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Abstract: The Mt. Qomolangma (Everest) National Nature Preserve (QNNP) is among the highest
natural reserves in the world. Monitoring the spatiotemporal changes in the vegetation in this
complex vertical ecosystem can provide references for decision makers to formulate and adapt
strategies. Vegetation growth in the reserve and the factors driving it remains unclear, especially
in the last decade. This study uses the normalized difference vegetation index (NDVI) in a linear
regression model and the Breaks for Additive Seasonal and Trend (BFAST) algorithm to detect the
spatiotemporal patterns of the variations in vegetation in the reserve since 2000. To identify the
factors driving the variations in the NDVI, the partial correlation coefficient and multiple linear
regression were used to quantify the impact of climatic factors, and the effects of time lag and time
accumulation were also considered. We then calculated the NDVI variations in different zones of the
reserve to examine the impact of conservation on the vegetation. The results show that in the past
19 years, the NDVI in the QNNP has exhibited a greening trend (slope = 0.0008/yr, p < 0.05), where
the points reflecting the transition from browning to greening (17.61%) had a much higher ratio than
those reflecting the transition from greening to browning (1.72%). Shift points were detected in 2010,
following which the NDVI tendencies of all the vegetation types and the entire preserve increased.
Considering the effects of time lag and time accumulation, climatic factors can explain 44.04% of the
variation in vegetation. No climatic variable recorded a change around 2010. Considering the human
impact, we found that vegetation in the core zone and the buffer zone had generally grown better
than the vegetation in the test zone in terms of the tendency of growth, the rate of change, and the
proportions of different types of variations and shifts. A policy-induced reduction in livestock after
2010 might explain the changes in vegetation in the QNNP.

Keywords: time effect; BFAST; protected area; human activity; central Himalaya

1. Introduction

Protected areas are designed to represent or sample regional biodiversity and are vital
for safeguarding the biodiversity and maintaining crucial ecosystem services [1,2]. A total
of 238,563 protected areas have been designated globally as of 2018, covering 14.9% of the
Earth’s land surface [3]. Research has shown that about 40–50% of global protected areas
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suffer from major deficiencies in management [4,5]. Detecting the changes in vegetation
in these areas can provide decision makers with information on their status, help them to
formulate and adapt scientific strategies for the sustainable management of ecosystems [6],
and provide knowledge for early warning systems to detect such changes [7].

Remote sensing provides non-invasive change detection in protected areas. It is less
money and labor consuming than the field methods, and provides large-scale, periodic,
and near-real-time images that can help study the causes and consequences of changes
in vegetation. In addition, it facilitates the extrapolation of point measurements across
landscapes [8]. Numerous efforts have been made using satellite data to assess the status
of vegetation in protected areas, including by building vegetation indices [9], calculating
fluctuations in productivity [10], detecting changes in the landscape [8], and land cover
transitions [11,12]. The normalized difference vegetation index (NDVI) [13] is one of the
most widely used indices in this vein. It allows for the spatial and temporal comparisons
of terrestrial photosynthetic activity and structural variations in canopies [14] and has been
widely used to detect the vegetation dynamics of protected areas [15,16], to evaluate the
effectiveness and representativeness of protection measures [17,18], and to identify the
impact of the relevant policies on the environment [19,20].

Due to the impacts of the changing climate and disturbances (i.e., extreme weather,
land cover changes, and fires) [21], three types of changes occur in ecosystems: pheno-
logical, gradual, and abrupt changes [22]. Detecting these changes can help to formulate
coping strategies in time and improve our knowledge of the complex factors driving the
ecosystem. With the availability of increasing amounts of remote sensing data, numerous
methods have been developed to detect changes in vegetation [23–26]. The Breaks for
Addictive Season and Trend (BFAST) has been developed to identify long-term trends and
abrupt changes in vegetation by considering seasonal components [27]. It has been applied
to detect the responses of vegetation to sudden changes in the environment, including
floods [28], severe droughts [29], fires [30], and deforestation [31].

Owing to its substantial and unique biodiversity, the Tibetan Plateau (TP), also called
“Earth’s Third Pole”, plays an important role in water and soil conservation, biodiversity
protection, and carbon sequestration [32]. Research has shown that in the past few decades,
the magnitude of climate warming and human activity increasing on the TP has been
greater than the global value [33,34]. To balance development and conservation, 155
reserves were established on the TP as of 2012, covering an area of 822,400 km2 (32.35%) [35].
Among them, the Mt. Qomolangma (Everest) National Nature Preserve (QNNP) is one of
the highest natural reserves in the world, with an average elevation of over 4200 m [36]. It is
on the northern slope of Mt. Qomolangma. The southern slope of Mt. Qomolangma houses
the Sagarmatha National Park in Nepal. The QNNP was established in 1988 and became
a national natural preserve in 1994. In 2004, it joined the World Network of Biosphere
Reserves (WNMR). Its topography, altitude, and biological richness make it a unique
mountain ecosystem in the world [37]. The relatively complex vertical ecosystems make
the QNNP sensitive to disturbances, while its harsh environment makes it resistant to
recovery once destroyed [38]. It is a typical study area for understanding the influence of
human activity and climate change on subnival ecosystems and mountainous areas [39].

A number of studies have been conducted on the variations in vegetation in the QNNP
before 2010 [40–43]. By integrating their results, we found that variations in vegetation in
the QNNP were not stable [40,42]. During the 1980s and 1990s, the vegetation degraded
locally on the southern slope of the protected area [44]; after 2000, larger areas of vegetation
showed a tendency of decrease compared with areas showing a trend of increase over the
entire reserve [40,42], and the vegetation on the southern slope generally grew better than
that on the northern slope [41,45]. However, the relevant studies have mainly focused
on the annual trends of vegetation by using regression models, without considering the
seasonal information and identifying the abrupt changes in vegetation. Our knowledge
of the conditions of the vegetation after 2010 remains limited, and the factors driving the
variations in the NDVI have not been thoroughly discussed.
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It is important to advance our understanding of the dynamics of the vegetation in the
QNNP region. This work seeks to answer the following questions: How has vegetation in
the reserve changed in recent years? What are the factors that have influenced this change?
Has the establishment of the reserve protected the vegetation? In which area should the
measures for vegetation protection be reinforced in the future? This study uses the NDVI
to detect variations in the vegetation in the QNNP between 2000 and 2018. We examine
the fluctuations induced by climate change and human activities, compare the changes in
vegetation in different zones of the reserve, and discuss the factors influencing changes in
vegetation in the QNNP.

2. Materials and Methods
2.1. Study Area

The QNNP is located close to the frontier of Nepal and China, and it includes Tin-
gri, Gyirong, Nyalam, and part of the Dinggye counties, covering an area of 33,819 km2

(Figure 1). There are five mountains over 8000 m high in the QNNP, including Mt. Qo-
molangma (8844.43 m). The middle part of the terrain is a flat valley, with the Yarlung
Zangbo River flowing across it, and the northern and western regions are much higher.

Figure 1. Study area: (a) Land cover types. (b) Topographic and altitudinal details. (c) Distributions
of different protected zones. The boundary of the TP obtained from the study by Zhang et al. [46].
Land cover data obtained from the study by Nie [47]. Core zones (red color in (c)) are well-preserved
natural ecosystems with concentrated distributions of rare and endangered animals and plants.

Weather and vegetation in the northern and southern slopes differ markedly. The south-
ern slopes are more influenced by the humid and warm monsoon from the Indian Ocean.
Precipitation over the course of a year peaks twice without a prominent wet and dry season.
Warm moisture travels through deep valleys of the Himalayas, causing them to receive
more rainfall; therefore, forests (2.38%) and shrublands (4.66%) are the main land cover
types of these regions (Figure 1a). With much colder and dryer conditions, the northern
slopes are characterized by grassland (44.02%) and sparse vegetation (22.09%) (Figure 1a),
which are the main land cover types in the QNNP. On the northern slope, precipitation
is mainly concentrated from June to September. Wetlands (1.84%) and croplands (0.35%)
are mainly located near the main streams and tributaries of the Pumqu River (Figure 1a).
The QNNP is sparsely populated. Urban and built-up areas are mainly located outside
the preserve, near the boundaries. Within the reserve, their occupations are less than
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0.1%. Industrial-scale activities are strictly controlled in the reserve and grazing and road
construction are the major human activities [34].

2.2. Data Sources and Pre-Processing

The NDVI has been widely used to detect changes in vegetation and is an effective
indicator of its health. To analyze variations in vegetation in the QNNP, we used the Terra
Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices version 6.0
(from 2000 to present) from the United States Geological Survey (https://lpdaacsvc.cr.usgs.
gov/appeears/ (accessed on 20 November 2019)), a 16-day maximum composite dataset
with a spatial resolution of 250 m. The website provides online services on image mosaics,
project transformation, format conversion, and image masking. A total of 434 original
images (a single tile covered the study area, h25v06, with 23 images per year, and only
20 images in 2000) during 2000–2018 were acquired from the website. A Savitzky–Golay
filter in the TIMESAT software was used to eliminate residual contaminations caused by
clouds and snow. The TIMESAT software was developed by Jönsson and Eklundh [48]
to analyze time series of sensor data and is an effective method to fix abnormal values in
the MODIS preprocessing procedures [49,50]. The Savitzky–Golay filter is a filter method
based on local simplified least-squares fit convolutions for smoothing and computing the
time series [51]. After the filtering process, the NDVIs of the growing season (May to
September, DOY 145 to 304; 10 images per year) were used as the inputs for trend detection
(Section 2.3.1) and shift point detection (Section 2.3.2).

To analyze variations in the NDVIs of different land cover types, we used the QNNP
landcover product generated by Nie [47], which reached a global accuracy of 93.87%.
The spatial resolution of the product was 30 m. The classification system of the QNNP
was designed based on the framework of the land cover classification system (LCCS) [52].
We divided the types of vegetation of the product into six main classes (sparse vegetation,
grassland, forest, shrubland, cropland, and wetland), and masked the non-vegetation
areas (construction land, glaciers, water, and bare lands). The specific definition of every
vegetation type, and the dominant species/constructive species can be found in the study
by Nie [47]. The product was interpolated to 250 m using nearest neighbor resampling to
match the resolution of the NDVI product when analyzing the trends of NDVI of different
vegetation types.

The China Meteorological Forcing Dataset (CMFD) was used to analyze variation
in climate in the reserve [53]. The spatial resolution of this dataset was 0.1 degrees (ap-
proximately 11 km), and it was generated by combining data observed from the ground
and several satellite-derived products. Ground-observed climate data from the National
Meteorological Information Center (http://data.cma.cn/ (accessed on 20 November 2019))
were used to test the reliability of the product. There are only two stations in the QNNP: in
Nyalam (station number 55655) on the southern slope of the reserve, and in Tingri (station
number 55664) on its northern slope. The China Meteorological Forcing Dataset was in
good agreement with the ground-observed data in terms of precipitation but overestimated
the temperature of Tingri and underestimated that of Nyalam during the growing season
(Supplementary Information, Figure S1). When calculating partial correlation coefficient be-
tween climate and NDVI, the climate data was resampled to 250 m to match the resolution
of NDVI and the resampled landcover product.

To analyze impact of human activities on vegetation in the QNNP, the statistical
yearbook of Shigatse (2000–2016) was obtained from the local government. The yearbook
covers information on husbandry, industry, transportation, construction, and business.
We mainly used livestock numbers for our analysis.

https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
http://data.cma.cn/


Remote Sens. 2021, 13, 4725 5 of 21

2.3. Methods
2.3.1. Trend Analysis and Partial Correlation Analysis

A simple linear regression model was used to analyze variations in the NDVI during
the past 19 years, and the slope of the NDVI was calculated using the least-squares method:

Slope =
n × ∑n

i=1 i × NDVIi − ∑n
i=1 i ∑n

i=1 NDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where NDVIi is the annual mean NDVI in the growing season in the ith year. A positive
number indicates a trend of greening while a negative number indicates a browning trend.
We used the F test (p < 0.05) to test significance [54,55].

2.3.2. Break Point Detection

We used the BFAST algorithm [27] in R language (https://cran.r-project.org/web/
packages/bfast/index.html (accessed on 20 November 2019)) to explore shifts in the trend
of the NDVI in the reserve. The algorithm is as follows:

Yt = Tt + St + et, t = 1, . . . , n (2)

This algorithm decomposes time series Yt (i.e., hydrology, climatology, and economics)
during period t into trend (Tt), seasonal (St), and remainder components (et); it then detects
and characterizes abrupt changes in the time series. In our study, Yt denotes the 16-day
NDVI time series in the growing season during 2000–2018.

We used BFAST01 implementation to detect either zero or one break point in the
time series. Land use and land cover change are relative limited in our study area,
and thus the detected break was likely to represent the most ecologically relevant shift in a
time series [56]. We used the ordinary least-squares (OLS) residuals-based MOving-SUM
(MOSUM) test [57] to evaluate whether break points occurred. We considered only points
where both segments were significant (p < 0.05). According to de Jong et al. [58], six types
of changes occur: monotonic greening, greening with setback, browning to greening,
monotonic browning, browning with burst, and greening to browning.

We established buffer zones in ArcGIS software (version 10.3.1) to detect the influence
of the natural reserve on the protection of vegetation. Considering the resolution of
MODIS data and the previous research [12,59], the scope of the buffer zone was 25 km
on both sides of the boundaries of the reserve, and we used the interval of 5 km when
calculating variations in the NDVI. We did not conduct a buffer analysis of boundaries of
the protected area that overlapped with national boundaries (Supplementary Information,
Figure S2) because a large part of these buffer areas is in Nepal and have completely
different vegetation types. Because we lacked a precise landcover product outside the
QNNP, we masked pixels with an NDVI for the growing season of lower than 0.1 to
minimize noise from ice, snow, water, sand, and stone when comparing variations in the
NDVI between inside and outside the boundary of the reserve.

2.3.3. Factors Driving Changes in Vegetation

To analyze the impact of climate change on variations in the NDVI, we calculated the
partial correlation coefficient (PCC) between the NDVI, and precipitation, temperature,
and radiation. When calculating the association between the NDVI and a given factor,
the two other factors were eliminated as control variables. The formula is as follows:

R12,34 =
R12,3 − R14,3 × R24,3√(
1 − R2

14,3

)
×
(

1 − R2
24,3

) (3)

https://cran.r-project.org/web/packages/bfast/index.html
https://cran.r-project.org/web/packages/bfast/index.html
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R12,3 =
R12 − R13 × R23√(

1 − R2
13

)
×
(

1 − R2
23

) (4)

where R12,34 is the partial correlation coefficient of variables 1 and 2, and variables 3 and 4
are the controlled variables, R12,3 refers to the partial correlation coefficient of variables 1
and 2, and variable 2 is the controlled variable, and R12 is the Pearson correlation coefficient
of variables 1 and 2, and the other variables have similar meanings as before. The absolute
value of the PCC is used to determine the best-fitting time effects. When calculating
the PCC, the effects of time lag and time accumulation were considered. Previous work
has shown that the time effects are generally shorter than a quarter of a year [60,61].
Therefore, we considered the effects of time lag and time accumulation up to a maximum
of 96 days (approximately 3 months). Figure 2 shows the 28 schemes considered in this
study. In Figure 2, NDVI(t,t+16) is the maximum NDVI value during the period (t~t+16).
Take the scheme marked with red color (L-16/A-16) as an example, the corresponding
climate factors are the accumulate values during the time periods (t−32~t).

Figure 2. The 28 schemes considering time accumulation and time lag effect in this study. Yellow bar
is the time period of NDVI. Grey bars indicated the time periods used to calculate the sum value of
climate time series in different schemes.

To quantify the overall effect of climate change on variations in vegetation, a multiple
linear regression model was developed:

NDVI = A × TMP + B × PRE + C × SR + ε (5)

where A, B, and C are the regression coefficients, and ε is the error term. TMP, PRE,
and SR are the adjusted time series of climatic factors (temperature, precipitation, and solar
radiation, respectively) with the best effects of time lag and time accumulation identified
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through Equation (3). The absolute value of determination coefficient (R2) of Equation (5)
was used to quantify the overall explanation of climatic factors for variations in the NDVI.

3. Results
3.1. Spatial Distributions of Tendency and Shift in NDVI in QNNP in 2000–2018

The annual average NDVI exhibited large spatial heterogeneity in the QNNP (Figure 3a).
Large NDVI values were mainly concentrated in the southern region of the preserve, where
forests and shrubland dominated. The NDVI values below 0.3 were widely distributed in
the middle region of the QNNP. Elevations in these regions were higher than the southern
and northern regions, and they were mainly covered with grassland and sparse vegetation.
Alongside the rivers, where wetlands dominate, the NDVI values were much higher than
in the surroundings. For different vegetation types, forests had the largest NDVI (over 0.7),
followed by shrubland and cropland; sparse vegetation and grassland had relatively low
NDVI values. The annual mean NDVI in the QNNP generally showed a tendency of
growth (0.0008 per year, p < 0.05) during 2000–2018. For the entire QNNP, vegetation with
a significant and an insignificant trend of greening accounted for 16.66% and 61.77% of
the total land, respectively (blue color in Figure 3b). Vegetation with a significant trend
of decrease accounted for only 1.27% and was mainly concentrated in the east part of the
region (Dinggye county) and the land alongside roads.

Figure 3. Spatial patterns of annual mean NDVI (left) and linear regression (right). The inset in (a) shows the average
NDVIs of different vegetation types. The inset figure in (b) shows variations in the regional mean NDVI of the QNNP.
Non-vegetation areas are masked out by white color.

Using the BFAST model, we analyzed the shifts in the NDVI and their types (inter-
ruptions or reversals) in the QNPP during the past 19 years. Although the vegetation in
the QNNP showed an overall tendency of growth, this overall period can be subdivided
into two: 2000–2010, with an overall tendency of reduction (p < 0.05), and 2011–2018,
with an overall tendency of increase (p < 0.05). Shift points in 2010 were also discovered
for different vegetation types (Figure 4): After 2010, the tendencies of growth of forest and
shrubland increased, the trend of cropland and sparse vegetation changed from one of
decrease to that of increase, and the trends of decrease of wetland and grassland decreased
compared with those in the first 10 years of the study period.

In terms of spatial distribution, the NDVI underwent significant shifts, accounting
for 38.34% of the entire QNNP (Figure 5). A total of 29.24% of the shifts occurred during
2010–2011, and 15.57% in 2004. Among all the points with significant shifts, monotonic
greening and greening with setback were widely distributed within the study area (green in
Figure 5), accounting for 35.66% and 19.22%, respectively. The proportion of browning with
burst (orange in Figure 5) was mainly distributed near rivers, roads, and the eastern region
of Dinggye county. Notably, the reversal points, the points showing the transition from
browning to greening (17.61%), accounted for much larger proportions of the QNNP than
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those representing the transition from greening to browning (1.72%). Points representing
the transition from browning to greening were mainly distributed alongside rivers, lakes,
and roads. Shifts from browning to greening mainly occurred before 2011 (90.38%), while a
large number of shifts from greening to browning occurred after 2010 (85.11%).

Figure 4. Shifts in trends of NDVI within the time series of the QNNP (a) and other vegetation types
(b–g) during 2000–2018. The black lines represent the seasonal trend model fitted to the original
NDVI series (gray lines). The vertical, dashed black lines describe the times of shifts, and the red
lines are the confidence intervals. The blue lines are the separated trends detected before and after
the shift points.
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Figure 5. Spatial variation in the shifts in the NDVI (a), corresponding year (b) of the QNNP
(2000–2018), trend of NDVI before shift (c), and its trend after shift (d). The inset in (a) represents
the percentage of each shift type, and that in (b) depicts the percentage of shift times detected for
each shift type. Abbreviations: MG, monotonic greening; GS, greening with setback; BG, browning
to greening; MB, monotonic browning; BB, browning with burst; GB, greening to browning. Non-
vegetation areas were masked out by white color.

3.2. Climate Change and Its Impact on Variations in NDVI

To analyze the factors that might have affected the vegetation in the QNNP, we ex-
amined the response of the vegetation to the changing climate by considering the effects
of time lag and time accumulation. We first analyzed the climatic trend of the QNNP
during the study period (Figure 6). The entire QNNP exhibited a drying–warming trend
in the growing season. During 2000–2018, most regions of the reserve showed a warming
trend, especially the central part. Precipitation decreased significantly in the middle and
southwest of the reserve and wetting in the northwestern and eastern parts of the reserve
was insignificant. Radiation showed a trend of increase in the QNNP.

Figure 6. Spatial distributions of variations in climate data (CMFD product) in the QNNP (2000–2018):
(a) temperature; (b) precipitation; (c) radiation. (d) Variation in the regional mean climatic factors
during 2000–2018.
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Time effects were examined by analyzing the PCC between the NDVI and climate
variables over different periods (Table 1). The NDVI time series had the strongest PCC
with temperature and precipitation at L-16/A-16 (cumulative over 16 days with 16 days of
lag), and the maximum PCC values were 0.82 and 0.70, respectively. The response of the
NDVI to radiation showed no time lag but a strong time accumulation effect (L-0/A-96,
accumulated over 96 days with no day lag), and the maximum PCC was 0.70.

Table 1. Partial correlation coefficients between the NDVI and climatic factors when considering the time effect.

Temperature Precipitation Radiation

A-0 A-16 A-32 A-48 A-64 A-80 A-96 A-0 A-16 A-32 A-48 A-64 A-80 A-96 A-0 A-16 A-32 A-48 A-64 A-80 A-96

L-0 0.61 ** 0.71 ** 0.79 ** 0.82 ** 0.78 ** 0.67 ** 0.48 ** 0.16 * 0.39 ** 0.57 ** 0.62 ** 0.57 ** 0.48 ** 0.41 ** −0.59 ** −0.64 ** −0.45 ** 0.26 ** 0.64 ** 0.70 ** 0.70 **
L-16 0.77 ** 0.82 ** 0.79 ** 0.72 ** 0.60 ** 0.44 ** 0.53 ** 0.70 ** 0.66 ** 0.52 ** 0.37 ** 0.26 ** −0.32 ** 0.29 ** 0.63 ** 0.68 ** 0.67 ** 0.65 **
L-32 0.77 ** 0.73 ** 0.67 ** 0.58 ** 0.45 ** 0.62 ** 0.55 ** 0.37 ** 0.18 ** 0.06 0.50 ** 0.63 ** 0.63 ** 0.60 ** 0.58 **
L-48 0.66 ** 0.64 ** 0.58 ** 0.47 ** 0.33 ** 0.15 * −0.03 −0.13 0.51 ** 0.54 ** 0.53 ** 0.54 **
L-64 0.61 ** 0.56 ** 0.39 ** −0.02 −0.15 * −0.2 ** 0.51 ** 0.54 ** 0.58 **
L-80 0.39 ** 0.15 −0.12 −0.14 0.58 ** 0.64 **
L-96 −0.14 −0.02 0.66 **

Note: * p < 0.05, ** p < 0.01. A: accumulation effect. L: lag effect.

Figure 7a–c show the maximum PCC between the NDVI and the climate variables.
The NDVI time series was significantly correlated with climatic factors across more than
90% of the vegetation area (p < 0.05). Temperature showed a 24.83 ± 20.44 (mean ±
standard deviation)-day lag and a 11.35 ± 19.83-day accumulation at the regional scale.
Grids without the time effect, with time lag, time accumulation, and their combined effects
accounted for 8.01%, 57.93%, 15.81%, and 18.25% of the areas with significant vegetation,
respectively (Figure 7d). In the south of the QNNP, the temperature showed a smaller
time effect. Precipitation affected vegetation with an average lag of 17.38 ± 17.64 days
and a 30.67 ± 28.42-day accumulation. The dominant time effect was the combined effect
and time-accumulative effect, accounting for 52.99% and 29.49%, respectively (Figure 7e),
of areas with significant vegetation. Radiation exhibited a 36.99 ± 41.93-day lag and
38.55 ± 39.09-day accumulation. The combined effect and that of time accumulation
were the dominant effects of radiation, accounting for 46.20% and 27.84%, respectively
(Figure 7f). Temperature and radiation generally had a larger impact than precipitation in
the QNNP, as the absolute PCC values between the NDVI and precipitation were lower
(Figure 7g). Considering the effects of time lag and time accumulation, a multiple linear
regression model was established between the climate variables and the NDVI time series
(Figure 7h). The result shows that the average explanatory power of the three climatic
factors was 44.04% in the QNNP.

We used the data in Table 1 in the BFAST model to detect changes in the temperature
and precipitation at L-16/A-16, and those in radiation at L-0/A-80 (Figure 8). We found no
shifts in 2010, which does not help to explain the changes in the NDVI in this year. There
were other reasons for variations in the NDVI in the QNNP.

3.3. Impact of Human Activities on NDVI in QNNP

We first analyzed the variations in the NDVI in different zones of the QNNP to test
the effectiveness of the protection of the reserve. The results showed that the tendencies of
the growth of the vegetation in the core zone and the buffer zone were higher and more
significant (p < 0.01) than those of the test zone (Table 2). The core zone had the highest
annual rate of change (0.42%), and the buffer zone had the highest total rate of change.
With regard to the shifts in the NDVI, the core zone and the buffer zone showed a trend
from browning to greening while the test zone showed a decrease in vegetation with a
positive break (Figure 9).



Remote Sens. 2021, 13, 4725 11 of 21

Figure 7. Spatial distributions of the maximum PCC between the NDVI, and (a) temperature, (b) precipitation, and (c)
radiation by considering the time effect. (d–f) Corresponding times with the maximum PCC. (g) Spatial distribution of the
main climate-driven factors with respect to vegetation growth. (h) Spatial pattern of the determination coefficient (R2) of
the multiple linear regression model of the NDVI against climatic factors by considering the effects of both the time lag and
time accumulation.

Figure 8. Detecting changes in climatic factors by considering the time effect in the QNNP during 2000–2018. Temperature
(a) showed a shift from increase to decrease; both segments were insignificant. Precipitation (b) showed a monotonic
decrease; both segments were insignificant. Radiation (c) showed the reverse trend, and both segments were significant.

Table 2. Slopes and rates of change in the NDVI for different vegetation types in three zones of the QNNP.

Slope Annual Rate of Change Total Change Rate

Test Buffer Core Test Buffer Core Test Buffer Core

Vegetation 0.0005 0.0012 ** 0.0012 ** 0.16% 0.37% 0.42% 3.01% 7.77% 6.85%
Forest - 0.0026 * 0.0024 * - 0.56% 0.54% - 10.64% 10.23%

Shrubland 0.0004 0.0019 ** 0.002 * 0.06% 0.37% 0.49% 1.06% 6.83% 9.11%
Grassland 0.0005 0.0008 * 0.001 * 0.09% 0.22% 0.28% 1.66% 3.98% 5.20%

Sparse vegetation 0.0006 ** 0.001 ** 0.0008 ** 0.39% 0.62% 0.47% 7.29% 11.81% 8.76%
Wetland 0.0005 0.0019 ** 0.0011 0.14% 0.80% 0.12% 2.56% 15.51% 2.19%

Cropland 0.0014 * 0.0013 ** 0.001 0.42% 0.30% 0.35% 7.91% 5.47% 6.46%

* p < 0.05; ** p < 0.01. The bold values represent the largest values of the slope/annual rate of change/total rate of change of the three zones.
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Figure 9. Variations in the NDVI in test zone (a), buffer zone (b) and core zone (c). The black lines represent the seasonal
trend model fitted to the original NDVI series (gray lines). The vertical, dashed black lines describe the times of shifts,
and the red lines are the confidence intervals. The blue lines are the separate trends detected before and after the shifts.

We further made buffers outside and inside the boundary of the reserve to study
the differences between the variation in vegetation near the boundaries of the QNNP
(Figure 10). Overall (in terms of all the indices), the vegetation growing inside the QNNP
was generally better than that outside. The largest proportion of a significant decrease
inside the QNNP was within 5 km of the border. With increasing distance, the proportion
of significant/insignificant increases in the NDVI became larger closer to the core protected
areas, as did the rate of change/annual rate of change in the NDVI. This characteristic was
especially prominent for vegetation within 15 km of the border. In terms of shifts in the
NDVI, the NDVI inside the reserve had larger proportions of monotonic greening areas
and smaller proportions of monotonic browning and browning with burst. Compared with
the area outside, a larger proportion of the vegetation inside the reserve had recovered,
with trends of the NDVI shifting from that of decrease to one of increase.

Figure 10. Spatial distribution of trends of NDVI near the boundary. The X-axes indicate the distance from the reserve
boundaries. Figure on the left side of the dotted line exhibits vegetation change inside the reserve, while figure on the right
side of the dotted line indicates the vegetation conditions outside the reserve.



Remote Sens. 2021, 13, 4725 13 of 21

We determined the variation in the livestock in the reserve because it feeds on plants
and thus directly influences the vegetation and, in turn, the variations in the NDVI.
As shown in Figure 11, the livestock number in the QNNP has increased drastically during
1952–2018. It was only 379,000 in 1952, while in 2008 it increased to more than 950,000.
During our study period, the number of livestock showed a monotonic decrease in Tingri,
and an increasing-to-decreasing trend in Dinggye and Gyirong. In Nyalam, the livestock
slowly decreased and then increased in 2012. For the entire reserve, the livestock numbers
showed a significant trend of decrease during 2010–2018 (Figure 11). This was consistent
with the shift in the NDVI of the entire reserve in 2010.

Figure 11. Livestock numbers in the QNNP and four counties during 1952–2018. The red line denotes
the total livestock numbers of the four counties. The vertical dashed line (2009) depicts time when a
large fluctuation in the number of livestock occurred in the QNNP.

4. Discussion
4.1. Variation in Vegetation in the Reserve

In the past 19 years, the NDVI in the reserve has shown a tendency of growth
(0.0008/yr), which is also the case in the Koshi River Basin [62], the Himalayan region [6,39],
and the TP [63,64]. Compared with past work that has focused on vegetation in the
QNNP [40–43], we have specified variations in the NDVI after 2010, and find that the
NDVI of the QNNP has not undergone a linear change. It changed from a trend of decrease
to one of increase around 2010, which has not been reported for the reserve before. The pat-
terns of the NDVI detected by BFAST in the first period were consistent with previous
studies [40,42,44,65]. For instance, we found that forests and shrublands showed a trend of
monotonic greening while the other vegetation types showed a trend of decrease in the
first period. Nie et al. [42] also found that, during 1998–2009, forests and shrublands had
a larger proportion of significant increase than significant decrease, whereas the propor-
tions of significant increases in grassland, sparse vegetation, and croplands were smaller
than the proportion of significant decreases. Ma et al. [65] found that during 2000–2009,
the vegetation in the northern slopes mainly showed a trend of decrease, and over 40% of
the vegetation showed different degrees of degradation. These places were dominated by
grassland and sparse vegetation.

The BFAST can help detect shifts beyond the linear regression model and can provide
more detail on the variations in the NDVI. Although the linear regression showed that
all the vegetation types had exhibited tendencies of growth in the past 19 years (Table 2),
grasslands and wetlands still need to be attended to. They showed a slight trend of
decrease during 2010–2018 (Figure 4). Figure 12 shows that among the points of insignifi-
cant increase and significant increase, a large number of points exhibited browning with
burst, and a greening-to-browning trend. Grassland and sparse vegetation accounted for
large proportions of these two shift types. If protections are not reinforced in the future,
the vegetation in these places will decrease in the long run.
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Figure 12. Sankey diagram of tendencies of linear regression, shift types generated by BFAST, and land cover types in the
QNNP. Abbreviations: MG, monotonic greening; GS, greening with setback; BG, browning to greening; MB, monotonic
browning; BB, browning with burst; GB, greening to browning. Non-vegetation areas were masked out by white color.

4.2. Response of NDVI to Climatic Variables

Temperature and radiation were dominant among the climatic factors influencing the
variations in the NDVI in the QNNP. This is consistent with a previous study that focused
on the response of the NDVI to climatic factors in different regions of the TP [54] and
other energy-limited middle-to-high latitudes of the Northern Hemisphere [60]. Increasing
temperature and radiation are important factors for an increase in the greenness of the
vegetation, and can significantly affect the vegetation of the TP, increase its productivity,
height, and the duration of its growing periods [66–68]. The impact of radiation on
the vegetation was not always positive. In the regions with limited water, high solar
radiation increased the soil temperature, thus accelerating the transpiration of moisture
and inhibiting vegetation growth [69,70]. Li et al. [55] found that in the southwestern
TP, increasing temperature together with a growing amount of solar radiation adversely
affected vegetation growth in the case of an insufficient supply of water. The effects of time
lag and time accumulation were noted in the relationship between the NDVI and climatic
variables in the QNNP and have been reported for the Yumco Basin [54], Naqu [71],
and TP [72]. Plants need an accumulation of climatic factors to initiate their lifecycles
and to obtain a sufficient amount of nutrients from the soil, heat, and moisture from the
environment [60].

Climatic factors could explain 44.04% of the variations in the NDVI in the QNNP.
This is below its global average value (63%) in a previous study [60]. This region is fragile
to disturbances (i.e., over-grazing, land use changes, drought, fire, and plant diseases) [61].
In the context of shift detection, Li et al. [73] found adverse trends in precipitation in the
entire southwestern TP and attributed the shift in the NDVI of the region to changing
precipitation. However, in the QNNP we did not find any shift in climatic factors in 2010,
and this cannot explain the shift in the NDVI in this year. Other factors should thus be
taken into consideration in examining the variations in the NDVI in this region.

4.3. The Effectiveness of Conservation

The effectiveness of the natural reserve in the QNNP can be verified from the following:
First, the buffer zone and the core zone generally had better vegetation conditions. The re-
sults showed that, since 2000, these zones had first decreased and then increased. The test
zone showed a decrease in both periods, but after 2010 its rate of reduction decreased.
Second, near the boundaries of the reserve, the vegetation inside the reserve generally
grew better than that outside the boundary. Third, the result of the BFAST showed that
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17.61% of the area had turned from brown to green and was not evenly distributed over
the entire reserve but was mainly located alongside roads and rivers, or areas featuring
intense human activities.

We further analyzed the tendencies of the NDVI for different types of vegetation in
the three zones to confirm that the higher tendencies of NDVI growth in the buffer and
core zones were caused by the establishment of different levels of protected zones, and not
simply because the large areas of these zones were covered by forests and shrublands.
The results showed that, except for the croplands (mainly located in the test zone), all types
of vegetation had a higher tendency of growth, annual rate of change, and total rate of
change in the buffer zone and the core zone than in the other zones (Table 2). In terms of the
proportions of types of change (Figure 13), most vegetation had better growth conditions in
the buffer and core zones. Land falling into categories of increase (significant/insignificant
increase, monotonic greening, greening with setback, and browning to greening) generally
constituted a higher proportion of land in these zones, with a higher proportion of land
falling into categories of decrease (significant/insignificant decrease, monotonic browning,
browning with burst, and greening to browning) in the test zone. Therefore, the core and
buffer zones provided more effective protections than the test zone.

Figure 13. Proportions of the types of variation and shift for different vegetation types in the three zones.

Previous studies also indicated the positive impact of the establishment of reserves in
the TP. For instance, Zhang et al. [10] found that the NPP in 76% of samples inside nature
reserves and 82% of samples inside national nature reserves in the TP was higher than that
of the corresponding samples outside the reserve. Through comparing two reserves in
the TP, Li et al. [74] found that longer-protected reserves exhibit higher stability to climate
change. The establishment of natural reserves on the TP has reduced human activity [34].
According to the Chinese government’s regulations on nature reserves and the local policies,
human activities (i.e., production facilities) were considerably restricted in the reserves,
especially in the buffer zone and the core zone. Without permission, people are strictly
prohibited to enter the core zone. While in the buffer zone, only non-destructive scientific
research and observation are allowed. In the core zone and the buffer zone, no production
facilities are allowed to be built. In the test zone, the production facilities cannot pollute the
environment or destroy the landscapes. In the protected area, the core zone also constitutes
areas featuring ecological engineering (i.e., the Natural Forest Protection Project, 1998,
and the Green for Grain Project, 2002) [42].
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4.4. The Impact of Livestock Decreasing

The policy-induced reduction of livestock could help to explain the NDVI increase in
the reserve. Grazing has been practiced on the TP for three millennia [75]. However, during
the past 50 years, due to the improved infrastructure, the growth of the population, and the
market demand, grassland-livestock industry has quicky developed [76]. According to the
study of Yu et al. [77], in 2010, the livestock number in the TP increased to nearly double
the estimated capacity of all available pastures. Overgrazing is threatening the ecological
security of the TP, becoming one of the major factors causing grassland degradation [78,79].
In our study area, during 1952–2008, the livestock number increased by 96.16%. This may
cause a huge impact on the environment. Overgrazing can reduce the soil–water content,
as well as nitrogen and phosphorus, causing a reduction in vegetation cover, vegetation
height, and aboveground biomass [80], and changing the plant community structure (i.e.,
dominant species, richness, abundance, and life forms) [81]. Research on three regions of
river sources has shown that increasing livestock numbers have eliminated the positive
effect of climatic factors during 1984–1993 [82]. Field experiments have showed that it
could influence the grassland to a greater extent than increasing temperature [83]. In the
field experiment of Wang et al. [84], heavy grazing, rather than the warming climate, led to
the degradation of alpine meadows.

We found that about 29.2% of the shifts occurred during 2010–2011, and the tendency
of livestock growth in the reserve reversed around 2009 and has declined drastically
since 2010. This variation is consistent with the implementation of engineering policies
that have reduced livestock in Tibet. In 2011, the government reinforced the policy by
introducing an award allowance payment policy, and has spent 1.6 million Yuan every
year in pastoral areas of China to compensate for prohibitions on grazing, to reward
efforts to achieve pasture–livestock equilibrium, and to provide production subsidies
for herdsmen [85]. In addition, 15.57% of the shifts happened in 2004. The Chinese
government enforced the ecological project, Grazing Withdraw Program (GWP), in 2003,
bringing the implementation of many large-scale ecological projects, such as fencing
degrading grassland, ecological compensation, and restoring the land cover vegetation [86].
The detection of the NDVI variation in the Qilian Mountain Region [21] also found positive
abrupt change increased significantly since 2005, after the implementation of the GWP.
Studies in the central TP found that the implement of ecological protection and restoration
projects have mitigated grassland degradation, and even reversed the degradation in some
areas [87]. Therefore, we thought that the policy-induced livestock decrease after 2010
might be one potential explanation for the NDVI shift in 2010.

4.5. Future Protection of Vegetation in the QNNP

The vegetation outside the reserve had a lower tendency of growth in the NDVI,
and higher ratios of significant and insignificant trends of decrease. Human activity is one
of the major factors leading to vegetation reduction near the boundaries. Li et al. [34] found
that the human footprint has increased more significantly outside the QNNP reserve. Stud-
ies have also shown that the protected areas attract, rather than repel, human settlements by
providing economic and occupational opportunities, and this threatens the effectiveness of
conservation [88]. From Figure 11, we can see the population in the four counties showed a
steady increase. Land cover changes may be another reason for a decrease in the NDVI [17].
The vegetation conditions outside the protected areas and the factors driving them should
receive more attention because the environmental conditions and human activities in them
can influence the natural resources within the reserves by affecting their biological and
physical processes [8,89,90], and can create a ring of disturbance outside the reserve that
isolates the protected area from its surroundings [81].

Apart from the overall tendencies of growth in the NDVI in the QNNP, reductions in
it were observed in the wetlands at high altitudes and the forests alongside roads on the
southern slope. We found a trend of decrease in wetlands during 2000–2010. A previous
study has shown that during 2000–2008, degraded wetlands occupied 71.3 km2, or 1.8%
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of all wetlands in the QNNP [91]. The wetlands east of Dingye county underwent signifi-
cant reductions in vegetation (red color in Figure 3). Such wetlands, especially flatlands
along the riverbank, are perennially impacted by sand erosion [92]. In the valleys of the
southern slopes, the destruction of forests, and the construction of roads and other infras-
tructure, together with frequent rainfall and unstable geological conditions, have triggered
landslides, thus inflicting further damage on the surrounding vegetation. In addition,
anthropogenic disturbances, i.e., fire, over-grazing, and lopping, hinder the natural succes-
sion of some species of trees by preventing the regeneration of seedlings and saplings from
the understory of the forest [93].

4.6. Shortcomings of This Study

Our study gave a preliminary finding on the vegetation response and the impact from
humans and the climate in the QNNP. The coarse resolution of the climate data could
have affected the calculated variations in the vegetation due to climate change. In future
work, weather stations in the surroundings could be gathered to generate more precise
climate data.

With respect to the human influence, we considered only the livestock number in
the region, while the surrounding industrial-scale activities (i.e., the construction of roads
and built-up areas) could also bring impact on the environment. Although the impacted
areas of those human activities are limited, mainly alongside the roads or surrounding the
built-up areas, their influences are severe. However, the current study cannot differentiate
the impacts from different human activities. In future studies, more human activities
could be taken into consideration. Spatializing the statistical data can help to clarify the
relevant influential factors in the different areas. Our work did not take the impact of the
land use and the landcover change into consideration because it is difficult to capture by
moderate resolution image. The applications of the satellite data with higher resolutions
(i.e., Landsat, Sentinel) could help us to clarify the impact from the land use and the land
cover change. In addition, more collaborative research involving the local stakeholders and
researchers (i.e., a questionnaire survey in the local communities) could help us to better
understand the influence of human activities in different scales, and make the study result
more convincing [94].

5. Conclusions

We studied the variations in the NDVI of the QNNP during 2000–2018 in this pa-
per. We applied the break point detection to monitor variations in the vegetation in the
protected areas. This algorithm can help provide detailed information on the changes
in the vegetation so to implement timely protection measures. The results showed that
the vegetation in the reserve had grown during the past 19 years, but its growth was not
monotonic. The vegetation declined in the first 10 years, and then grew after 2010.

We found that climatic factors could account for only 40.04% of the variation in the
vegetation in the QNNP. Human activity has thus affected the vegetation in even the highest
region of the world. Although the linear regression model showed that all vegetation types
had an increasing tendency, the result of the BFAST algorithm showed that grasslands
and wetlands had decreased after 2010. The vegetation in the test zone, especially near
the boundary of the reserve, should be strictly protected. Our work here can provide
information for the sustainable management of the reserve.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13224725/s1, Figure S1: Comparison of the ground-observed climate data and the China
Meteorological Forcing Dataset. Figure S2: NDVI trends around the reserve boundary. Insert figures
is NDVI trends with p value higher than 0.05 being masked out.
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