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Abstract: Remote sensing is a powerful tool that provides flexibility and scalability for monitoring
and investigating glacial lakes in High Mountain Asia (HMA). However, existing methods for map-
ping glacial lakes are designed based on a combination of several spectral features and ancillary data
(such as the digital elevation model, DEM) to highlight the lake extent and suppress background in-
formation. These methods, however, suffer from either the inevitable requirement of post-processing
work or the high costs of additional data acquisition. Signifying a key advancement in the deep
learning models, a generative adversarial network (GAN) can capture multi-level features and learn
the mapping rules in source and target domains using a minimax game between a generator and
discriminator. This provides a new and feasible way to conduct large-scale glacial lake mapping. In
this work, a complete glacial lake dataset was first created, containing approximately 4600 patches
of Landsat-8 OLI images edited in three ways—random cropping, density cropping, and uniform
cropping. Then, a GAN model for glacial lake mapping (GAN-GL) was constructed. The GAN-
GL consists of two parts—a generator that incorporates a water attention module and an image
segmentation module to produce the glacial lake masks, and a discriminator which employs the
ResNet-152 backbone to ascertain whether a given pixel belonged to a glacial lake. The model was
evaluated using the created glacial lake dataset, delivering a good performance, with an F1 score of
92.17% and IoU of 86.34%. Moreover, compared to the mapping results derived from the global–local
iterative segmentation algorithm and random forest for the entire Eastern Himalayas, our proposed
model was superior regarding the segmentation of glacial lakes under complex and diverse envi-
ronmental conditions, in terms of accuracy (precision = 93.19%) and segmentation efficiency. Our
model was also very good at detecting small glacial lakes without assistance from ancillary data or
human intervention.

Keywords: generative adversarial networks; attention mechanism; glacial lake mapping; Landsat-8 OLI

1. Introduction

During the last several decades, glacial lakes have increased dramatically in area and
number in High Mountain Asia (HMA) due to the ongoing impact of global warming and
glacier melting [1]. This has considerably increased the risk of flood outburst hazards and,
therefore, monitoring and evaluating the dynamics of glacial lakes is of great significance for
the understanding of ecosystem stability and preventing outburst hazards in downstream
areas. Fast and accurate mapping of glacial lakes is a prerequisite for the comprehensive
investigation of these lakes.

As a unique water resource, glacial lakes have several remarkable characteristics.
(1) Small size: small glacial lakes (<0.1 km2) make up the majority of the glacial lakes in
HMA. For example, more than 72.7% of the glacial lakes were small in size in 2016 [2,3].
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Although these small lakes pose a limited threat to downstream regions, they are still a
key factor in exhibiting the dynamic of climate change and giving larger uncertainties
in glacial lake mapping [4]. (2) Various physical properties: affected by environmental
components such as soil, geology, vegetation, and glaciers, glacial lakes show varying
degrees of turbidity and coloring in remote sensing imagery. Moreover, some objects, such
as mountain shadows and clouds [1], have a spectrum similar to that of glacial lakes. Thus,
the spectral characteristics of glacial lakes vary in complexity with diverse environmental
conditions. (3) Wide distribution: glacial lakes of different types, sizes, and shapes are
widely distributed around glaciers in the alpine regions of Central and South Asia [5],
including the Altai Mountains [6], Himalayas [7,8], Tianshan Mountains [9], and Kunlun
Mountains [10], as well as the Karakoram-Pamir Plateau [11,12]. All of these unique
characteristics provide great challenges for the automatic and accurate mapping of glacial
lakes over a very large-scale glaciated area.

Although much progress has been made in mapping glacial lakes, the mapping
methods involved require significant post-processing work and the use of other ancillary
data, such as the digital elevation model (DEM) and feature maps. One fundamental
problem in glacial lake mapping is that all the features used to highlight glacial lake
information are manually designed. This means that while certain spectral or handcrafted
features are used, other useful high-level and complex features are ignored. For instance,
water indexes [13] are the most commonly used spectral features for the detection of glacial
lakes, and they are designed as band ratios that involve green/blue (G/B) bands and
near-infrared/short wave infrared (NIR/SWIR) bands. However, many phenomena (such
as mountain shadows, melting glaciers, and clouds) generate spectral responses similar to
those of glacial lakes, resulting in low mapping accuracy and inevitable manual correction.
To alleviate the effects of these factors, most semi-automatic methods use auxiliary data
to minimize the amount of less post-processing required. Song et al. [4] presented a
hierarchical image segmentation method to explore the distribution and evolution of
glacial lakes in the Southeastern Tibetan Plateau. The method combined the normalized
difference water index (NDWI) derived from Landsat TM/ETM+/OLI imagery with
DEM-based terrain analysis results to extract glacial lake areas. Li et al. [14] proposed a
global–local iterative segmentation algorithm to delineate glacial lake extent using Landsat
TM/ETM+ and DEM data. Shen et al. [15] applied an object-oriented classification method
to extract glacial lake information using a water extraction decision ruleset. This method,
however, requires many experiments to determine which features should be considered
and how to set parameter values, such as the segmentation scale, shape index, and NDWI.
Bhardwaj et al. [16] designed a lake detection algorithm (LDA), which comprised inputs
from the moisture index, vegetation index, and NDWI to detect lake pixels and filter out
noise pixels based on the DEM and thermal information. Gao et al. [17] established a lake
hydrological network to identify the attributes of each lake in the Third Pole using Landsat
images, topographic maps, and DEM data. Wangchuk et al. [1] employed a random forest
classifier to map glacial lakes using multi-source optical and radar data, including Sentinel-
1 synthetic aperture radar, Sentinel-2 multispectral instrument, and DEM. Zhao et al. [18]
integrated the advantages of the threshold segmentation method and the active contour
model to improve the efficient extraction of glacial lakes and the removal of mountain
shadows with the help of DEM. Li et al. [19] created a two-stage segmentation workflow
for mapping glacial lakes. First, the object-oriented method was used to segment the target
image into the lake, potential lake, and unknown region. Then the potential lake zone was
refined using the watershed algorithm. All of these methods depend on auxiliary data
to some extent, and checking and editing the mapping results requires great effort. This
significantly limits the use of the mapping methods for the fast and accurate extraction of
large-scale glacial lake distribution information. Developing a more automatic and less
data-dependent method for mapping glacial lakes suitable for large, glaciated regions, is
clearly essential to explore the relationship between the changes from climate and glacial
lakes, and give forewarning of the glacial lakes that have high outburst risk.
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With the explosive growth in remote sensing imaging data, many effective data
processing methods have been proposed. Among these, deep learning models have
attracted considerable attention and shown great potential in the extraction of high-level
information of objects in terms of classification [20], segmentation [21], and generation [22].
To date, there has been scant research that uses deep learning models for glacial lake
mapping. Qayyum et al. [23] attempted to map glacial lakes using four-band PlanetScope
imagery of the Hindu Kush, Karakoram, and Himalaya (HKKH) region using U-Net
architecture. Wu et al. [24] employed a U-Net-based model to extract the contours of
glacial lakes in Southeastern Tibet, with the input from Landsat-8 OLI and Sentinal-1A
SAR images. Although the pooling operations in the U-Net model can reduce the number
of model parameters without changing the image features, they omit some details of the
lake boundaries. This is not conducive to the extraction of complex-shaped and small
glacial lakes. Considering that the Landsat series of satellites provides the most extensive
and longest records for glacial lake mapping, this paper proposes a new solution for
glacial lake extraction. We used a deep learning model and Landsat images to facilitate the
development of a glacial lake inventory and disaster management in HMA.

As an artistic designation in the deep learning model, the generative adversarial
network (GAN) has achieved much in image generation [22], classification [25], object
detection [26], image super-resolution [27], and image deblurring [28]. GAN is rarely
used as a domain transfer task for image segmentation. Compared to other segmentation
models, GAN defines a generator and discriminator to learn the distribution of real data
and generates segmentation masks without distribution assumptions [29]. Using GAN,
Xue et al. [30] proposed a SegAN model, which uses a fully convolutional neural construc-
tion in the generator to segment the mask of a brain tumor in an MRI image at the pixel
level. Their model had better precision and sensitivity than other state-of-the-art models
when testing it against the BRATS 2013 and 2015 datasets. Son et al. [31] used a GAN-based
model to precisely map a vessel in a retinal image and obtained good results on the DRIVE
and STARE datasets. To improve mapping accuracy and avoid human-interactive pro-
cessing, in this paper, we propose a novel end-to-end GAN-based architecture for glacial
lake mapping (GAN-GL), in which the only input data are remote sensing images. The
water attention module and image segmentation module are cascaded in the generator of
GAN-GL to focus on lake information. A ResNet backbone is used in the discriminator.
To the best of our knowledge, this is the first time that water attention has been used in a
deep learning method for glacial lake mapping. Moreover, we built a large-scale glacial
lake dataset for the training and evaluation of the performance of GAN-GL. This dataset
contains about 4600 Landsat image patches, each cropped around the glacial lake and
with 256 × 256 × 7 pixels. We further divided the dataset into three subsets according
to the collection methods, including random cropping, uniform cropping, and density
cropping. This model greatly improves the segmentation of glacial lakes over a large-scale
area with low data dependence. The robustness and relative accuracy of the proposed
method was also tested under different environmental conditions using a global–local
iterative segmentation algorithm and random forest classification as a benchmark.

The rest of this paper is organized as follows. Section 2 introduces the collection
and statistical analysis of the dataset. In Section 3, we describe the methodology and the
architecture of the proposed GAN-GL model. The evaluation metrics and experimental
results are given in Section 4. The factors that may influence the mapping performance are
discussed in Section 5. Finally, we conclude this work in Section 6.

2. Dataset

While many achievements and publications have been conducted on the glacial lake
inventory [5,10], the inventory data cannot be directly used as training samples for deep
learning models due to inconsistent data properties between inventory data and glacial
lakes in images. In addition, format transformation and region cropping are needed to
comply with the input form of the GAN network. In this section, we describe the details of
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the collection and production of a complete glacial lake dataset. Such a dataset can be used
to drive deep learning models for automatic glacial lake mapping as well as to evaluate the
performance of the deep learning model.

2.1. Collection of Dataset

Owing to its moderate spatial resolution (30 m) and continuous record, Landsat
imagery has become one of the most extensively used data resources to retrieve glacial lake
information. In this study, Landsat-8 OLI imagery was employed as basic data to create
the GAN-GL dataset, as shown in Table 1. To minimize the interference from seasonal
snow/ice cover and clouds in glacial lake detection, the acquisition times of the images
were all between July and early November. During this period, the boundaries of glacial
lakes are very clear and stable because of the balanced state of glacier mass gains and
losses [32,33]. The High Mountain Asia Glacial Lake Inventory (Hi-MAG) database [10],
which mapped the annual glacial lake coverage from 2008 to 2017 at a 30 m resolution
using Landsat series satellite imagery, was used to assist in the creation of ground truth
labels for each element (glacial lake or non-glacial lake).

Table 1. Details of Landsat-8 OLI images used in this study.

Path/Row Cloud Cover
(%) Acquisition Data Sub-Region Lake Number

in the Tile

133/039 0.17 2 November 2016 Hengduan Shan 97
150/033 1.35 20 July 2016 E. Pamir 9
146/029 1.54 25 August 2016 E. Tianshan 32
146/030 1.66 9 August 2016 C. Tianshan 62
140/039 0.18 3 November 2016 Gangdise Shan 21
145/038 0.34 21 October 2016 Gangdise Shan 68
146/038 0.92 28 October 2016 W. Himalaya 36
149/030 0.68 15 September 2016 W. Tianshan 53
142/030 1.01 30 September 2016 E. Tianshan 27
131/039 1.38 3 October 2016 Hengduan Shan 36

133/040 1.56 2 November 2016 Hengduan Shan,
Nyainqentanglha 388

143/039 1.80 23 October 2016 C. Himalaya,
Gangdise Shan 308

148/029 0.88 24 September 2016 Alataw Shan 197
144/039 2.34 14 October 2016 C. Himalaya 154
150/034 3.36 20 July 2016 W. Pamir 31
147/030 1.01 10 September 2016 C. Tianshan 44
139/040 0.72 27 October 2016 Gangdise Shan 16

138/040 3.40 20 October 2016 Nyainqentanglha, E.
Himalaya 253

140/040 1.66 20 October 2016 C. Himalaya,
Gangdise Shan 207

137/040 1.07 29 October 2016 Nyainqentanglha, E.
Himalaya 133

131/037 0.01 15 July 2016 Hengduan Shan 24
135/034 2.95 15 October 2016 Qilian 17
142/040 1.58 1 November 2016 C. Himalaya 114
131/040 1.45 4 November 2016 Hengduan Shan 61
143/030 0.75 4 August 2016 E. Tianshan 8
144/038 0.50 30 October 2016 Gangdise Shan 141
137/041 2.59 29 October 2016 E. Himalaya 240
145/039 1.40 6 November 2016 C. Himalaya 24

Note: E.: East; W.: West; C.: Central.

2.2. Production of the GAN-GL Dataset

Glacial lakes are generally gathered around glaciers, and their areas are extremely
small compared to backgrounds, for example, there are considerable spatial extents of
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non-glacial lakes in a Landsat scene. Therefore, 103 tiles, comprising 1024 × 1024 pixels
and containing glacial lakes, were firstly cropped from original Landsat-8 OLI images
and used as the basis for the subsequent production of the GAN-GL dataset. The spatial
distribution of these tiles is shown in Figure 1.

Figure 1. Spatial location of High Mountain Asia and the distribution of 103 image tiles (red
rectangles), which cover the main mountain ranges.

Glacial lakes are unevenly distributed and vary greatly in size. Many glacial lakes in
HMA are too small (<0.1 km2) to be identified, but they account for a large proportion of
the total lake area (in Nyainqêntanglha, the area of small glacial lakes accounts for 69.47%
of the total area [10]). These small lakes are quite sensitive indicators to exhibit the trends
of global climate changes and are easily overlooked in lake evolution in HMA. Moreover,
the density distribution of glacial lakes has high spatial heterogeneity in the glaciated
regions. The density of glacial lakes is relatively high in the ranges of Southwestern Pamir
as well as in the Himalayas; few glacial lakes exist in parts of Western Pamir. All this
indicates that the scale and density of glacial lakes vary significantly in the HMA region,
and should, therefore, be fully considered in the production of a glacial lake dataset. In this
study, three forms of image cropping—uniform cropping, density cropping, and random
cropping—were used to build a complete glacial lake dataset, as shown in Figure 2. Notably,
the density map-based cropping method was proposed for the first time to fully utilize
the spatial and contextual information from glacial lakes and to improve the detection
performance of the model.

The following are the detailed steps in the production of the three glacial lake subsets:
GAN-GL-U: Uniform cropping was used for each image tile from the original GAN-GL

dataset into 16 patches, each with a 256 × 256 pixel size. This subset consists of 683 patches
and each lake appears only once. Some patches without any lakes were discarded.

GAN-GL-D: We cropped 256 × 256 pixels of the patches covering the glacial lakes
in each image tile, and then counted the number of glacial lakes and their pixels in each
patch. Only patches with more than five lakes and a total area greater than 1% of a patch
area were reserved. Finally, 1540 density-cropped patches were acquired.

GAN-GL-R: To create this subset, 50 image patches, each with a size of 256 × 256 pixels,
were randomly cropped from each image tile, and only image patches containing glacial
lakes were retained. In this way, this subset has a total of 2382 patches, and some glacial
lakes may appear more than once.
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Figure 2. Schematic diagram showing the three methods of creating the glacial lake subsets from
the image tiles. (a) Uniform cropping: Image tiles were cropped evenly, and image patches without
glacial lakes were discarded. (b) Density cropping: Image tiles were cropped according to glacial
lake density. (c) Random cropping: Image tiles were cropped randomly and image patches without
glacial lakes were discarded.

Table 2 lists the statistical results associated with these three subsets. GAN-GL-R and
GAN-GL-U have similar values for the average number, the average area of glacial lakes in
each patch, and the size of glacial lakes. GAN-GL-D has the highest density of glacial lakes.

Table 2. Properties of three glacial lake subsets.

GAN-GL-R GAN-GL-D GAN-GL-U

Number of image patches 2382 1540 683
Average number of glacial lakes in each patch 3.84 9.75 3.81
Average area of glacial lakes in each patch (pixel) 329.48 1225.39 332.54
Average area of each glacial lake (pixel) 85.80 125.68 87.28

3. Methods

The architecture of our proposed GAN-GL model for the segmentation of glacial
lakes is shown in Figure 3. In GAN-GL, we incorporated a water attention module and
image segmentation module into the generator. The discriminator was designed based
on ResNet-152 to encode the lake area as vectors and determine their categories. Given
a remotely sensed image input, the generator attempts to produce glacial lake masks.
Then, the generated masks and true labeled masks are both fed into the discriminator for
training until they can correctly predict whether the input data are generated or real. In the
following subsections, we describe each process in more detail.
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Figure 3. Architecture of the proposed GAN-GL model, which mainly consists of three parts—A water attention module
and an image segmentation module in the generator, and the ResNet-152-based discriminator.

3.1. Generator
3.1.1. Water Attention Module

Attention mechanisms have been successfully applied in the field of image segmen-
tation, highlighting the features that need attention based on the context of the network.
Fu et al. [34] proposed a dual attention network to capture rich contextual dependencies for
scene segmentation by combining local features with their global dependencies. Li et al. [35]
designed a pyramid attention network, which combined an attention mechanism with a
spatial pyramid to extract precise, dense object features for semantic segmentation. To
optimize and stabilize the segmentation model in terms of memory and computation, an
expectation–maximization attention module was developed and encapsulated into a neural
network [36]. In our GAN-GL, a water index is used in the water attention module to
obtain the initial glacial lake extent. Combined with convolution features, the possible lake
pixels are highlighted, and potential water areas are given a relatively high weight. The
structure of this module is shown in Figure 4.

Given an input Landsat-8 OLI image I ∈ RH×W×C, features F1 and F2 are calculated
through the convolution operation, with a 1 × 1 kernel size {F1, F2} ∈ RH×W×1. Feature
F3 refers to the water index. Due to the simplicity of the expression and relatively stable
thresholds used for the classification of lakes [13,37], NDWI was selected in this study,
as follows:

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(1)

where ρgreen and ρNIR represent top-of-atmosphere (TOA) reflectance values in the green
and NIR bands measured by the Landsat-8 OLI sensor, respectively.

After the calculation of all the feature maps, F1 and F2 are both reshaped to RN×1,
where N = H ×W. Then, matrix multiplication is performed on the reshaped F1 and
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transpose of reshaped F2, and a softmax layer is used for the normalization of the input to
obtain the feature map A ∈ RN×N .

Aji =
exp

(
F1i ⊗ F2j

)
∑N

i=1 exp
(

F1i ⊗ F2j
) (2)

The operator ⊗ is the ordinary matrix multiplication. Similarly, feature F3 is also
reshaped to RN×1, and matrix multiplication is operated on the transpose of reshaped F3
and feature A to enhance the water information in the water attention map W:

Wj =
N

∑
i=1

(Aji ⊗ F3i) (3)

Note that here, W ∈ R1×N should be reshaped to RH×W .

Figure 4. Structure of our water attention module.

3.1.2. Image Segmentation Module

The attention results give the weight information of a pixel that belongs to a glacial
lake. To fully utilize this information and further segment glacial lakes, a U-Net-based
segmentation module was incorporated into the generator. Figure 3 shows that the input
of this module is the element-wise product between the water attention map and Landsat
imagery. We exploited five down-sampling operations to capture the lake information at
different scales, each of which contains two convolution layers with a rectified linear unit
(ReLU) active function and one convolution layer with a stride of 2. The ReLU function
activates the input data x and extends the nonlinear applications in deep learning models,
which is defined as f (x) = max(0, x). An input image with a size of H ×W × C is
down-sampled to (H/16)× (W/16)× C′. Because some small glacial lakes can only be
extracted from shallow layers, the feature maps of the same size during down-sampling
and up-sampling are concatenated, namely as skip connections, to integrate features at
different scales. Finally, lake binary masks are produced by processing connection features
in the last two convolution layers.

3.2. Discriminator

The inputs of the discriminator are the generated binary masks from the previous
stage and the true labels of glacial lakes. Firstly, lake information is enhanced by the
element-wise product between the input masks and the Landsat imagery. ResNet-152
is used as a backbone for the extraction of features from the results of the element-wise
product. The corresponding output is a 2048 dimensional feature vector of a glacial lake—
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this is then processed by two fully convolutional layers, and fed into a single sigmoid layer
to determine whether each pixel is that of a glacial lake.

3.3. Loss Function

GAN defines a competitive game between a generator and discriminator, and the final
stable state of this game is evaluated by an adversarial loss function, as follows:

min
G

max
D

EM∼plabel [log(D(M))]

+EI∼plake [log(1− D(G(I)))]
(4)

where G and D are the generator and discriminator, respectively, I is the input Landsat
image, and M is the input mask.

However, the action of using this loss function to train the GAN model directly is
unstable because it may lead to mode collapse or convergence failure [38]. Under these
conditions, a loss function in WGAN-GP is employed, which places a Lipschitz constraint
on the adversarial loss and penalizes the gradient norm of the adversarial loss with respect
to the input binary masks. The penalty term is defined as follows:

Ex̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(5)

where Px̂ is the uniform sampling along the lines between the pairs of points sampled from
the label distribution Plabel and lake distribution Plake.

In order to verify whether the glacial lake information can be effectively discriminated,
we used an L2 loss function to represent the content loss in the discriminator to measure
the similarity between image features derived from generated masks and those derived
from ground truth, as follows:

lcontent(G) =
1
N

N

∑
i=1
‖G(I)i − Bi‖

2

(6)

where B is the binary masks of ground truth. Finally, combining the WGAN-GP adversarial
loss and content loss, our loss function can be expressed as:

l(G, D) = ladversarial(G, D) + lcontent(G) (7)

4. Results and Discussion
4.1. Implementation Details and Evaluation Metrics

Segmentation experiments were conducted using Tensorflow 1.14 on the Python 3.7
platform. The GAN-GL dataset was split into 70% for training and 30% for validation.
In the training stage, ResNet-152 in the discriminator was pre-trained on ImageNet. The
training of the model was configured with a batch size of 1 for 100 epochs, and the optimizer
used was AdamOptimizer, with a learning rate of 0.0001. To quantitatively evaluate the
glacial lake mapping accuracy, the number of glacial lake pixels was counted using the
predicted mask and the true labeled mask, and five performance indicators, Precision (P),
Recall (R), Overall Accuracy (OA), F1 Score (F1), and Intersection over Union (IoU) were
used. The corresponding formulations are as follows:

P = all correctly predicted water pixels/all predicted pixels;
R = all correctly predicted water pixels/all water pixels;
OA = all correctly predicted pixels/all pixels;
F1 = 2 × P × R/(P + R);
IoU = (predicted water pixels ∩ true water pixels)/(predicted water pixels ∪ true water pixels).
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4.2. Ablation Study

To investigate the effectiveness of each module in GAN-GL and its influence on the
final glacial lake mapping results, an ablation study was performed. Several specific
combinations of individual modules are as follows:

• ISeg: The image segmentation module in the generator (see Figure 4); the loss function
is L2 loss.

• Attn + ISeg: Combines the water attention module with the image segmentation
module; the loss function is L2 loss.

• ISeg + ResNet-50: Combines the image segmentation module in the generator with
ResNet-50 in the discriminator; the loss function is the same as in Equation (7).

• ISeg + ResNet-101: Combines the image segmentation module with ResNet-101; the
loss function is the same as in Equation (7).

• ISeg + ResNet-152: Combines the image segmentation module with ResNet-152; the
loss function is the same as in Equation (7).

• Attn + ISeg + ResNet-50: Combines the water attention and the image segmentation
module in the generator, with ResNet-50 in discriminator; the loss function is the same
as in Equation (7).

• Attn + ISeg + ResNet-101: Combines the water attention and the image segmentation
module in the generator, with ResNet-101 in discriminator; the loss function is the
same as in Equation (7).

• Attn + ISeg + ResNet-152: Combines the water attention and the image segmentation
module in the generator, with ResNet-152 in discriminator; the loss function is the
same as in Equation (7).

The results of the ablation study are shown in Table 3 and are based on the three GAN-
GL datasets. The water attention module combined with the GAN-based structure
(Attn + ISeg + ResNet-152) obtained the highest values of Precision (93.34%), Recall (92.01%),
F1 score (92.17%), and IoU (86.34%).

Table 3. Experimental results of ablation study for the three glacial lake subsets.

Dataset Indicators 1© 2© 3© 4© 5© 6© 7© 8©

GAN-
GL-R

P (%) 70.36 73.48 72.73 72.32 76.53 75.29 78.26 80.87
R (%) 71.15 72.95 80.01 87.45 85.34 84.97 86.98 90.29

OA (%) 99.86 99.21 99.44 99.83 99.75 99.70 99.75 99.81
F1 (%) 71.25 72.72 75.69 78.67 76.80 79.34 81.89 84.83

IoU (%) 54.52 57.74 61.54 65.51 66.56 66.43 70.05 74.40

GAN-
GL-D

P (%) 86.69 89.14 87.01 90.11 91.85 91.29 92.93 93.34
R (%) 80.60 86.69 87.26 88.87 89.17 87.16 89.33 92.01

OA (%) 99.56 99.57 99.47 99.33 99.64 99.66 99.39 99.28
F1 (%) 83.53 87.90 86.63 88.98 89.99 87.81 90.60 92.17

IoU (%) 71.73 78.41 77.20 80.97 82.63 80.29 83.64 86.34

GAN-
GL-U

P (%) 63.16 66.99 66.67 73.97 74.14 74.43 75.86 77.78
R (%) 70.59 82.52 82.61 76.32 72.88 78.02 78.57 91.30

OA (%) 99.20 99.78 99.88 99.85 99.83 99.89 99.89 99.89
F1 (%) 66.17 73.46 73.30 74.63 73.01 71.62 76.70 83.50

IoU (%) 50.58 58.67 58.46 60.16 58.11 60.59 62.86 72.41
Note: 1© ISeg. 2© Attn + ISeg. 3© ISeg + ResNet-50. 4© ISeg + ResNet-101. 5© ISeg + ResNet-152. 6© Attn + ISeg +
ResNet-50. 7© Attn + ISeg + ResNet-101. 8© Attn + ISeg + ResNet-152.

Comparison for attention module: Because the water attention mechanism enables the
model to focus on the identification of lake pixels, the water attention module markedly
improves the segmentation performance of the glacial lakes (with an increase of 2~3%
in accuracy).

Comparison for ResNet backbone: We tested the effects of different ResNet backbones
in the discriminator, including ResNet-50, ResNet-101, and ResNet-152. Table 3 shows
that the deeper the layers of the ResNet backbone, the better its performance. This can be
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explained by the fact that ResNet-152 records more details about glacial lakes by using
deeper convolution layers compared to ResNet-101 and ResNet-50. This facilitates the
accurate extraction of the complex edges of glacial lakes.

Comparison for the discriminator: Clear improvements were observed in the evalua-
tion results when the discriminator was used (e.g., the ISeg and ISeg + ResNet backbone,
the Attn + ISeg and Attn + ISeg + ResNet backbone). This is because the discriminator can
guide the generator to learn the real distribution of the data.

Furthermore, it should be noted that accuracies were the highest for the density-
cropped dataset, which contains sufficient glacial lake information in each patch to improve
the training level of the model. This shows that the density of glacial lakes in the training
data is an easily overlooked but important factor that affects the overall segmentation results.

4.3. Tests of Different Attention Modules

The purpose of the water attention module is to provide the weight information of
each pixel that belongs to the glacial lake. Currently, there are many simple but effective
water indexes that can extract lake areas, such as NDWI, modified normalized difference
water index (MNDWI) [39], and enhanced water index (EWI) [40]. To test whether these
water indexes could locate a glacial lake area accurately and be adept at computing the
water attention, they were incorporated into our attention module to obtain the pixel
weight; then, their ability and importance with regard to mapping glacial lakes were
measured. Here, MNDWI and EWI were calculated according to the following formulas:

MNDWI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
(8)

EWI =
ρC − ρNIR − ρSWIR2

ρC + ρNIR + ρSWIR2
(9)

where ρgreen, ρC, ρNIR, ρSWIR1, and ρSWIR2 represent the TOA reflectance values in the green,
cirrus, NIR, SWIR1, and SWIR2 bands measured by the Landsat-8 OLI sensor, respectively.

According to the analysis in Section 4.2, we chose the Attn + ISeg + ResNet-152
structure and used GAN-GL-D as our evaluation data. The accuracy statistical results using
different attention modules are listed in Table 4. Using the water index alone achieved low
accuracies for mapping glacial lakes, in particular, Recall and IoU. This means that without
convolution operations, the water index can misclassify objects when pixels have feature
values similar to glacial lakes. Lake areas extracted by NDWI had fewer commission errors
and exhibited the highest mapping accuracy when coupled with convolution operations.

Table 4. Accuracy evaluation of glacial lake mapping using different attention modules.

Attention Module P (%) R (%) OA (%) F1 (%) IoU (%)

NDWI 89.57 72.24 99.47 79.98 66.63
MNDWI 90.35 56.57 99.15 69.58 53.35

EWI 85.29 60.58 99.13 70.84 54.84
Attn_NDWI 93.34 92.01 99.28 92.17 86.34

Attn_MNDWI 91.99 86.89 99.48 88.87 80.78
Attn_EWI 91.19 85.29 99.76 87.64 78.80

Figure 5 shows the visual evaluation of the image weight for the glacial lakes under
various environmental conditions using the different water attention modules. Obviously,
the use of the water index provided a high weight not only to glacial lakes, but also to
melting glaciers and mountain shadows (denoted by the white ellipses in the first and
third rows). With added convolution operations in the water attention module, effects
from these interferences can be largely avoided. The second row in Figure 5 shows that the
weight obtained by EWI is very conservative because its attention tends to the interior of a
glacial lake. MNDWI obtained relatively extreme estimates, with attention tending to the
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exterior of a lake. Only the NDWI-derived attention was uniform and close to the glacial
lake boundary.

Figure 5. Weight results using different water attention modules. Input data are from Landsat-8 OLI images (first column,
false color composites of bands 7/5/2), covering glacial lakes of various environmental components. Melting glaciers (white
ellipses in the first row) and mountain shadows (white ellipses in the third row) also showed high weights using the water
index alone.

4.4. Impact of Different Training Scales

In this section, we discuss experiments conducted to survey the influence of different
training scales on mapping performance. We trained the Attn+ISeg+ResNet-152 structure
on progressively smaller subsets of training data and evaluated the test data from the
GAN-GL-D dataset, as shown in Figure 6. Owing to slight variations in the OA, the
accuracy statistics of the other four indicators with the changes of sample scale were plotted.
Generally, the extraction accuracy of glacial lakes can be continuously improved with
increased amounts of training data, and is particularly sensitive to the sample scale within
a range of 60% of the training set. This means that a sufficient number of training samples
is conducive to reliable mapping. However, when the ratio of the training set exceeds 60%,
the associated accuracy increases slowly and almost reaches the saturation point.

4.5. Comparison with Other State-of-the-Art Mapping Methods
4.5.1. Experimental Materials

For a comprehensive evaluation of the robustness of the proposed model (Attn +
ISeg + ResNet-152), two state-of-the-art mapping methods, the widely used global–local
iterative segmentation algorithm [14] and the classical random forest classification [1],
were employed for mapping performance comparison in the mapping of glacial lakes over
the Eastern Himalayas. The Eastern Himalayas was chosen as our test site because this
region has a high density of glacial lakes [1] and a high probability to outburst hazards [41].
Ten Landsat-8 OLI images from the year 2017 covering the entire Eastern Himalayas were
used for the experiments.
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Figure 6. Accuracy for the proposed Attn+ISeg+ResNet-152 structure using different ratios of the
training sets as input.

The global–local iterative segmentation algorithm has been successfully used before
for glacial lake mapping in mountainous areas. Implementation of the algorithm mainly
consists of two steps. Firstly, potential glacial lake pixels are delineated using a global-
level thresholding segmentation of NDWI coupled with NIR and SWIR bands to filter
out backgrounds and noise pixels, with a spectral reflectance similar to that of glacial
lakes. Secondly, a buffer zone is established for each potential lake, and then a local
threshold of NDWI is used to determine the final lake extent within this buffer zone. Here,
the local threshold is calculated based on the rule that the NDWI of glacial lakes and
backgrounds conforms to a bimodal distribution. In our experiments, the global thresholds
of NDWI (≥ 0.10), NIR (< 0.15), and SWIR (< 0.05) were set according to those of the
literature [4,14,17,42]. The local-level threshold in each buffer zone is computed as follows:

Threshold =
µbackground · σwater + µwater · σbackground

σwater + σbackground
(10)

where µwater and µbackground are the mean NDWIs of the water and background region, re-
spectively. σwater and σbackground are the variances of the NDWI of the water and background
region, respectively.

The random forest is a classical ensemble learning method that employs many indi-
vidual decision trees to vote for the best decision. The method has better robustness and
generalization ability than methods that use an individual decision tree due to the random
sampling of input data and the random subset of features. Random forest has been widely
applied in the field of lake mapping [1,43]. In this study, we grew 100 trees and randomly
selected 1000 pixels from the NDWI, NIR, and SWIR for glacial lakes and non-glacial lakes
to train the classifier. Note that to alleviate the effects from terrain conditions, additional
experiments were undertaken by introducing auxiliary ASTER DEM data (with a spatial
resolution of 30 m) for the two methods. Topographic shadows were masked using slopes
larger than 15◦ [4,33].

4.5.2. Results and Analysis

Mapping glacial lakes at a large scale is a challenging task due to the influence of vari-
ous and complex climatic, geological, and terrain conditions. Figure 7 presents the spatial
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distribution of glacial lakes in the Eastern Himalayas. The results of GAN-GL (without
DEM) and the other two methods (with DEM) are shown in the three enlarged images.
In Region A, some small glacial lakes are formed around the glaciers, and the proposed
GAN-GL model can extract almost all the lakes without misclassified objects. However,
the lake areas obtained by the global–local iterative segmentation algorithm and random
forest are affected by a high degree of noise from melting glaciers and parts of shadows,
as shown in the blue ellipse. The images in Regions B and C are largely contaminated
by mountain shadows, clouds, and cloud shadows, but interference from these factors
was effectively eliminated by GAN-GL, meaning lakes could be easily detected, and their
details preserved. However, lake areas detected by the other two methods mistakenly
contained vast non-glacial lake regions, most of the glacial lakes were not precisely de-
lineated (indicated as the blue ellipses in Region B—a lake was divided into many small
parts), and the complex structure of the lake boundary was lost. Such structure comprising,
for example, undulating topography, as shown in the blue ellipses in Region C. All these
performances can be attributed to the fact that our GAN-GL model automatically computes
numerous mid- and high-level features through convolutional operations, and employs an
effective training strategy under the two constraints of content loss and adversarial loss to
distinguish between different objects. Regarding the pixel-based approach, the global–local
iterative segmentation algorithm is not able to effectively deal with noise pixels that have
spectral values similar to those of lakes and regional heterogeneity. Random forest may
have several similar decision trees that mask true results and easily overfit strong noise;
this eventually leads to incomplete and noise-polluted extraction results. Table 5 shows
the accuracy assessment of mapping results over the whole Eastern Himalayas. Except for
Recall, other indicators obtained using the GAN-GL model are extremely high (P = 93.19%;
OA = 99.85%; F1 = 73.31%; IoU = 58.46%). This means that most glacial lake pixels can be
accurately extracted with only a few commission errors. Although a high Recall indicates
that some lakes confused with the background are also not detected, the GAN-GL balances
the effects of high accuracy and less noise and gives a good performance from other in-
dicators. The global–local iterative segmentation algorithm achieved the highest Recall
(88.47%) but the lowest Precision (44.81%) since large quantities of background pixels
were also mapped. Random forest outperformed the global–local iterative segmentation
algorithm for all of the indicators. However, the performance of these two methods was
significantly improved with the assistance of DEM, meaning many small glacial lakes were
not identified in mountainous regions.

Table 5. Accuracy assessment of the three mapping methods in the Eastern Himalayas.

Method P (%) R (%) OA (%) F1 (%) IoU (%)

GAN-GL 93.19 61.07 99.85 73.31 58.46
G-L Seg

(without DEM) 22.63 98.64 87.95 36.81 22.66

Random Forest
(without DEM) 38.83 86.62 93.68 53.63 35.84

G-L Seg
(with DEM) 44.81 88.47 96.53 59.49 42.34

Random Forest
(with DEM) 57.17 74.29 96.92 64.62 47.72
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Figure 7. Distribution of glacial lakes (marked in red contours) overlaid on Landsat-8 imagery of the Eastern Himalayas,
and the compared results of the three methods. Note that the results of G-L Seg and random forest were computed using
Landsat-8 imagery and DEM. Region A shows some small glacial lakes around the melting glaciers. Region B shows glacial
lakes and extensive mountain shadows. Region C shows image interference from clouds and cloud shadows.
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5. Discussion
5.1. Exploration of the Improvement of the Effects of our GAN-GL Model

To obtain the accurate large-scale glacial lake mapping results in HMA, we designed
this GAN-based model. As a deep learning model, there are still some possible limitations
and tips to improve the generalization performance. (1) Sufficient and various data: In
our study, we collected the glacial lake patches from part of HMA in a single year, and
some special glacial lakes may not be sampled in our dataset. A sufficient dataset that
contains lakes that vary in size, color, type, and shape can give more lake features to model
to further improve the lake mapping results. (2) Adaptive input image setting: We used a
Landsat series as the data source, including MSS/TM/ETM+/OLI imagery. These images
give a long time series recording of glacial lakes, which is advantageous to mine the lake
information. Our model only considered the inputting Landsat OLI imagery, and therefore,
an adaptive input image setting would enhance the scalability for applications in other
Landsat data. (3) Hierarchical structure for detecting lakes under scale variation: Scale
variation in lake areas hampers the model efficiency when mapping glacial lakes in large-
scale regions. The multi-level feature concatenation is an instrumental design for small
object detection, but it has a huge computation cost. A hierarchical structure that detects
both small lakes and large lakes has great potential for large-scale glacial lake mapping.

5.2. Performance for Different Lake Sizes

Small lakes account for a large part of the composition of glacial lakes in HMA.
Statistically, in the mapping results in HMA, there are 15,456 glacial lakes (72.73%) less
than 0.1 km2 in 2016 [9]. These lakes are highly variable and sensitive to climate change,
but are hard to identify since they are easily confused with the background.

To explore the extraction effects of our model (Attn + ISeg + ResNet-152) for different
lake sizes, we counted the numbers provided with the accuracy assessment results of the
glacial lakes of various sizes detected with our GAN-GL dataset and GAN-GL-D dataset,
and the results can be found in Table 6.

Table 6. Statistic results for different size lakes using proposed model.

Dataset Area (km2) <0.01 * <0.05 <0.1 <0.2 <0.4 <0.8 ≥0.8

GAN-GL-R
Count in GAN-GL 1979 1877 403 229 73 23 5

Proportion (%) 43.12 40.90 8.78 4.99 1.59 0.50 0.11

GAN-GL-D
Count in GAN-GL 3378 1828 638 491 268 77 42

Proportion (%) 50.26 27.19 9.49 7.31 3.99 1.15 0.61

GAN-GL-U
Count in GAN-GL 337 297 60 46 14 2 2

Proportion (%) 44.46 39.18 7.92 6.07 1.85 0.26 0.26

Accuracy in
GAN-GL-D

P (%) - 94.12 95.85 94.96 91.47 96.68 90.70
R (%) - 94.07 87.61 91.10 95.31 95.93 96.34

OA (%) - 99.69 99.62 99.55 99.58 99.63 99.52
F1 (%) - 94.09 91.54 92.99 93.35 96.30 93.43

IoU (%) - 88.05 86.19 87.44 87.99 89.32 86.33

* Note: The accuracies of lakes less than 0.01 km2 were not computed since the Hi-MAG only considered lakes
greater than nine pixels (>0.0081 km2).

The smallest lake detected by the GAN-GL is only one pixel (area = 0.0009 km2), far
smaller than the lakes in the Hi-MAG (nine pixels). This also indicates why the proportion
of small lakes (<0.1 km2) is greater than that in Hi-MAG. Considering that some isolated
lake pixels may be produced when splitting the lake area in the edge of cropped image
patches, we kept these small lakes without conducting accuracy assessments. From Table 6,
our glacial lake mapping results are almost consistent with ground truth when the lake
area is greater than 0.01 km2.
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6. Conclusions

In this work, we proposed a generated adversarial network (GAN) for mapping
glacial lakes (GAN-GL) using Landsat-8 OLI imagery. This allowed for the extraction
of glacial lake information quickly and effectively with less data dependency and post-
processing work. A complete glacial lake dataset was first created using random cropping,
density cropping, and uniform cropping. We found that the density of glacial lakes in the
training data was a factor that greatly impacted the final mapping accuracy. Then, we
constructed a GAN-GL model for glacial lake mapping, which adaptively enhanced the
potential lake information in a new water attention module. This module integrated the
NDWI feature and spatial lake feature computed from two paralleled convolutional layers.
The results of the ablation study show that our method, GAN-GL, could significantly
improve the capacity to map glacial lakes, with an F1 score of 92.17% and an IoU of 86.34%.
Moreover, by comparing our mapping results to those of classical global–local iterative
segmentation algorithm and random forest for the entire Eastern Himalayas, the GAN-GL,
with high evaluation scores, indicated that it could eliminate effects arising from mountain
shadows, clouds, and melting glaciers, and automatically and precisely delineate glacial
lakes. This delineation was eminently possible for many small glacial lakes under diverse
environmental conditions. Our work provides a feasible way to systematically monitor
and map glacial lakes over a large-scale area.
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