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Abstract: This paper proposes a systematic image mosaicking methodology to produce hyperspectral
image for environment monitoring using an emerging UAV-based push-broom hyperspectral imager.
The suitability of alternative methods in each step is assessed by experiments of an urban scape, a river
course and a forest study area. First, the hyperspectral image strips were acquired by sequentially
stitching the UAV images acquired by push-broom scanning along each flight line. Next, direct
geo-referencing was applied to each image strip to get initial geo-rectified result. Then, with ground
control points, the curved surface spline function was used to transform the initial geo-rectified image
strips to improve their geometrical accuracy. To further remove the displacement between pairs
of image strips, an improved phase correlation (IPC) and a SIFT and RANSAC-based method (SR)
were used in image registration. Finally, the weighted average and the best stitching image fusion
method were used to remove the spectral differences between image strips and get the seamless
mosaic. Experiment results showed that as the GCPs‘ number increases, the mosaicked image‘s
geometrical accuracy increases. In image registration, there exists obvious edge information that
can be accurately extracted from the urban scape and river course area; comparative results can be
achieved by the IPC method with less time cost. However, for the ground objects with complex
texture like forest, the edges extracted from the image is prone to be inaccurate and result in the
failure of the IPC method, and only the SR method can get a good result. In image fusion, the best
stitching fusion method can get seamless results for all three study areas. Whereas, the weighted
average fusion method was only useful in eliminating the stitching line for the river course and forest
areas but failed for the urban scape area due to the spectral heterogeneity of different ground objects.
For different environment monitoring applications, the proposed methodology provides a practical
solution to seamlessly mosaic UAV-based push-broom hyperspectral images with high geometrical
accuracy and spectral fidelity.

Keywords: geometric rectification; image registration; image fusion; spectral fidelity

1. Introduction

Hyperspectral images have hundreds of narrow and nearly continuous spectral bands
that represent the reflectance signals of the observed objects [1]. In early years the imaging

Remote Sens. 2021, 13, 4720. https://doi.org/10.3390/rs13224720 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6294-9962
https://orcid.org/0000-0002-8682-1293
https://doi.org/10.3390/rs13224720
https://doi.org/10.3390/rs13224720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13224720
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13224720?type=check_update&version=1


Remote Sens. 2021, 13, 4720 2 of 25

spectrometers were often used in multispectral mode due to the technical limitations of the
instruments. Fine spatial and spectral resolution creates problems with the signal-to-noise
ratio of the sensor used. The number of spectral bands had to be reduced in order to get
smaller pixel size as reading the data from the sensor takes some time and using many
spectral bands would have resulted in pixels elongated towards the flight direction because
plane speed cannot be reduced below a certain critical limit [2]. Recent developments in
the miniaturization of electro-optical sensors and unmanned aerial vehicles (UAVs) have
established a new era of hyperspectral imaging [3]. Due to the high flexibility of UAV
flight planning, hyperspectral images taken by UAVs can be widely used in environment
monitoring applications [4–11], such as precision agriculture, species classification [11–13],
surface parameter retrieval [14,15], etc.

The wider use of UAVs has also pushed also instrument developers. There are two
main types of lightweight hyperspectral sensors for UAVs: push-broom scanners [16–18]
and snapshot imagers [18–21]. Push-broom hyperspectral scanners are based on a linear
array that captures scenes while operating in a push-broom mode and the acquired images
have a high spectral sensibility [16]. Snapshot imaging sensors can obtain bundles of frames
at the same time to form an image with two spatial dimensions and tens to hundreds
of bands [18]. The push-broom sensor system outperforms snapshot image capturing
approaches, as the latter systems require a compromise between spatial coverage, spatial
resolution and spectral resolution [20]. Spectral resolution of push-broom hyperspectral
scanners has improved in recent years. Most of the sensors have 5 nm or better spectral
resolution and can be flown with 1 m or smaller pixel sizes. A UAV carrying a push-broom
hyperspectral imager that is light weight and has a small size gradually becomes a payload
for acquiring multi-temporal and high spatial resolution hyperspectral images.

In hyperspectral data acquisition, the UAV is usually operated at low altitudes, and
the implementations always result in some geometric and radiometric distortions within
the acquired data such as pixel displacement errors and spectral noises caused by smile
effects. Thus there exists a lot of challenges in the post-processing of hyperspectral images
for spectrally complex environments [3]. It is often necessary to obtain multiple UAV
images to cover a study area with different overlaps between images. Mosaicking the UAV
images into geometrical and radiometric high quality hyperspectral images is one of the
most essential procedures to meet the application needs of remote sensing environment
monitoring [22–24]. However, as the push-broom sensor system is an emerging technology
that is of high cost, the research work on it is not popularized in science. Only a few
research works have been published to mosaic the push-broom hyperspectral images
mounted on a UAV [16–18].

The ZK-VNIR-FPG480 hyperspectral imaging system is an emerging push-broom
sensor with independent property rights in China that offers a good combination of
spatial and spectral resolution and has been proved effective in environment monitoring
applications [25]. The image has a total of 270 bands, the spectral range is 400–1000 nm,
the spectral resolution is 2.8 nm, and the spatial resolution is 0.9m at 1 km flight height.
While no comprehensive tools are available for producing mosaics of UAV hyperspectral
images acquired by this push-broom scanner, how to process and mosaic the images to get
a seamless hyperspectral image is studied in this research.

Generally, the geometric and radiometric correction of the UAV hyperspectral images
are two key steps in image mosaicking. In geometric correction, images obtained with
different positions and attitudes should be mapped to an identical reference plane. In
radiometric correction, the inconsistency in brightness between geometrically corrected
images should be minimized, and then the radiometric corrected multiple images should be
fused into a mosaicked image. The geometric quality of the mosaicked image is dependent
on the geometric correction accuracy, while the radiometric quality of the image is impacted
by the sensor calibration, radiometric correction and image fusion procedures.
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1.1. Geometric Correction

In geometric correction, the geo-rectification and registration of UAV hyperspectral
images are two key steps and have been active research fields recently [17,26–28].

In geo-rectification, each image acquired from an imaging system is tied to spatial
locations relative to a desired reference frame with a geometric control. This control can be
established using GCPs and/or the implementation of a Position and Orientation System
(POS) [29]. Images can be rectified by global transformations derived from the relationships
between GCPs and the corresponding image points [30] or by a direct Geo-reference
scheme [31]. Push-broom scanners have an inherently unstable imaging geometry due to
wind-related 3-dimensional motions of the imaging platform during data acquisition, and
therefore their post-processing ideally requires accurate navigation data which are typically
measured by a high-end direct georeferencing system based on global navigation satellite
system (GNSS)/Inertial navigation system (INS) [32,33]. There are a lot of GNSS and INS
systems developed by UAV companies all over the world, such as the Sky2 airborne GNSS
receiver (Hi-target company in China, https://en.hi-target.com.cn/precision-uav-kits,
accessed on 1 November 2021), mosaic-X5 GNSS module (septentrio company in European,
https://www.septentrio.com/en/applications/uavandrobotics, accessed on 1 November
2021) etc. Choosing the right module that is optimal for UAV use is the key to successful
products. The Sky2 differential GPS module adopts a high dynamic receiver board, which
can achieve cm level differential positioning results even at a high speed of 100 km/h.
Mosaic-X5 proved to be the ideal PPK-capable module to deliver the accuracy for survey-
grade results. Given that the accurate POS information provides the possibility to get the
direct Geo-referenced images, the location errors are unavoidable. Using GCPs can increase
the geometric accuracy, however, the displacement between pairs of images always exists.

To get a seamless mosaicked image, the accurate tie points in the overlapped area
between pairs of images should be extracted and the geometric differences of the tie
points should be minimized during image registration. An algorithm was proposed
to automatically combine multiple overlapping images for a scene by a 2-dimensional
fast fourier transform to estimate the displacement between image pairs by accounting
for image rotation and scale variation. In this research work, the selection of a suitable
hyperspectral band is critical for best co-registration to deal with the data volume and
processing complexity of hundreds of bands; due to the limitation of the computer’s
computational capabilities, the Pearson correlation coefficient (PCC) was computed for
each band in the hypercube pair by the iterating step first, then the band with the highest
PCC value was retained to the mosaicking process [34]. A modified Speeded-Up Robust
Features matching method was used to find the tie points between the partially rectified
hyperspectral images and the RGB orthophoto to mosaic the UAV images for agricultural
monitoring [28]. The above two methods were validated on frame images for which the
overlap rate is high. Whereas, in push-broom hyperspectral image acquisition, sufficient
overlaps between adjacent images may not be ensured, especially when data collection
efficiency is a priority for a large study area with the constraint of UAV battery duration.
Moreover, in some natural environments where the target objects are mainly water and
forest, there exist even less texture or distinct features that can be detected as the tie
points due to the homogeneity of the spectral signatures. Although existing relative
transformation models and resampling methods have been analyzed for narrow overlapped
image mosaicking, the lack of tie points and weak stereo geometry makes it difficult to get
accurately geo-registered images [23].

1.2. Radiometric Correction

Due to the influences of the light variation during a flight, caused by viewing geometry
or wind, as well as instrument noise, spectral signatures consecutively acquired over the
same area can vary significantly, and hence a stitching line would appear in mosaics
of geometrically corrected images. Stitching lines are therefore an issue that should be
addressed in order to obtain seamlessly mosaicked hyperspectral images. It is therefore

https://en.hi-target.com.cn/precision-uav-kits
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highly useful to develop methods to eliminate the spectral differences and improve the
radiometric accuracy of mosaicked images [27].

One solution is to ensure the image data collected at different strips are radiometrically
consistent and the obtained surface reflectance estimates are reliable. In recent research,
the authors performed experiments to assess the accuracy of the Parrot Sequoia camera
and the sunshine sensor to get an indication of whether the quality of the data collected is
sufficient to create accurate reflectance maps. The developed workflow is evaluated against
data from a handheld spectroradiometer, giving the highest correlation (R2 = 0.99) for the
normalized difference vegetation index (NDVI). For the individual wavelength bands, R2

was 0.80–0.97 for the red-edge, near-infrared, and red bands. They stated that surface
reflectance is not directly measured by the UAV-based cameras. When an image is captured,
the image sensor in the camera records the radiant (light) received by each pixel as a digital
number (DN). To convert the DN to surface reflectance, a radiometric correction must be
performed by (1) applying sensor-related corrections to obtain the radiance received by the
camera from the DN, and (2) converting the radiance received by the camera to surface
reflectance [35].

Although the above rigorous radiometric correction method is preferred, in practice,
another solution for eliminating the spectral distortions, namely relative radiometric cor-
rection, is used more frequently. For example, a radiometric block adjustment method was
proposed for the UAV image datasets by processing of close-range 2D frame format images
with a comprehensive weighting scheme for both solar elevations and reflectance panel
observations. However, this method was sensitive to a priori values, in particular to the
illumination level, so it is important to devise more accurate measurement methods for
the incident irradiance [36]. In other research, the hyperspectral imagery was obtained
using a snapshot hyperspectral sensor mounted on a UAV, the radiometric response lin-
earity and radiometric response variations were quantitatively evaluated and a method to
correct the radiometric response variation effect was proposed. Comparison with spectra
measured with an ASD Field Spec Pro spectrometer (Analytical Spectral Devices, Boulder,
CO, USA) was done, and the results show that the radiometric precision was 5% for bands
between 500 and 945 nm, and the reflectance curve in the infrared spectral region did not
decrease [19].

The focus of this study is on the processing of the push-broom hyperspectral UAV
images to acquire a seamless image that has a high geometric accuracy and spectral fidelity.
A practical image mosaicking chain of methods that are applicable to different types of
land surfaces was proposed. Several methods for image rectification, image registration
and image fusion were compared and assessed by using a new set of UAV data acquired in
urban scape, river course and forest areas in experiments. Results show that the proposed
image mosaicking methodology can not only produce a hyperspectral image with a high
image geometrical accuracy but also ensure the spectral fidelity before and after image
mosaicking. The following paper is organized as follows: Section 2 introduces the data
acquisition and preprocessing principles of the UAV-mounted hyperspectral imagery
used in this study and proposes the image mosaicking methodology with comprehensive
processing steps including geometric rectification, image registration and fusion. Section 3
presents experimental results and discusses the best strategy for each study area. Section 4
draws conclusions and proposes future work.

2. Materials and Methods
2.1. Data Acquisition

The ZK-VNIR-FPG480 hyperspectral imaging system (ZKYD Data Technology Co.,
Ltd., Beijing, China) (Figure 1a) includes an six-rotor UAV platform (DJI M600 Pro), an
image stabilization platform, a hyperspectral imager, a high-speed data acquisition con-
troller, and a POS. The hyperspectral imager and the Sky2 airborne GNSS receiver were
pointed vertically downward on the drone DJI M600 Pro (Figure 1b). The imager is at
the center of rotation of the gimbal, which is used to keep the sensor horizontal when
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the UAV is moving. Table 1 shows a summary of the UAV hyperspectral imaging system
properties. The sensor covers the spectral range of 400–1000 nm with a spectral resolution
of 2.8 nm and a spatial resolution of 0.9 m at 1 km flying height. The max framerate, which
is the maximum lines of data that are acquired in one second during flight, is 100 frames
per second.
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Figure 1. UAV hyperspectral system used in the study: (a) M600 Pro UAV platform with the
hyperspectral imaging system onboard; (b) The ZK-VNIR-FPG480 hyperspectral imaging spectrome-
try system.

Table 1. Technical indicators of ZK-VNIR-FPG480 hyperspectral imager.

Parameter Indicators

Spectral range 400 nm~1000 nm
Number of spectral channels 270

Spectral resolution 2.8 nm
Line array width 480
Spatial resolution 9 cm at 100 m

Field of View 26◦ at 35 mm (lens focal length)
A/D conversion 12 bits
Max framerate 100 fps

The UAV-based hyperspectral images are acquired at low altitudes in sunny weather.
While the influence of the atmosphere on the images can be almost entirely ignored,
a whiteboard with known reflectance data was put as the calibration target to facilitate
the conversion of UAV image DN to surface reflectance [26]. To obtain as large an area of
image data as possible during one flight, the flight lines were set parallel to acquire the
hyperspectral image strips. In each flight line, linear push-broom detectors were used to
scan the ground surface along the flight direction with 480 spatial pixels across the flight
line, and the spectral signals were recorded and decomposed into 270 bands to construct
the arrays of each hyperspectral image. At the same time of imaging, the Sky2 and GNSS
satellite receiving antenna records the GNSS base’s real-time kinematics (RTK) signals that
are used to derive the UAV external orientation elements. The UAV turned around after
reaching the terminal and flew along the next line until the entire study area was scanned.

In different areas, there are different limitations for UAV flights in China; the legislation
for the UAV flights in China is published in 2015 by the Civil Aviation Administration of
China [37]. As the flight height becomes higher, the photograph scale becomes smaller, the
coverage of the area that can be captured in one scanning strip is larger and the number
of strips of image that is needed to cover the study area become fewer. In the experiment,
data collection of the three typical study areas are implemented. To reduce the time that is
needed for data collection as well as consider the latter convenience of image mosaicking,
different flight parameters and side overlap rates are set according to the characteristics of
the study area before the flight implementation (Table 2).
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Table 2. Flight parameters of different study areas.

Study Area Flight Height Side Overlap Rate

Urban scape 200 m 30%
River course 120 m 50%

Forest 90 m 20%

As shown in Figure 2, the locations of the study areas are labelled using the red
polygon. The urban scape area (960 m∗300 m) is a place near Erhai lake in Yunnan Province
which is located in the southwest of China. When collecting the hyperspectral images,
the UAV flight height is set at 200 m. From Figure 3a, it shows that the urban scape area
is composed of buildings, roads, trees, farmland and a lake; it is easy to extract multiple
high-precision tie points for image mosaicking, so the side overlap rate is set as 30%. The
river course (1100 m∗68 m) is a part of Zhang wei xin river in DeZhou distinct of Shandong
Province, which is located in the east of China, the flight height is set as 120m. The area
is dominated by water (Figure 3b) where the spectral reflectance is homogeneous so it is
difficult to find enough high-precision tie points. Moreover, the width of the river course is
about 76% of the width of image strip; therefore, the side overlap rate was set at 50% to
make sure there exist some distinct feature points that can be used in image registration.
The forest area (570 m∗135 m) is an area that is located in Zhan jiang mangrove forest
protection area in Guang dong Province, which is located in the south of China. As shown
in Figure 3c, it is representative of mangrove, riparian plants and water. To get a high
spatial resolution image for mangrove forest monitoring, the flight height is set as 90 m, so
the coverage of each image strip is relatively small. In this situation, the side overlap rate
was set at 20% to improve the data collection efficiency.
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2.2. Data Preprocessing

To achieve the image strips that were used in the latter image mosaicking, three
preprocessing steps were implemented to the original data set. First, the images that have a
large distortion at the beginning and end of each flight line were removed from the original
data set. Then, the images that were retained were stitched along the flight line to get
the image strips. Finally, the sensor-related calibration and reflectance calculation were
implemented for each hyperspectral image strip to convert the digital number to reflectance
data. In sensor-related calibration, there were three key steps: spectral calibration, relative
radiometric calibration and absolute radiometric calibration [38]. Spectral calibration
ensures an accurate instrumental spectral response to surface reflectance, while relative
radiometric calibration ensures a uniform output of the sensor across space and time.
Absolute radiometric calibration determines the conversion from DN to radiance and to
reflectance units. First in spectral calibration, the central wavelength and the full width
at half maximum of each spectral band are determined. In radiometric calibration, the
corresponding relationship between the DN of each spectral band and the true radiance is
established and recorded in the calibration files [19]. Next, the radiance of the pixels in a



Remote Sens. 2021, 13, 4720 8 of 25

hyperspectral image can be calculated using the corresponding calibration files. Finally,
the spectral reflectance of each pixel Rijλ can be calculated using the following equation:

Rijλ =
Sijλ − Dijλ

Tλ − Dijλ
× Rrλ (1)

where i, j, λ represent the pixel row number, column number and wavelength, Sijλ is
the radiance of the pixel (i, j) in the hyperspectral image, Dijλ is the spectral density of
dark current, and Tλ is the radiance of the reference of a calibration whiteboard in the
hyperspectral image which has the reflectance Rrλ.

The reflectance data of the urban scape, river course and forest area are shown in
Figure 3a,b. The data size of Urban scape, river course and forest area is 2.6, 6.81 and
3.06 Gigabytes respectively. After the preprocessing of UAV hyperspectral images, the
distortion that occurs in the push-broom sensor’s scanning procedure along the flight
line can be mostly reduced because a gimbal was used in the whole data capture process.
However, there are still scale, rotation and translation distortions between the narrow
overlapped image strips as shown in Figure 3.

2.3. Image Mosaicking Methodology

To get seamless mosaicked image bands, an image mosaicking chain was proposed as
shown in Figure 4. Here, the hyperspectral images are the reflectance data calculated from
the image strips’ DN data, as shown in Figure 3. The geometric rectification (Section 2.3.1)
is first implemented. Three kinds of geometric rectification methods based on the GCPs,
POS and a combined use of POS and GCPs can be chosen. While geometric errors are
unavoidable, the image registration (Section 2.3.2) method was then implemented to adjust
the coordinates of the tie points on different image strips to ensure that the neighboring
image strips can be stitched together by overlaying with no dislocation. Two image
registration methods of the SIFT and RANSAC methods (Section 2.3.2.1) and the improved
phase correlation method (Section 2.3.2.2) can be chosen. Finally, the weighted averaging
and best stitching image fusion methods can be chosen to mosaic the neighboring image
strips into a large seamless image (Section 2.3.3).

2.3.1. Geometrical Rectification

Geometric rectification of each strip can reduce the differences and provide the geomet-
ric rectified data for image registration. In the POS-based method, the exterior parameters
are derived from the POS data, including (Xs, Ys), which is the location of the light beam
center, the pitch, yaw, roller which are the three angles that describe the flight attitude.
The focal length ƒ is derived from the camera calibration report. The ground is assumed
as a flat plain because the area coverage is small, and then the ZA coordinate of each
ground point A is set as ZS-h; h represents the flight height. The coordinates of each ground
point A (XA, YA) is calculated by direct geo-referencing based on the collinear condition
equation [39] as shown in Equation (2). In the equation, the a1, a2, a3, b1, b2, b3, c1, c2, c3 are
calculated based on the three angles of pitch, yaw, roller to construct the rotation matrix. By
a bilinear interpolation method, each image strip can be rectified and resampled to be the
coarsely rectified image with geographical coordinates. In this process, the self-developed
hyperspetral image processing software, which is programmed by Visual C++, was used.{

XA − XS = (ZA − ZS)
a1x+a2y−a3 f
c1x+c2y−c3 f

YA −YS = (ZA − ZS)
b1x+b2y−b3 f
c1x+c2y−c3 f

(2)
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Due to the limited positioning and attitude accuracy of the POS system on board, there
will be an obvious misalignment for the neighboring strips after direct geo-referencing. To
improve the accuracy of geometrical rectification, GCP-based image rectification using the
curved surface spline function (CSSF) [40] is applied as shown in Equation (3). Each image
strip is assigned with new geographical coordinates after the GCP-based image rectification
by resampling it with a bilinear interpolation method. As a non-linear transformation
function, CSSF only needs three GCPs to simulate a high-order differentiable smooth
surface. After the two image strips were geometrically rectified, the smooth surface passes
through the same GCPs, so the difference between the pair of rectified image strips becomes
smaller. Here, a reference image in the same area was used to extract the GCPs, and ArcGIS
10.1 software was used to implement the CSSF-based image rectification method.

W(x, y) = a0 + a1x + a2y +
n

∑
i=1

Fir2
i ln(r2

i + ε) (3)
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where, a0, a1, a2, Fi(i = 1, 2, k . . . n) are parameters to be estimated, r2
i = (x− xi)

2 +

(y− yi)
2, and ε is the parameter that is used to adjust the surface curvature. Normally

ε = 1 ∼ 10−2 when the surfaces are mildly distorted, and ε = 10−5 ∼ 10−6 when the
surfaces are significantly distorted.

2.3.2. Image Registration of Neighboring Image Strips

Because noise in the hyperspectral image of one band would result in image matching
errors, it is preferred to choose an optimal band that has the least noise and the best image
quality to increase the image matching accuracy. Moreover, to make sure that the selected
band is suitable for complex scene feature detection, the local variance method based on
edge block elimination [41] is used to calculate the image signal-to-noise ratio (SNR) first.
Then, the band with the highest SNR was used in the latter image registration.

2.3.2.1. SIFT and RANSAC-Based Method

The traditional feature point-based technical process of image registration is as follows:
first the feature points on two images are extracted; then the feature point pairs are
matched through feature similarity measurements to obtain tie points; next, the image
space coordinate transformation function is established using the tie points; and finally,
image registration is performed by coordinate transformation [42].

The image feature point extraction is fundamental for the success of the subsequent
image registration. There are many traditional image matching methods, such as scale-
invariant feature transform (SIFT) [43] and Speeded-Up Robust Features (SURF) algo-
rithms [42]. The SIFT algorithms run fast and have a high stability in extracting feature
point pairs from images with multiple changes such as translation, rotation, and zooming
scale. In using a SIFT algorithm, there exist many image matching strategies such as
the brute-force matching [44], the K-nearest neighbor matching [45] and the best-bin-first
matching methods [46]. For simplicity, the nearest neighbor ratio method [47] is used in
image matching first. However, there are some inevitably wrong matched points. So the
random sample consensus (RANSAC) algorithm, which is effective and fast in removing
some outliers and mismatched points are used for purifying the tie points [48]. After
extracting the tie points, the spatial similarity transformation [39] with 7 parameters (3 ro-
tation parameters, 3 translation parameters, 1 scale parameter) was applied to the right
image strip with the left image strip as the reference image.

2.3.2.2. The Improved Phase Correlation Method

With consideration that the phase correlation method [49] based on the two-dimensional
Fourier transform is scene-independent, and can accurately align two-dimensional images
with small translation, an improved phase correlation method was proposed and com-
pared with the SIFT and RANSAC methods. The advantages of this method include its
simplicity, its fast running speed, its insensitivity to brightness changes, and its strong
anti-interference ability.

First, to deal with the image strips with rotation and scaling, the phase correlation
method was improved by transforming the images from the Cartesian coordinate system
to the polar coordinate system first, then the rotation relationship between the images
is represented as θ′ = θ + θ0, where θ represents the scaling relationship represented as
r′ = r0r and transferred to an additive relationship by logarithm operation [50].

The main steps of the phase correlation method accounting for the rotation and scaling
differences are:

(1) Transfer the image from the Cartesian coordinate system to the polar coordinate
system.
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In the Cartesian coordinate system, suppose the relative rotation angle is θ0 and
scaling factor is k, then the spatial relationship between the neighboring image strip can be
represented in Equation (4):

f2(x, y) = f1[k(x cos θ0 + y sin θ0), k(−x sin θ0 + y cos θ0)] (4)

(2) Then the Fourier transformer of the images F1 and F2 satisfies Equation (5):

F2(u, v) =
1
k2 e−i2π(ux0+vy0)F1

[
1
k
(u cos θ0 + v sin θ0),

1
k
(−u sin θ0 + v cos θ0)

]
(5)

(3) Next, the amplitude spectra of the two images have the following relationship:

M2(u, v) =
1
k2 M1

[
1
k
(u cos θ0 + v sin θ0),

1
k
(−u sin θ0 + v cos θ0)

]
(6)

Set
{

u = ρ cos θ
v = ρ sin θ

, Equation (6) can be simplified as:

M2(ρ cos θ, ρ sin θ) =
1
k2 M1

[ρ

k
cos(θ − θ0),

ρ

k
sin(θ − θ0)

]
(7)

(4) Based on Equation (7), the parameter ρ
k can be transformed by the logarithmic

transformation lg ρ
k = lgρ− lgk, then Equation (7) can be transformed to Equation (8):

M2(θ, lgρ) =
1
k2 M1[(θ − θ0), lgρ− lgk] (8)

(5) Using Equation (8), the phase correlation method can be used to calculate the
rotation angle θ0 and scaling parameter k.

Secondly, considering that in fast Fourier transform, if the image size N is the power of
2 (N = 2p, p is an integer), its calculation efficiency is highest, sub-images (Figure 5), which
are cut from the original image with the image size of 2-power, can be used to calculate
the transformation parameters first. Then, the translation offset for the original images
can be calculated according to the location of sub-images. There are two overlap patterns
including the left–right overlap as shown in Figure 5a and the up-down overlap as shown
in Figure 5b. Using the 2-power sub-image, the image size becomes smaller, the overlapped
rate is increased and the efficiency can be promoted.

Thirdly, when the image has many distortions or noises, the image registration result
may be inaccurate [51]. Since image edges are the most basic and relatively stable feature,
edges can be used to promote the efficiency and accuracy of the phase correlation method.
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The steps of the improved phase correlation (ICP) method includes:

1. The 2-power sub-images of the reference image F1(x, y) and the registered image
F2(x, y) are set as f1(x, y) and f2(x, y) respectively. The Canny edge detector is used to
extract the edge of f1(x, y) and f2(x, y), which are represented as f ′1(x, y) and f ′2(x, y).

2. The Fourier transformation is implemented to f ′1(x, y) and f ′2(x, y) respectively, and
then the amplitude spectra are obtained as M1(u, v) and M2(u, v). The amplitude
spectra is converted from the Cartesian coordinate system to the polar coordinate
system, and M1(θ, lgρ) and M2(θ, lgρ) were got by logarithmic operation.

3. The traditional phase correlation method is applied to M1(θ, lgρ) and M2(θ, lgρ) to
get the rotation angle θ0 and the scale parameter k. Then, the θ0 and k are used to do
the inverse transformation to the 2-power sub-image of the registered image f2(x, y)
to get a transition image f3(x, y) with only translation offsets.

4. Canny edge detector is used to get the edge image of f3(x, y) as f ′3(x, y). Then, the
phase correction method is used to calculate the relative translation offset (x0, y0)
between the registered image F2(x, y) and f3(x, y).

5. Based on the calculated θ0, k and (x0, y0), the spatial similarity transformation is used
and incorporated in a bilinear interpolation resampling procedure is used in image
registration to produce the geometrically rectified hyperspectral image strips for the
latter seamless mosaicking.

2.3.3. Image Fusion

Hyperspectral images are wete used for water monitoring, forestry analysis, mineral
exploration, etc. For these applications, spectra fidelity of mosaicked images must be
ensured. To eliminate the stitching line [52], the weighted average [53] and the best
stitch fusion methods [54] were used. To analyze the spectral fidelity of the mosaicked
image, the spectral reflectance curves of the different types of ground objects’ typical pixel
in the overlapped area on the original, the geometrically corrected and the mosaicked
images were compared. The spectral angle cosine (SAC), spectral correlation (SC), spectral
information divergence (SID) and Euclidean distance (ED) [55] were used to measure the
similarity of spectral curves in the overlapped area before and after image fusion. The
greater the SAC value and the SC value, the greater the spectral similarity is, and the
smaller the SID value and the ED value, the greater the spectral similarity is.

3. Experimental Results

As shown in Figure 4, different methods can be chosen in geometrical rectification,
image registration and image fusion. In the following, the experiment results of different
methods are presented. First, because few distinct GCPs can be extracted in the reference
image in the river course area, the river course area is chosen as the representative study
area to show the results of the different geometric rectification methods with or without
GCPs. Secondly, the results of the two image registration methods of all the three study
areas are presented. Thirdly, because the urban scape area consists of many types of ground
object with different spectral feature characteristics, the two image fusion strategies are
compared using the urban scape area as the representative study area. Moreover, the
weighted average fusion results of the river course and forest areas are presented.

3.1. Geometric Rectification Results of River Course Area

Because a large portion of the river course area is dominated by water, the ground
control points were derived from google earth (GE) images rather than from field surveys
in the research. Eleven GCPs shown in Figure 6a were used for geometrical rectification.

Ten other GCPs in the GE image were used to assess the geometrical accuracy. As
shown in Table 3, geometric rectification with POS data and GCPs is a compromise between
efficiency and accuracy, and improves the accuracy compared to geometric rectification
using only POS data. The medium error of the rectified image was 1.76 m, while the spatial
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resolution of the GE image was 2.5 m. The geometrical rectification error was less than
1 pixel, in accordance with the reference image.
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Table 3. Geometric rectification accuracy (units in meters) of the river course area.

Mean
Residual

Medium
Error

Mean
Absolute
Deviation

Median
Absolute
Deviation

Standard
Deviation

Maximum
Residual

CSSF method with
11 GCPs

x 0.0862 0.6954 0.6068 0.8621 0.6900 1.0909
y −0.1198 1.6207 1.2474 2.2333 1.6163 2.8232

xoy 1.7636 1.7574

POS-based method
without GCPs

x −4.1354 4.3593 1.1555 1.1744 1.3792 6.8187
y −0.0961 2.2469 2.1094 1.9082 2.2449 3.8767

xoy 4.9043 2.6347

POS-based method
with 4 GCPs

x −1.2553 1.7413 1.026 0.5031 1.2068 3.372
y 0.2162 1.6208 1.3627 1.0367 1.6063 3.1469

xoy 2.3789 2.0091
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3.2. Image Registration Results

As shown in Figures 7 and 8, the ICP image registration method can get comparative
results in the urban scape and river course areas; however, it failed in the forest area.
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To compare the image registration methods, the testing points derived from the GE
image for image rectification accuracy assessment were used to evaluate the accuracy for
each study area after image registration. The time cost and accuracy are first analyzed for
the river course and urban scape areas. The computer setting is as follows: Intel(R) Xeon
(R) CPU E5-2630 v4 @ 2.20 GHz 2.20 GHz, the memory storage is 32G.

As shown in Tables 4 and 5, for the urban scape and river course areas, the SIFT and
RANSAC methods cost more time to establish the transformation model with a similar
accuracy. The IPC method first extracts the edge image from the initial rectified image‘s
2-power sub-image, and then used Fourier transformation to convert the edge image
from the spatial space to the frequency space; the transform parameters are calculated
by the traditional phase correlation method, and finally the transform parameters of the
original images are calculated. The time cost is much less than the traditional SIFT- and
RANSAC-based methods.
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Table 4. The image registration accuracy—urban scape (units in meters).

Mean
Residual

Medium
Error

Mean
Absolute
Deviation

Median
Absolute
Deviation

Standard
Deviation

Maximum
Residual Time Cost

The improved
phase correlation

method

x −0.67025 1.1664 1.5992 0.6899 1.1019 3.5498
0.329sy 0.24754 1.0813 1.307 1.5517 0.8618 3.4393

xoy 1.5905 1.3989

The SIFT and
RANSAC-based

method

x −1.6731 1.2104 0.95694 2.8478 1.1326 3.0629
5.395sy −0.82138 1.1552 0.97138 1.0708 0.8137 2.7707

xoy 1.6731 1.3945

Table 5. The image registration accuracy—river course (units in meters).

Mean
Residual

Medium
Error

Mean
Absolute
Deviation

Median
Absolute
Deviation

Standard
Deviation

Maximum
Residual Time Cost

The improved
phase correlation

method

x −2.7975 1.4856 1.7581 0.95615 1.6069 3.7709
1.169sy −0.95435 1.2470 0.73139 0.41235 0.95064 2.8895

1.9395 1.8670

The SIFT and
RANSAC-based

method

x −1.1530 1.2191 1.7520 1.0180 1.5961 4.2247
4.082sy −0.97421 1.2613 0.63685 0.19585 0.80109 2.5976

xoy 1.7541 1.7858
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For the forest data, the SIFT and RANSAC-based methods get good image registration
results, with the medium error of 1.9669m, less than one pixel of the GE image, as shown in
Table 6. However, the ICP method failed, with no forest result in Figure 8. For the spectral
complex environment such as forest, the high spatial and spectral resolution image was
characterized by the spectral heterogeneity and texture, and led to the difficulty of extracting
accurate edges from the images, so the IPC method cannot get the accurate spatial similarity
transformation parameters that are needed to co-register the neighboring image strips.

Table 6. The SIFT and RANSAC-based image registration accuracy—forest (units in meters).

Mean Residual Medium Error Mean Absolute
Deviation

Median Absolute
Deviation

Standard
Deviation

Maximum
Residual

x 0.0864 0.9065 0.7977 1.4019 0.9024 1.3841
y 0.2166 1.7455 1.3750 2.6205 1.7321 3.0199

xoy 1.9669 1.9530

3.3. Image Fusion Results

As shown in Figures 7 and 8, the spectral differences between the left and right geo-
registered images are obvious. To get seamless image mosaicking results, the weighted
average and the best stitching image fusion methods were used and compared in experiments.

3.3.1. Urban Scape Image Fusion Results

The weighted average fusion result and the best stitching fusion result of the urban
scape areas are shown in Figures 9 and 10. As shown in Figure 9, for images with complex
features, the weighted average fusion is not suitable, and the red house has obvious
ghosting problems. Since the best stitching line fusion takes into account the color and
structure of the image, the stitching line avoids the ground objects with large differences in
color and geometric structure, such as passing the houses, so the ghosting problem can be
avoided and a better fusion effect is achieved for the urban scape area in Figure 10.
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To further evaluate the best stitching fusion method for the urban scape area, the
five typical ground objects including buildings, water, soil, farmland and roads in the
overlapped area between the left and right image strips are compared with their spectral
curves between the original, geo-registered and the mosaicked hyperspectral images
(Figure 11). The spectral curve was extracted from one typical pixel of each type of ground
object in the overlapped area between the neighboring image strips. From Figure 11, it can
be seen that the difference between the spectra of the left and right original image strips is
obvious especially for soil, farmland and road ground objects. These are mainly due to the
following reasons.

First, the illumination difference of the round-trip flight strips; secondly, only one
white board is set in the experimental area, and there may exist errors in the radiation
calibration of images. Moreover, as the original images are re-sampled after the geometric
rectification and image registration, the change in the original spectrum makes the left
and right rectified images have larger spectral reflectance differences, especially for soil
(600–700 nm), with a maximum difference of about 0.125, farmland (750–850 nm) with
a maximum difference about 0.008, and road (550–850 nm) with a maximum difference
about 0.03. After image fusion, the spectral curves of different ground objects (red curves)
on the mosaic image is closer to that on the left registered (Rec_left) image (green curves)
so the stitching line will disappear after image fusion, as shown in Figure 10. To find
out whether the spectral reflectance before and after image mosaicking changes a lot,
the spectral similarity assessment indices were calculated between the spectral curve of
the mosaicked image and the original left and right images and the Rec_left image and
Rec_right image as shown in Table 7. As can be seen from Table 7, the typical pixel of each
type of ground object extracted from the mosaicked image has similar spectral reflectance
to the Original left and Rec_ left images, which indicates that the spectral similarity of the
pixels of the overlapped area before and after the mosaicking is high. Image fusion can
reduce the spectral difference of the overlapped area’s ground object.
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Figure 11. Comparison of typical spectral curves before and after image mosaicking for the urban scape area: the spectral
curves of objects of (a) building; (b) water; (c) soil; (d) farmland; (e) road are represented in five colors, the sources of the
spectral curves are shown in (f) using the texts in the corresponding colors, where the original_left means the original left
image, original_right means the original right image; mosaic means the mosaicked image; Rec_left means the geo-registered
left image, Rec_right means the geo-registered right image.

Table 7. Evaluation of similarity of spectral curves of different ground objects in the overlapped area
before and after image mosaicking (urban scape).

Ground Objects The Compared Image SAC SC SID ED

building

Rec_left image 0.9999 0.9998 0.00002 0.0377
Rec_right image 0.9997 0.9984 0.00022 0.1114

Original left image 0.9999 0.9997 0.00004 0.0407
Original right image 0.9998 0.9990 0.00023 0.1313

water

Rec_left image 0.9989 0.9964 0.00095 0.03670
Rec_right image 0.9934 0.9863 0.00479 0.05112

Original left image 0.9923 0.9894 0.00548 0.05837
Original right image 0.9857 0.9776 0.01066 0.07115
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Table 7. Cont.

Ground Objects The Compared Image SAC SC SID ED

soil

Rec_left image 0.9951 0.9921 0.00396 0.3190
Rec_right image 0.9968 0.9969 0.00670 0.3277

Original left image 0.9971 0.9930 0.00745 0.4289
Original right image 0.9992 0.9968 0.00143 0.3315

farmland

Rec_left image 0.9991 0.9984 0.00209 0.1664
Rec_right image 0.9997 0.9995 0.00071 0.1927

Original left image 0.9986 0.9973 0.00231 0.2403
Original right image 0.9995 0.9987 0.00087 0.2628

road

Rec_left image 0.9999 0.9992 0.00001 0.0457
Rec_right image 0.9986 0.9111 0.00105 0.1207

Original left image 0.9986 0.9574 0.00122 0.2362
Original right image 0.9976 0.9091 0.00217 0.1511

3.3.2. The Weighted Average Fusion Results of River Course and Forest Area

To further evaluate the image fusion methods, the river course and forest images
before and after the weighted average fusion are shown in Figures 12 and 13. As shown
in the red rectangle on Figures 12 and 13a, the spectral differences that are obvious in
Figures 7c and 8b disappear. Figure 13b shows the mosaicked image of multiple image
strips of the mangrove forest. The mosaicked images have a good spectral smoothing
quality in the overlapped area. It can be seen that the weighted average fusion method can
get good results for the spectral homogeneous environments, such as river course and forest
areas. With the consideration that the weighted average fusion method is more convenient
than the best stitching fusion method, it is suggested to use the weighted average fusion
method for the water and vegetation-dominated areas when the data volume is huge.
However, when the computation ability is essential, the best stitching fusion method can
perform better than the weighted average fusion method.
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4. Discussion

UAV-based image products are generally produced by stitching together hundreds of
partially overlapping image strips or frames captured in certain geometrical patterns [56].
However, when “matching” any two images, the transformation and reprojection using
various algorithms routinely introduce localized distortions. While the positional accuracy
of an individual image may be on the order of a few centimeters, the accuracy of the
completed mosaic may increase to the decimeter range as the positional errors accumulate
through the merging process. Accurate overlapping of swaths requires a good number
of matching GCPs to avoid further distortion in the final mosaic [30]. To improve the
geometrical accuracy, some researchers used UAV orthomaps as the reference data in
image mosaicking. The identification of tie points in high resolution imagery, especially
those exhibiting different geometric and spectral characteristics, is mainly established
by applying a feature-based approach such as the modified SURF algorithm [28]. This
method needs an accurate reference image in advance and much computational support
for improving the automation and efficiency of its processing procedures [17]. Some other
researchers used multispectral UAV imagery to obtain Ortho-mosaicked NDVI images
for precision agriculture [57]. They used a common RGB camera and a modified camera
sensitive to near-infrared radiation to gather images. The OpenDroneMap (ODM) was
used to merge the two sets of images into ortho-mosaics. This work provided an efficient
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way to acquire large-area data for agriculture research using UAV. This method used the
common aerial photogrammetry technique that required high image overlapping rates.

In comparison, our work is focused on the push-broom hyperspectral image mosaick-
ing between image strips. The proposed chain of image mosaicking mainly includes three
steps of geometrical rectification, image registration and image fusion.

4.1. Geometric Rectification

For the study areas that are dominated by water or forest there doesn’t exist so many
distinct feature points that can be easily collected as GCPs. The traditional image matching
approaches cannot extract sufficient tie points. To improve the efficiency and accuracy of
geometrical correction, the different strategies of image rectification and image registration
were compared in experiments. First, as shown in the image rectification experiments of the
river course, the medium error of the POS-based method is 4.9 m, POS alone achieved a low
quality of UAV georeferencing, especially in push-broom spectrometers [18]. Navigation
grade GPS sensors do not facilitate hyperspectral push-broom scanning on a UAV [58]. The
use of ground control points (GCPs) is absolutely necessary for improving georeferencing.
Recent advances in direct georeferencing and imaging technologies—like the GNSS and
INS—enable precise mapping using a minimal number of GCPs [30]. The medium error of
the CSSF method with GCPs is 1.76 m, while the medium error of the POS-based method
with less GCPs is 2.37 m. Geometric rectification based on the combination of POS data
and GCPs is a compromise between efficiency and accuracy, and it not only reduces the
demand for a large number of GCPs, but also improves the accuracy compared to geometric
rectification using only POS data. In the experiments, the CSSF method is used to calculate
the coordinates of rectified images with GCPs. By setting appropriate parameters, the
modeled curved surface passes through each known GCP on the rectified images, and
it is useful in eliminating the local deformation of images around GCPs and will benefit
subsequent image registration. In all, the geometric correction accuracy of the mosaicked
image depends mainly on the accuracy and the number of GCPs. In the study, GCPs
were manually extracted from the GE images, so the GCP location errors may impact the
geometric rectification of hyperspectral images, and the medium errors of geo-rectification
results are almost 2 m for different study areas. In future, with more precise GCPs and as
the amount of GCPs becomes larger, the geometric accuracy of the mosaic will increase.

4.2. Image Registration

To select an optimal band from the hyperspectral image before image registration,
the local variance method based on edge block elimination [41] was used to calculate
SNR for data quality characterization assessment of each band with high efficiency and
precision [59]. In the image registration, the band with the highest SNR was selected in
calculating the transform parameters between neighboring images. The SIFT and RANSAC-
based method and the improved phase correlation method were compared from the aspects
of time cost and geometric accuracy.

In image registration, the traditional phase correlation method is improved by using
a 2-power sub-image and the edge information in the calculation of transformation pa-
rameters. The image registration experiment results of three types of ground areas show
that the improved phase correlation method can achieve comparable results to the SIFT
and RANSAC-based image registration method for study areas with distinct features such
as urban scape and river course areas with less time cost. However, for the forest area,
the improved phase correlation method failed and the SIFT and RANSAC-based method
is suitable. To improve the effectiveness of the improved phase correlation method in
areas with complex textures such as forest, further work needs to be done to find ways to
calculate transformation parameters correctly.
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4.3. Image Fusion

Another contribution of our work is that the spectral fidelity of each kind of ground
object on the image before and after image mosaicking is ensured. The two image fusion
methods were compared by both qualitative and quantitative assessments. In study areas
such as the forest and the river course, the spectra of ground objects in the overlapped areas
of images are almost homogeneous, the weighted average fusion method is suggested
due to its simplicity for calculation. However, the urban scape area consists of various
land cover types, and its spectra are variable in the overlapped area. The best stitching
fusion method is suggested because it can avoid the ghosting problem that occurs when
the weighted average fusion method was used.

5. Conclusions

This paper proposed a simple and effective chain of methods to produce geometri-
cally corrected and mosaicked images with high spectral fidelity from UAV push-broom
hyperspectral images. The proposed workflow generates a mosaicked output progressively
by three major steps, including image rectification, registration and fusion. In the image
mosaicking, the design of each step should be considered according to the application
purpose. In our research work, the spectral homogenous area such as the river course and
forest area always needs GCPs to get higher geometric accuracy. However, in practice, it is
hard to get GCPs in such places by a field survey. Using Google earth images or another
source of images as reference data, the proposed image mosaicking chain integrates the
POS information, GCPs and the tie points together to refine the geometric accuracy of the
mosaic. Researchers that are interested in using the UAV-based push-broom images and
multi-source images together in environment monitoring can implement the proposed
methodology to get a co-registered image data set. The image mosaic is of a high spectral
fidelity. While it is essential to acquire data that can preserve scientific rigor, the radiometric
calibration of the mosaic is beyond the scope of our research. There still remains some
further works that can be done in the future:

(1) In the geometric rectification, the influence of the number and distribution of GCPs
on the correction accuracy needs to be further studied. Since GCPs also have inherent
errors, how to develop a method that can take into account the uncertainty of GCPs remains
an issue that needs further investigation. In POS-based geometric rectification, this paper
assumes that the scene area is a flat plain, which is not true for some study areas. Methods
are yet to be developed to apply POS-based geometric rectification to non-flat terrains.

(2) In selecting the optimal band for image registration, SNR is used. However, the
band with a higher SNR may have less information. This will also affect the accuracy of
subsequent image registration and the subsequent processing steps. Therefore, other band
selection methods may be explored to find an optimal band with both a high SNR and a
high information content.

(3) Differences in reflectance between tie points in the original image strips lead
to stitching lines. We mainly studied image fusion methods to eliminate the spectral
difference in the overlapped area between the image strips, but did not calibrate the
spectral reflectance of hyperspectral images against ground-based spectral measurements.

(4) The number of bands of the hyperspectral images used in this study is large, and
with the continuous improvement in image resolution, the amount of data will become
even larger in the future. It is necessary to study fast mosaicking methods or use multiple
parallel computing systems to improve the efficiency of data processing.
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