on the real data
decreases the performance compared to training directly on the real dataset. Alternatives
are now introduced in order to close the existing gap between synthetic and real data, such
as domain adaptation methods.

6. Instance Segmentation (IS) Task

The ability to detect instances in dense point clouds of outdoor environments can
be useful for cities for urban space management (for example, to have an estimate of the
occupancy of parking spaces through fast mobile mapping) or for building the prior map
layer for HD maps in autonomous driving.

We provide instance annotations as follows: in Paris data, instances of vehicle class
were manually point-wise annotated; in CARLA data, vehicle and pedestrian instances
were automatically obtained by the CARLA simulator. Figure 7 illustrates the instance
annotation of vehicles in S3 Paris data. We found that pedestrians in Paris data were too
close to each other to be recognized as separate instances (Figure 8).

6.1. Task Protocol

We introduce the task protocol to evaluate the instance segmentation methods in
our dataset.

Evaluation of the performance in the instance segmentation task is different to that in
the semantic segmentation task. Inspired by [35] on things, we report Segment Matching
(SM) and Panoptic Quality (PQ), with IoU = 0.5 as the threshold to determine well-
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predicted instances. We also report the mean IoU, based on IoU by instance i (IoUi),
calculated as follows:

IoUi =

{
IoU IoU ≥ 0.5

0, otherwise
(2)

A common issue in LiDAR scanning is the presence of far objects that are unrecogniz-
able due to the small number of points. In the semantic segmentation task, such objects do
not affect evaluation metrics, due to their low rate. However, in the instance segmentation
task, they may considerably affect the evaluation of the algorithms. In order to provide an
evaluation metric having relevance, metrics are computed only with instances closer than
d = 20 m to the mobile system.

Figure 7. Instances of vehicles in S3 test set (Paris data).

Figure 8. Pedestrians in Paris data: we can see inside the red circle the difficulty of differentiating the
instances of pedestrians.
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6.2. Experiments: Setting a Baseline

In this section, we present a baseline for the instance segmentation task and its
evaluation with the introduced metrics. We propose a hybrid approach, combining deep
learning and mathematical morphology, to predict instance labels. We report the obtained
results for each point cloud of the test sets.

As presented by [36], urban objects can be classified using geometrical and contextual
features. In our case, we start from already predicted things classes (vehicles and pedestri-
ans, in this case) with the best model introduced in Section 5.2.3, i.e., using the KPConv
architecture. Then, instances are detected by using Bird’s Eye View (BEV) projections and
mathematical morphology.

We computed the following BEV projections (with a pixel resolution of 10 cm) for
each class:

• Occupancy image (Ib)—binary image with presence or not of things class;
• Elevation image (Ih)—stores the maximal elevation among all projected points on the

same pixel;
• Accumulation image (Iacc)—stores the number of points projected on the same pixel.

At this point, three BEV projections were computed for each class: occupancy (Ib),
elevation (Ih), and accumulation (Iacc). In the following sections, we describe the proposed
algorithms to separate the vehicle and pedestrian instances. We highlight that these
methods rely on the labels predicted in the semantic segmentation task (Section 5.2.1) using
the KPConv architecture.

6.2.1. Vehicles in Paris and CARLA Data

One of the main challenges of this class is the high variability due to the different
types of objects that it contains: cars, motorbikes, bikes, and scooters. Additionally, it
also includes moving and parked vehicles, which makes it challenging to determine
object boundaries.

From BEV projections, vehicle detection is performed as follows:

1. Discard the predicted points of the vehicle if the z coordinate is greater than 4 m in Ih;
2. Connect close components with two consecutive morphological dilations of Ib by a

square of 3-pixel size;
3. Fill holes smaller than ten pixels inside each connected component; this is performed

with a morphological area closing;
4. Discard instances with less than 500 points in Iacc;
5. Discard instances not surrounded by ground-like classes in Ib.

6.2.2. Pedestrians in CARLA Data

As mentioned earlier for vehicles, the pedestrian class may contain moving objects.
This implies that object boundaries are not always well-defined.

We followed a similar approach as described previously for vehicle instances based
on the semantic segmentation results and BEV projections. We first discarded pedestrian
points if the z coordinate was greater than 3 m in Ih, and then connected close components
and filled small holes, as described for the vehicle class; we then discarded instances with
less than 100 points in Iacc and, finally, discarded instances not surrounded by ground-like
classes in Ib.

6.2.3. Quantitative Results

For vehicles and pedestrians, instance labels of BEV images were back-projected to 3D
data in order to provide point-wise predictions. In Table 5, we report the obtained results in
instance segmentation using the proposed approach. These results are the first of a method
allowing instance segmentation on dense points clouds from 3D mapping, and we hope
that it will inspire future methods.
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Table 5. Results on test sets of Paris-CARLA-3D for the instance segmentation task. SM: Segment
Matching. PQ: Panoptic Quality. mIoU: mean IoU. All results are in %.

# Instances SM PQ mIoU

S0—Vehicles 10 90.0 70.9 81.6
S3—Vehicles 86 32.6 40.5 28.0

T1—Vehicles 41 17.1 20.4 14.2
T7—Vehicles 27 74.1 72.6 61.2
T1—Pedestrians 49 18.4 17.0 13.9
T7—Pedestrians 3 100.0 9.0 66.0

Mean 216 55.3 38.4 44.2

6.2.4. Qualitative Results

In our proposed baseline, instances are separated using BEV projections and geo-
metrical features based on semantic segmentation labels. In some cases, as presented in
Figure 9, 2D projections can merge objects in the same instance label if they are too close.

Figure 9. Top, vehicle instances from our proposed baseline using BEV projections and geometrical
features in S3 Paris data. Bottom, ground truth.

Close objects and instance intersections are challenging for the instance segmentation
task. The former can be tackled by using approaches based directly on 3D data. For the
latter, we provide timestamp information by point in each PLY file. The availability of this
feature may be useful for future approaches.

Semantic segmentation and instance segmentation could be unified in one task, Panop-
tic Segmentation (PS): this is a task that has recently emerged in the context of scene
understanding [35]. We leave this for future works.
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7. Scene Completion (SC) Task

The scene completion (SC) task consists of predicting the missing parts of a scene
(which can be in the form of a depth image, a point cloud, or a mesh). This is an important
problem in 3D mapping due to holes from occlusions and holes after the removal of
unwanted objects, such as vehicles or pedestrians (see Figure 10). It can be solved in the
form of 3D reconstruction [37], scan completion [38], or, more specifically, methods to fill
holes in a 3D model [39].

Figure 10. Paris data after removal of vehicles and pedestrians. Zones in red circles show the interest
in conducting scene completion for 3D mapping, in order to fill holes from removed pedestrians,
parked cars, and from the occlusion of other objects, and also to improve the sampling of points in
areas far from the LiDAR.

Semantic scene completion (SSC) is the task of filling the geometry as well as predicting
the semantics of the points, with the aim that the two tasks carried out simultaneously
benefit each other (survey of SSC in [40]). It is also possible to jointly predict the geometry
and color during scene completion, as in SPSG [41]. For now, we only evaluate the geometry
prediction, as we leave the prediction of simultaneous geometry, semantics, and color for
future work.

The vast majority of the existing methods of scene completion (SC) work focus on
small indoor scenes, while, in our case, we have a dense outdoor environment with our
Paris-CARLA-3D dataset. Completing outdoor LiDAR point clouds is more challenging
than data obtained from RGB-D images acquired in indoor environments, due to the
sparsity of points obtained using LiDAR sensors. Moreover, larger occluded areas are
present in outdoor scenes, caused by static and temporary foreground objects, such as
trees, parked vehicles, bus stops, and benches. SemanticKITTI [7] is a dataset conducting
scene completion (SC) and semantic scene completion (SSC) on LiDAR data, but they use
only one single scan as input, with a target (ground truth) being the accumulation of all
LiDAR scans. In our dataset, we seek to complete the “holes” from the accumulation of all
LiDAR scans.

7.1. Task Protocol

We introduce the task protocol to perform scene completion on PC3D. Our goal is
to predict a more complete point cloud. First, we extract random small chunks from the
original point cloud that we transform into a discretized regular 3D grid representation
containing the Truncated Signed Distance Function (TSDF) values, which expresses the
distance from each voxel to the surface represented by the point cloud. Then, we use
a neural network to predict a new TSDF and finally, we extract a point cloud from that
TSDF that should be more complete that the input. We used as TSDF the classical signed
point-to-plane distance to the closest point of the point cloud as in [42]. Our original point
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cloud is already incomplete due to the occlusions caused by static objects and the sparsity
of the scans. To overcome this incompleteness, we make the point cloud more incomplete
by removing 90% of the points (by scan_index), and use the incomplete data to compute the
TSDF input of the neural network. Moreover, we use the original point cloud containing all
of the points as the ground truth and compute the target TSDF. Our approach is inspired
by the work done by SG-NN [43] and we do this in order to learn to complete the scene in
a self-supervised way. Removing points according to their scan_index allows us to create
larger “holes” than by removing points at random. For the chunks, we used a grid size
of 128 × 128 × 128 and a voxel size of 5 cm (compared to the voxel size of 2 cm used for
indoor scenes in SG-NN [43]). Dynamic objects, pedestrians, vehicles, and unlabeled points
are first removed from the data using the ground truth semantic information.

To evaluate the completed scene, we use the Chamfer Distance (CD) between the
original P1 and predicted P2 point clouds:

CD =
1
|P1| ∑

x∈P1

min
y∈P2
||x− y||2 +

1
|P2| ∑

y∈P2

min
x∈P1
||y− x||2 (3)

In a self-supervised context, not having the ground truth and having the predicted
point cloud more complete than the target places some limitations on using the CD metric.
For this, we introduce a mask that needs to be used to compute the CD only on the points
that were originally available. The mask is simply a binary occupancy grid on the original
point cloud.

We extract the random chunks as explained previously for Paris (1000 chunks per
point cloud) and CARLA (3000 chunks per town) and provide them along with the dataset
for future research on scene completion.

7.2. Experiments: Setting a Baseline

In this section, we present a baseline for scene completion using the SG-NN net-
work [43] to predict the missing points (SG-NN predicts only the geometry and not the
semantics nor the color). In SG-NN, they use volumetric fusion [44] to compute a TSDF
from range images, which cannot be used on LiDAR point clouds. For this, we compute a
different TSDF from the point clouds.

Using the cropped chunks, we estimate the normal at each point using PCA as in [42]
with n = 30 neighbors and obtain a consistent orientation using the LiDAR sensor position
provided with the points. Using the normal information, we use the SDF introduced
in [42], due to its simplicity and the ease of vectorizing, which reduces the data generation
complexity. After obtaining the SDF volumetric representation, we convert the values to
voxel units and truncate the function at three voxels, which results in a 3D sparse TSDF
volumetric representation that is similar to the input of SG-NN [43]. For the target, we
use all the points available in the original point cloud, and for the input, we keep 10% of
points (by the scan indices) in each chunk, in order to obtain the “incomplete” point cloud
representation.

The resulting sparse tensors are then used for training and the network is trained for
20 epochs with ADAM and a learning rate of 0.001. The loss is a combination of Binary
Cross Entropy (BCE) on occupancy and L1 Loss on TSDF prediction. The training was
carried out on a GPU NVIDIA RTX 2070 SUPER with 8Go RAM.

In order to increase the number of samples and prevent overfitting, we perform data
augmentation on the extracted chunks: random rotation around z, random scaling between
0.8 and 1.2, and local noise addition with σ = 0.05.

Finally, we extract a point cloud from the TSDF predicted by the network following
an approach that is similar to the marching cubes algorithm [45], where we interpolate 1
point per voxel. Finally, we compute the CD (see Equation (3)) between the point cloud
extracted from the predicted TSDF and the original point cloud (without dynamic objects)
and use the introduced mask to limit the CD computation to known regions (voxels where
we have points in the original point cloud).
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7.2.1. Quantitative Results

Table 6 shows the results of our experiment on Paris-CARLA-3D data. We can see that
the network makes it possible to create point clouds whose distance to the original cloud is
clearly smaller.

For further metric evaluation, we provide the mean IoU and `1 distance between the
target and predicted TSDF values on the 2000 and 6000 chunks for Paris and CARLA test
sets, respectively. The results are also reported in Table 6.

Table 6. Scene completion results on Paris-CARLA-3D. CD is the mean Chamfer Distance over
2000 chunks for the Paris test set (S0 and S3) and 6000 chunks for the CARLA test set (T1 and T7). `1

is the mean `1 distance between predicted and target TSDF measured in voxel units for 5 cm voxels
and mIoU is the mean Intersection over Union of TSDF occupancy. Both metrics are computed on
known voxel areas. ori means original point cloud, in is input point cloud (10% of the original), pred
is the predicted point cloud (computed from predicted TSDF).

Test Set CDin↔ori CDpred↔ori `1pred↔tar mIoUpred↔tar

S0 and S3 (Paris) 16.6 cm 10.7 cm 0.40 85.3%

T1 and T7 (CARLA) 13.3 cm 10.2 cm 0.49 80.3%

7.2.2. Qualitative Results

Figure 11 shows the scene completion result on one point cloud chunk from the
CARLA T1 test set. Figure 12 shows the scene completion result on one chunk from the
Paris S0 test set. We can see that the network manages to produce point clouds quite close
visually to the original, despite having as input a sparse point cloud with only 10% of the
points of the original.
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7.2.3. Transfer Learning with Scene Completion

Using both synthetic and real data of Paris-CARLA-3D, we tested the training of a
scene completion model on CARLA synthetic data to test it on Paris data. With the objective
of scene completion on real data chunks (Paris S0 and S3), we tested three training scenarios:
(1) Training only on real data with Paris training set; (2) Training only on synthetic data
with CARLA training set; (3) Pre-train on synthetic data then fine-tune on real data. The
results are shown in Table 7. We can see that the Chamfer Distance (CD) is better for the
model trained only on synthetic CARLA data: the network is attempting to fill a local
plane in large missing regions and smoothing the rest of the geometry. This is an expected
behavior, because of the handcrafted geometry present in CARLA, where planar geometric
features are predominantly present. Point clouds of real outdoor scenes are not easily
obtained and the need to complete missing geometry is becoming increasingly important in
vision-related tasks; here, we can see the value of leveraging the large amount of synthetic
data present in CARLA to pre-train the network and fine-tune it on other smaller datasets
such as Paris when not enough data are available. As we can see in Table 7, pre-training on
CARLA and then fine-tuning on Paris allows us to obtain the best predicted TSDF (`1 and
mIoU) and point cloud (Chamfer Distance).

Table 7. Results of transfer learning for the scene completion task. CD is the mean Chamfer Distance
between point clouds. `1 is the mean `1 distance between predicted and target TSDF measured in
voxel units for 5 cm voxels and mIoU is the mean Intersection over Union of TSDF occupancy. The
mean is over 2000 chunks for Paris data. ori means original point cloud, in is input point cloud (10 %
of the original), pred for CD is the predicted point cloud (computed from predicted TSDF), pred for
IoU, `1 is the predicted TSDF, and tar is the target TSDF.

Test Set: S0 and S3 Paris data CDin↔ori CDpred↔ori `1pred↔tar mIoUpred↔tar

Trained only on Paris 16.6 cm 10.7 cm 0.40 85.3%
Trained only on CARLA 16.6 cm 8.0 cm 0.48 84.0%

Pre-trained CARLA, fine-tuned on Paris 16.6 cm 7.5 cm 0.35 88.7%

8. Conclusions

We presented a new dataset called Paris-CARLA-3D. This dataset is made up of both
synthetic data (700 M points) and real data (60 M points) from the same LiDAR and camera
mobile platform. Based on this dataset, we presented three classical tasks in 3D computer
vision (semantic segmentation, instance segmentation, and scene completion) with their
evaluation protocol as well as a baseline, which will serve as starting points for future work
using this dataset.

On semantic segmentation (the most common task in 3D vision), we tested two state-
of-the-art methods, PointNet++ and KPConv, and showed that KPConv obtains the best
results (37.5% overall mIoU). We also presented a first instance detection method on dense
point clouds from mapping systems (with vehicle and pedestrian instances for synthetic
data and vehicle instances for real data). For the scene completion task, we were able to
adapt a method used for indoor data with RGB-D sensors to outdoor LiDAR data. Even
with a simple formulation of the surface, the network manages to learn complex geometries,
and, moreover, by using the synthetic data as pre-training, the method obtains better results
on the real data.
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Appendix A. Complementary on Paris-CARLA-3D Dataset

Appendix A.1. Class Statistics

From CARLA data, as occurs in real-world scenarios, not every class is present in
every town: eleven classes are present in all towns (road, building, sidewalk, vegetation,
vehicles, road-line, fence, pole, static, dynamic, traffic sign), three classes in six towns (unlabeled,
wall, pedestrian), three classes in five towns (terrain, guard-rail, ground), two classes in four
towns (bridge, other), one class in three towns (water), and two classes in two towns (traffic
light, rail-track).

In Paris data, class variability is smaller than in CARLA data. This is a desired
(and expected) feature of these point clouds because they correspond to the same town.
However, as is the case with CARLA towns, not every class is present in every point cloud:
twelve classes are present in all point clouds (road, building, sidewalk, road-line, vehicles,
other, unlabeled, static, pole, dynamic, pedestrian, traffic sign), three classes in five point clouds
(vegetation, fence, traffic light), one class in two point clouds (terrain), and seven classes in
any point cloud (wall, sky, ground, bridge, rail-track, guard-rail, water).

Table A1 shows the detailed statistics of the classes in the Paris-CARLA-3D dataset.

Table A1. Class distribution in Paris-CARLA-3D dataset (in %). Columns headed by Si are Soufflot from Paris data and Tj

are towns from CARLA data.

Paris CARLA

Class S0 S1 S2 S3 S4 S5 T1 T2 T3 T4 T5 T6 T7

unlabeled 0.9 1.5 3.9 3.2 1.9 0.9 5.8 2.9 - 7.6 0.0 6.4 1.8

building 14.9 18.9 34.2 36.6 33.1 32.9 6.8 22.6 15.3 4.5 16.1 2.6 3.3

fence 2.3 0.6 0.7 0.8 - 0.4 1.0 0.6 0.0 0.5 3.8 1.5 0.6

other 2.1 3.4 6.7 2.2 2.5 0.4 - - - - 0.1 0.1 0.1

pedestrian 0.2 1.0 0.6 1.0 0.7 0.7 0.1 0.2 0.1 0.0 - 0.1 0.0

pole 0.6 0.9 0.6 0.8 0.7 1.1 0.6 0.6 4.2 0.8 0.8 0.4 0.3

road-line 3.8 3.7 2.4 4.1 3.5 3.4 0.2 0.2 2.9 1.6 2.2 1.3 1.7

road 41.0 49.7 35.0 37.6 40.6 27.5 47.8 37.2 53.1 52.8 44.7 58.0 42.8

sidewalk 10.1 4.2 7.3 6.7 11.9 29.4 22.5 17.5 10.3 1.7 10.5 3.1 0.4

vegetation 18.5 9.0 0.1 0.3 0.1 - 8.7 10.8 2.7 12.8 4.6 8.1 23.1

vehicles 1.3 1.8 6.5 6.5 3.3 1.6 1.7 3.1 0.9 0.5 3.1 4.2 0.9

wall - - - - - - 1.9 3.6 1.4 5.4 5.3 3.4 -

traffic sign 0.1 0.4 0.1 0.1 0.3 0.1 - 0.0 - 0.1 0.0 0.0 0.1

sky - - - - - - - - - - - - -

ground - - - - - - - 0.0 0.2 1.4 0.3 0.1 -

bridge - - - - - - 1.7 - - 0.7 6.6 - -

rail-track - - - - - - - - 7.6 - 0.5 - -

guard-rail - - - - - - 0.0 - - 4.3 - 1.2 0.5

static 2.6 2.3 0.3 0.1 0.7 1.5 0.1 0.1 - - - - -

traffic light 0.1 0.2 0.1 0.1 0.1 - 0.8 0.5 0.3 0.3 0.3 - -

dynamic 0.3 1.6 1.5 0.2 0.7 0.0 0.1 0.1 0.1 0.3 0.1 0.1 0.1

water - - - - - - 0.4 - 0.0 - - - 0.6

terrain 1.4 0.8 - - - - - - 0.9 4.8 1.1 9.6 23.8

# Points 60 M 700 M
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Appendix A.2. Instances

The number of instances in ground truth varies over the point clouds. In the test
set from Paris data, Soufflot0 (S0) has 10 vehicles while Soufflot3 (S3) has 86. This large
difference occurs due to the presence of parked motorbikes and bikes.

With respect to CARLA data, it was observed that in urban towns such as Town1 (T1),
vehicle and pedestrian instances are mainly moving objects. This implies that during simu-
lations, instances can have intersections between them, making their separation challenging.

In the CARLA simulator, the instances of the objects are given by their IDs. If a
vehicle/pedestrian is seen several times, the same instance_id is used at different places.
This is a problem in the evaluation capacity of detecting correctly the instances. This is why
we have divided the CARLA instances using the timestamp of points: separate instances
based on a timestamp gap with a threshold of 10 s for vehicles and 5 s for pedestrians.

Appendix B. Images of the Dataset

Figures A1–A6 show top-view images of the different point clouds of the Paris-
CARLA-3D dataset.
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(a) Point clouds with color (b) Point clouds with semantic (c) Point clouds with instances
Figure A1. Paris Training set. From top to bottom: S1, S2 (real data).

(a) Point clouds with color (b) Point clouds with semantic (c) Point clouds with instances
Figure A2. Paris Validation set. From top to bottom: S4, S5 (real data).

Figure A1. Paris training set. From top to bottom: S1, S2 (real data).
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(a) Point clouds with color (b) Point clouds with semantic (c) Point clouds with instances
Figure A1. Paris Training set. From top to bottom: S1, S2 (real data).

(a) Point clouds with color (b) Point clouds with semantic (c) Point clouds with instances
Figure A2. Paris Validation set. From top to bottom: S4, S5 (real data).

Figure A2. Paris validation set. From top to bottom: S4, S5 (real data).
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(a) Point clouds with color (b) Point clouds with semantic
Figure A3. Paris Test set. From top to bottom: S0, S3 (real

(c) Point clouds with instances 
data).

Figure A3. Paris test set. From top to bottom: S0, S3 (real data).
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(a) Point clouds with color (b) Point clouds with semantic (c) Point clouds with instances
Figure A4. CARLA Training set. From top to bottom: T2, T3, T4, T5 (synthetic data).
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