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Abstract: According to historical information, more than 300 metal smelting enterprises have been in
the southwest of Xiongan for 300 years; however, these polluting enterprises have been gradually
closed with the increased intensity of environmental protection. In the paper, 264 soil samples were
collected and analyzed in the range of 400 nm–2500 nm by the spectra vista corporation (SVC),
and the spectral noise was smoothed by the Savitzky–Golay filter. In order to enhance the spectral
differences and curve shapes, mathematical transformations, such as the standard normal variate
(SNV), first-order differential (FD), second-order differential (SD), multiple scattering correction
(MSC), and continuum removal (CR), were performed on the data, and the correlation between
spectral transformation and contents of REEs was analyzed. Moreover, three machine learning
models—partial least-squares (PLS), random forest (RF), back propagation neural network (BPNN)—
were used to predict the contents of REEs. Experimental results prove that REEs are combined
with spectral active substances, such as organic compounds, clay minerals, and iron oxide, and it
is possible to determine the contents of REEs using the reflection spectrum. The R2 between the
predicted values and measured contents reached 0.986 by using BPNN after FD transformation. More
importantly, the predicted values basically agree with the actual situation for CASI/SASI airborne
hyperspectral images, and this is an effective technique to obtain the contents of REEs in soil at the
study area.

Keywords: rare earth elements; reflection spectrum; inversion evaluation; spectral transformation;
machine learning

1. Introduction

Rare earth elements (REEs) comprise several metal elements such as lanthanum (La),
yttrium (Y), promethium (Pm), and scandium (Sc), and they are characterized by unique
magnetic and catalytic properties, along with other important physical and chemical prop-
erties [1]. Because of industry, large-scale mining, and agriculture activities, increasing
numbers of REEs are being spread to the natural environment. The source, level, and
distribution of REEs have constantly increased in the past 30 years and cause a devas-
tating environmental impact. Among them, Pm is a man-made radioactive element that
undergoes fast radioactive decay, which means the presence of Pm is virtually nonexistent
in the Earth’s crust [2,3]. In addition, cerium (Ce) is used as a gasoline additive and in
catalytic converters for automobile exhaust systems; neodymium (Nd) and dysprosium
(Dy) are utilized as super magnets for disk drives and speakers; many REEs are used in
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the smart batteries of hybrid electric vehicles; and smelting and production activities have
led to increased contents of La from large-scale mining. The concentrations of REEs in
mine tailings of ion adsorption reached 300–1200 mg/kg in southern China—several times
higher than those of unmined soils [4]. Frequently, REEs are composed of light REEs—La
to europium (Eu)—and heavy REEs—Gd to lutetium (Lu)—by their atomic numbers, and
they are important strategic resources for modern technologies and clean energy produc-
tion [5]. There is currently an increasing interest in the biological responses of plants to
REEs, and most studies focus on the effects of REEs on crop plants, such as rice, soybean,
and wheat. These studies have found that REEs are not essential for biological growth, but
they induce a hormesis effect; that is, REEs are able to promote crop biomass production at
low concentrations and inhibit crop growth at high concentrations [6,7]. Liu et al. studied
the effects of increasing concentrations of REEs on ramie growth, and nutrient uptake
was essential to understand the mechanisms of tolerance with the aim of using this plant
for the phytoremediation of REEs-contaminated soil [8]. REEs have recently been used
to supplement fertilizers to increase crop yields, improve crop quality, enhance disease
resistance and plant photosynthesis, and boost plant seed germination; however, the health
conditions of biota and humans are endangered through the food chain [9,10]. On the other
hand, the toxicity of REEs has been established with increased contents in soil, and the
ecological toxicity of REEs is affected by bio-availability, morphological characteristics, and
environmental parameters [11]. Thermophosphate, single superphosphate, and NPK fertil-
izers in phosphate express the highest mass fractions of REEs, and the resultant increase of
contents in soil causes harmful effects to the environment [12]. Therefore, it is necessary to
constantly monitor the contents of REEs and the corresponding change trend in soil that
reduces adverse environmental consequences.

The upper continental crust (UCC) and post-archean Australia shale (PAAS) are the
most commonly used data to standardize the contents of REEs [13]. Because REEs have
a special electron configuration, the specific absorption characteristics of different REEs
are reflected on the visible/near-infrared range by the transition in the 4f electron f-f
configuration [14]. For example, the absorption peaks for neodymium are 580 nm, 740 nm,
800 nm, and 870 nm. Therefore, the absorption characteristics for different REEs provide the
possibility to conduct a quantitative inversion of visible/near-infrared spectra. In addition,
the correlation of absorption characteristics is very narrow, with a full width at half maxima
(FWHM) of about 20 nm–80 nm, and remote sensing techniques provide the potential to
solve the problem with the development of spectral resolution. Moreover, La-containing
compounds produce strong absorption characteristics on the range of visible infrared (VIR)
to shortwave infrared (SWIR) and have fixed spectral characteristics [15]. Rowan et al.
identified the strong absorption characteristics caused by Nd3+ on the samples, and the
subtle changes on the range of near-infrared (NIR) and SWIR were related to specific
REEs [16]. Zimmermann et al. utilized multisource remote sensing data to carry out
lithologic mapping based on the Kohonen self-organizing network, and carbonate rocks
were obviously identified in Nb-Ta light REEs [17]. Boesche et al. demonstrated an
application to identify neodymium-rich Nd materials using multi-phase hyperspectral
imaging, and the distribution matched with the actual situation to some extents [18]. These
studies were based on the inversion of REEs with remote sensing techniques, but the
identification of the relationship between the contents of REEs and soil samples of the
ground is still in the preliminary stage. Due to the low contents of REEs in soil, the spectral
characteristics of REEs are difficult to reflect.

In the paper, the northwest of Xiongan is considered as the study area due to its
extensive spread of REEs, and the concentration of 15 REEs is evaluated because REEs
are closely combined in the same mineral. Spectral transformation is used to enhance the
spectral difference and curve shape, and machine learning models are used to conduct
inversion modeling to obtain the distribution of REEs in soil for hyperspectral image.
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2. Materials and Methods
2.1. Soil Sampling

The study area is located at the southwest of Xiongan, which belongs to Anxin County
and has a continental semi-humid and semi-arid climate of the warm temperate monsoon
type [19]. From September to October, 2019, the process of sampling was conducted on
the ground before and after corn harvest; the sampling points were mainly distributed on
farmland, and a few of them were located in construction sites and tailings heaps, where
264 samples were collected. The area was about 300 km2 (see Figure 1).

Figure 1. Distribution of soil sampling sites in the study area.

In order to improve the representativeness of samples, a 0–20 cm plow layer was
collected for soil samples, and 5 sub-sampling points were arranged in a plum shape
within 50 m of each sampling point. Impurities such as rocks, weeds, and tree roots
were removed from the sampling points, and a mixed sample was synthesized by the
quartering technique. Samples were stored in polyethylene sample bags weighing more
than 1 kg. Then, the longitude and latitude based on the WGS84 coordinate system were
used to obtain the positioning coordinates. At the same time, soil characteristics and the
surrounding environment were recorded in detail through field investigation.

2.2. Chemical Analyses

At first, 100 mg samples and 1 g sodium peroxide were mixed well in the pyrolytic
graphite crucible and then covered by 0.5 g sodium peroxide. Further, the pyrolytic
graphite was placed in a porcelain crucible and put into a muffle furnace that was heated
to 700 ◦C until the sample was molten. After cooling, the graphite crucible was put into
a beaker containing about 80 mL of boiling water and heated on an electric plate until
the melt was completely dissolved. The beaker and precipitate were rinsed with sodium
hydroxide solution and the filtrate was discarded. The precipitate was dissolved with hot
nitric acid and diluted to 25 mL with nitric acid, which was diluted 10 times with water



Remote Sens. 2021, 13, 4886 4 of 13

once again. At last, the contents of REEs were measured by inductively coupled plasma
mass spectrometry (ICP-MS) (Nexion 175 350X/Csy-066) [20].

2.3. Spectral Measurements and Transformations

The reflection spectrum of soil samples in the VIR, NIR, and SWIR electromagnetic
range (350 nm–2500 nm) was measured by an SVC spectroradiometer with a total of
1024 bands. The spectral resolutions were ≤3.5 nm from 350 nm to 1000 nm, ≤9.5 nm from
1000 nm to 1850 nm, and ≤6.5 nm from 1850 nm to 2500 nm. Before measurement, the
sensor was adjusted by a white reference plate; the distance between the spectroradiometer
and samples was 5–10 cm, and the field angle was 25◦. To minimize measurement errors,
five replicates were measured for each soil sample. The average spectrum of the five
replicates was used for evaluations. Under the influence of environment, wavelengths
less than 400 nm were removed because of the noise of the ultraviolet spectrum, and
wavelengths in the range of 400–2500 nm were used, with a total of 924 bands.

The prediction results depended on the pretreatment steps of the reflection spectrum to
some extent. To effectively eliminate spectral noise and maintain the chemical information,
Savitzky–Golay filtering was used for spectral smoothing [21]. In addition, the baseline
effect may have resulted from the particle size rather than chemical composition. In
order to enhance the absorption characteristics, the spectra were transformed by standard
normal variable (SNV), first-order differential (FD), second-order differential (SD), multiple
scattering corrections (MSC), and continuum removal (CR) techniques.

2.3.1. SNV Transformation

Spectral scattering caused by particle size, surface scattering, and optical path vari-
ation was eliminated by focusing and scaling. The spectra were standardized by SNV
transformation [22].

2.3.2. FD Transformation

The derivative is widely used to correct baseline effects, eliminate non-chemical effects,
and establish robust correction models. Some information “hidden” in the spectra may
be easily revealed after first or second-order differentiation. FD transformation is just a
measure to detect the slope at each point, which is not affected by the pure additive baseline
excursion. Therefore, the background interference is minimized, and the method is a very
effective technique to eliminate excursion [23].

2.3.3. SD Transformation

SD transformation is a measure to detect the change of a slope, and it is not affected
by any linear “skew” except for the removal of pure additive offset. Therefore, SD transfor-
mation is efficient enough to remove the baseline offset and slope, and the nearby peaks
and sharpen features are clearly distinguished [23].

2.3.4. MSC Transformation

MSC transformation is a modification technique used to compensate for additive
and/or multiplicative effects in spectral curves; it is used to eliminate baseline shift and
drift between samples and highlight differences. The average reflectance of samples
is calculated, and it acts as the standard to obtain the linear shift (regression constant)
and oblique offset (regression coefficient). Finally, the linear shift is subtracted from the
original spectra and divided by the regression coefficient to obtain the corrected spectra
and improve the signal-to-noise ratio (SNR) [24].

2.3.5. CR Transformation

CR transformation is an effective spectral analysis technique used to enhance ab-
sorption characteristics; the absorption and reflection characteristics of spectral curves are
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effectively highlighted, and the reflectance is normalized to 0–1 to extract the characteristics
for interpretation [25].

2.4. Modeling for Prediction

In the modeling phase, chemical quantitative analysis with spectral curves is required
to establish inversion models which assign the concentration contents or discrete reflectance
to spectral characteristics of samples. As a trace element in soil, the contents of REEs are
difficult to identify by spectral characteristics. The construction of the model between
contents of REEs and the reflection spectrum was begun by multiple linear regressions
to select the optimal band subset [26]. Then, PLS with a full spectrum was applied to
build the mapping relationship [27,28]. Currently, machine learning models such as
random forests and artificial neural networks’ are utilized to further improve the prediction
accuracy [29,30]. As a result, linear and nonlinear models are used for the process of
prediction. In this study, PLS, RF, and BPNN are applied, and the modeling accuracy is
evaluated below.

2.4.1. PLS

PLS is a commonly used statistical model, and its ability is stronger than other multiple
linear regression models. An independent variable X is mapped into a new learning
space Y, and the direction of the maximum multidimensional variance is explained in Y
space [28]. REEs are correlated with spectral reflectance using PLS, and the interaction
between VIS-SWIR spectroscopy and PLS for the prediction of REEs is evaluated. PLS
is commonly applied to correlate data obtained from hyperspectral images and analyze
their corresponding chemical concentration. It is known as a sum of regression analysis,
principal component analysis, and correlation analysis.

2.4.2. RF

RF is a predictive model based on classification and regression trees (CART) and the
bagging learning strategy [31], where a decision tree is generated from all properties and
it is randomly collected from a fixed-size subset of attributes, resulting in a reduced time
complexity. In particular, random sampling is repeated K times to generate a fixed number
of subsets from all samples, where K is the number of trees in the forest, and only a fixed
number of sub-attributes is selected for each sample. Each sample with the corresponding
sub-attributes is used to generate a regression tree, and the forest is made up of trees.
Finally, the results are achieved by collecting the scores of voting from all of trees.

2.4.3. BPNN

BPNN is a learning model for a multilayer neural network, with the weights and
thresholds of the network constantly adjusted through back propagation to minimize the
sum of the squared errors; the final output is considered to be as close as possible to the
expected output, so it is able to achieve the purpose of training [29]. Based on gradient
descent, the model includes two processes: information forward propagation and error
backward propagation. The attributes are transmitted from the input layer to output layer
when the network acts as a learning process. In addition, the gradient is fed back to adjust
the weight and bias of each neuron and minimize the error between predicted and real
values if the output does not meet the goal.

3. Results and Discussion
3.1. Analysis of REEs in Soil

Through the preliminary analysis of soil samples in the study area, 264 samples were
divided into a calibration set and validation set. The basic characteristics of the 264 samples
are shown in Table 1, and the average contents of La, Ce, Nd, Sm, and Y in soil are 40.9,
76.0, 38.4, 6.19, and 27.5 mg/kg respectively, where Ce, Nd, and Sm are slightly lower than
the average national contents and La and Y are higher than the average national contents.
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The average content of REEs is 219.1 mg/kg in the study area, which is slightly higher than
the average content of 168 mg/kg in the crust and the average content of 216 mg/kg in
Chinese soil. The contents of REEs reported abroad are on the range of 30–700 mg/kg, and
the coefficient of variation (C.V.—the standard deviation divided by the mean) is relatively
low. If C.V. is less than 1, it indicates that the spatial distribution of REEs is random and
uniform and is less affected by human activities.

Table 1. REE concentration in soil.

REEs Average Maximum Minimum C.V. UCC Chinese Soil

La 40.916 142 26.3 0.261 30 38.6
Ce 76.035 202 62.6 0.125 64 83.4
Pr 9.294 31.74 4.99 0.328 7.1 9.67
Nd 38.422 100.19 2.4 0.301 26 41.1
Sm 6.158 13.56 0.49 0.263 4.5 6.6
Eu 1.350 3.027 0.14 0.259 0.88 1.18
Gd 6.304 15.6 0.51 0.282 3.8 5.39
Tb 0.856 1.911 0.057 0.321 0.64 0.67
Dy 4.941 11.847 0.274 0.401 3.5 3.92
Ho 0.962 2.365 0.046 0.487 0.8 0.73
Er 2.871 7.633 0.175 0.453 2.3 2.09
Tm 0.457 1.743 0.021 0.580 0.33 0.3
Yb 2.651 2.98 1.98 0.071 2.2 1.97
Lu 0.424 1.666 0.307 0.186 0.32 0.28
Y 27.497 124 0.3 0.260 22 20.1

Total 219.136 358.701 157.327 0.122 168.37 216

3.2. Analysis of Soil Spectra

The reflection spectrum and FD transformation of a soil sample in the study area
are shown in Figure 2. The reflection spectrum has obvious absorption characteristics
near the wavelengths of 1400 nm, 1900 nm, and 2200 nm, which are mainly caused by
hydroxyl in free water and lattice hydroxyl in clay minerals. In the visible region, the com-
plexity of absorption characteristics was caused by the absorption of iron; the absorption
characteristics from 400–1300 nm were caused by iron in ferric or ferrous forms [32]. The
curve for the FD transformation was suitable to study the absorption characteristics of
iron oxide, while the absorption peak near 560 nm was caused by hematite, and the weak
absorption peak near 430 nm was caused by goethite [33]. The value from 560–760 nm
was regarded as corresponding to the absorption characteristics of the total content of
Fe2O3 [34]. Studies have found that the reflection spectrum has a broad relationship with
organic matter from 400–530 nm, and it is regarded as corresponding to the absorption
characteristics of organic matter.

3.3. Spectral Response for the Contents of REEs

The electronic spectrum of REEs is composed of a series of clear lines that are formed
by 4f electron transitions in ultraviolet, visible, and infrared ranges. In addition, the
spectral characteristics of studied REEs obviously move to the long-wave range according
to the order of fluoride, oxyfluoride, and oxide [35]. Figures 3–5 show the spectra of
fluoride, oxy-fluoride, and oxide and indicate the frequency of maximum absorption peaks.
The compounds containing lanthanides have obvious absorption properties at VIR-SWIR,
and the strong absorption of REEs is mainly caused by the electronic transition of 4f-4f
configurations. For light fluorocarbons in REEs, most characteristics are attributed to Nd3+,
Pr3+, Sm3+, and Eu3+. Dai et al. collected the laboratory spectra of 15 REEs (see Figure 6),
and the absorption characteristics of each element were analyzed. The spectrogram of
REEs has been added to the latest USGS spectral library [36].
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Figure 2. Measured reflection spectrum and FD transformation.

Figure 3. Electronic spectra of fluorites.

Figure 4. Electronic spectra of oxy-fluorites.
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Figure 5. Electronic spectra of oxides.

Figure 6. Electronic spectra of REEs.

The fluorocarbons mainly include bastnaesite, and parisite, and the phosphates mainly
include monazite, Xenotime, britholite, etc. The silicates mainly include cerium silicate,
allanite, zircon, etc. [37].

Monazite is a kind of phosphate mineral containing Ce, Y, and La, and the theoretical
contents are 34–99% of Ce2O3 and 34.74% of La2O3. The theoretical composition of Y is oxide
containing yttrium and erbium (61.4%) and phosphorus pentoxide (38.6%), sometimes
containing thorium dioxide, uranium dioxide (5%), and zirconium oxide (3%). There
are more than a dozen groups of absorption characteristics for monazite and conch (see
Figure 7). The spectral characteristics of monazite mainly reflect the absorption peak of Nd,
which is influenced by a small set of Sm and Pr; the spectral characteristics of actinides
mainly reflect the absorption peaks of dysprosium, erbium, and ytterbium.

Figure 7. Electronic spectra of phosphates (monazite and xenotime) (0.5–2.5 µm).
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When Ce: La = 1, Ce2O 330.56, La2O 330.33, Co 224.58, CaO 10.44, and F 7 are mainly
composed of the Ce group, and the amounts of Ce substituted by REEs such as La, Nd, and
Sm are able to reach 1: 1. Bastnasite is a cerium–fluorocarbonate mineral, often occurring
with some minerals containing REEs, such as epidote, ceresite, ceresite, etc. There are more
than 10 groups of absorption characteristics of fluorine; they are mainly caused by Nd, Sm,
Pr, and CO3 (see Figure 8). The reflection spectrum is coincident for La in fluorocarbonates
on the whole group, and the position of rare earth cations is very similar for corresponding
minerals [38].

Figure 8. Electronic spectra of fluorocarbonates (parasite and bastnaesite) (0.5–2.5 µm).

3.4. Modeling Prediction

The proposed technique was implemented with the Matlab 2021a language on a
personal computer with a 2.30 GHz CPU and 8.00 G RAM on the Windows 10 opera-
tion system. After spectral transformation, PLS, RF, and BPNN were used for inversion
modeling, and the results are shown in Table 2. The predicted values were correlated
with measured contents according to chemical analysis, and the correlation improved as
the R2 moved closer to 1. Moreover, the root mean square error (RMSE), ratio of percent
deviation (RPD), and ratio of error range (RER) were utilized to objectively evaluate the
performance of different models. RPD is the ratio of standard deviation to RMSE, and an
RPD >1.4 indicates that the effect is applicable [39], RER is the ratio of the value range to
RMSE, and a higher RER indicates that the model is robust [40].

Table 2. Experimental results of calibration and validation sets for PLS, RF, and BPNN.

Model Trans. R2 Calibration
RMSE RPD RER R2 Validation

RMSE RPD RER

PLS

SNV 0.812 11.608 2.308 12.608 0.847 12.002 2.187 19.227
FD 0.726 14.409 1.909 8.671 0.847 12.959 1.862 9.966
SD 0.715 14.780 1.872 8.778 0.553 16.924 1.436 6.615

MSC 0.778 12.604 2.122 10.412 0.824 13.106 2.029 15.677
CR 0.864 9.988 2.208 14.815 0.803 12.294 2.103 14.405

RF

SNV 0.842 11.787 2.273 7.413 0.612 17.640 1.388 3.703
FD 0.898 10.792 2.549 8.701 0.764 13.180 1.531 5.758
SD 0.899 11.096 2.494 7.990 0.547 16.725 1.453 4.057

MSC 0.806 12.363 2.163 7.551 0.448 19.804 1.343 4.084
CR 0.923 9.273 2.917 10.572 0.565 17.738 1.657 3.594

BPNN

SNV 0.782 11.983 2.128 11.225 0.900 11.297 2.053 14.702
FD 0.891 9.181 3.021 17.324 0.986 3.158 2.607 45.004
SD 0.910 7.833 2.815 20.672 0.967 6.168 2.418 27.625

MSC 0.753 13.658 1.895 16.475 0.915 10.187 1.406 17.393
CR 0.822 11.364 2.343 16.208 0.940 7.044 2.167 16.578

The training accuracy of RF after FD, SD, MSC, SNV, and CR transformations stays
at a satisfactory level, and the R2 between the predicted values and measured contents
reaches 0.8 for calibration sets, whichis, higher than that of PLS. However, it is difficult for
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the testing accuracy to satisfy the application, and the R2 between the predicted values and
measured contents is lower than 0.7 for validation sets. Further, BPNN is used for modeling,
and 10 hidden layers are set to obtain predicted values. REEs act as the trace elements in
soil; they are difficult to directly discriminate by their reflection spectra, and the absorption
characteristics of the original spectra are enhanced by spectral transformation. After FD
transformation, the R2 between the predicted values and measured contents is 0.986, which
is the optimal value among spectral transformation techniques. The minimum RMSE is
3.158, the maximum RPD is 2.607, and the RER is greater than 10, reaching 45.004. After
SD and SNV transformations, the R2 values between the predicted values and measured
contents reached 0.967, 0.940, 0.915, and 0.900 for validation sets, and RMSE values are
6.168, 7.044, 10.187, and 11.297, respectively. According to the results in Table 2, the overall
accuracy of BPNN after FD transformation is higher than that of other machine learning
models and spectral transformation techniques.

3.5. Distribution Characteristics of REEs

According to the above results, the reasonable model was selected and applied to
CASI (Compact Airborne Spectral Imager)/SASI (Short Wave Infrared Airborne Spectral
Imager) platforms; that is, iterative training was carried out through FD transformation
and BPNN was utilized to build the model. The imaging spectrometer was an aviation
hyperspectral imager developed and produced by Canadian ITRES Company. The visible
and near-infrared spectral range of CASI is 350–1050 nm and the spectral resolution is
10 nm; the short-wave infrared spectral range of SASI is 950–2500 nm and the spectral
resolution is 15 nm. The CASI/SASI airborne hyperspectral imaging system and POS
AV410 direction and position system based on DGPS/IMU were mounted on the platform
of a Cessna 208 aircraft. CASI images were changed to SASI images and merged into
one file with a spectral range of 400–2500 nm; the spatial resolution of each pixel was
2.52 m × 2.52 m, and the number of bands was 173. The content distribution of REEs for
the airborne hyperspectral image was mapped by FD transformation and BPNN and is
shown in Figure 9, and corresponding evaluation indicators are shown in Table 3.

Figure 9. The content distribution of REEs for airborne hyperspectral image.



Remote Sens. 2021, 13, 4886 11 of 13

Table 3. Experimental results of FD transformation and BPNN.

Trans. R2 Calibration
RMSE RPD RER R2 Validation

RMSE RPD RER

FD 0.929 6.922 3.648 21.472 0.994 2.558 13.184 51.782

The contents of REEs are mainly predicted within the range of 150–400 mg/kg, and
the maximum value is 436.2 mg/kg, which basically agrees with the actual situation. REEs
tend to concentrate in the upper layers of the soil profile, and the contents of REEs in the
soil, especially Ce and Nd, increase with the levels of phosphate. Regions with a red color
show high contents of REEs, which is mainly reflected by dust fall from metal smelters,
exhaust emissions from vehicle and agricultural fertilization. REEs tend to concentrate
in the upper layers of the soil profile, and the concentration of REEs in soil described in
the previous studies increased with the levels of phosphate [41]. In addition, REEs have
been widely used in agriculture as microfertilizers to improve the quality and yield of
agricultural products, but the application in agriculture has enriched soils with hazardous
elements [42]. According to Figure 9, the contents of REEs is greater than 400 mg/kg in
parts of Tongkou Town; various small smelters are spread here by field investigation, and
stringent control measures need to be adopted to make the contents of REEs adhere to the
normal level in the regions [43].

4. Conclusions

Soil samples were collected by a SVC spectrometer in the southwest of Xiongan to
monitor the contents of REEs in the soil, spectral transformation was utilized to enhance
the absorption characteristics of REEs, and machine learning models were used to conduct
inversion modeling. The content distributions of REEs were mapped, and the experimental
results allow us to make the following conclusions:

(1) FD, MSC, CR, SD, and SNV are used for spectral transformation to eliminate the
baseline effect and enhance absorption characteristics. PLS, RF, and BPNN are used
to carry out iterative modeling. By comparing the accuracy of various models, it is
shown that BPNN has the highest accuracy after FD transformation, and R2 between
the predicted values and measured contents is 0.986.

(2) The contents of REEs are 157.3–358.7 mg/kg for soil samples collected at Anxin
County, and the reported contents of REEs are in the range of 30–700 mg/kg. The C.V.
of REEs is less than 1, which indicates that the spatial distribution of REEs is random
and uniform, and it is little affected by human activities.

(3) The average contents of REEs are 261.3 mg/kg for hyperspectral images, which is
slightly higher than the average of 207 mg/kg in the crust. It is demonstrated that the
control measures are effective, and the contents of REEs satisfy the demands of daily
life for most regions of the study area.
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