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Abstract: Feral cats are one of the most damaging predators on Earth. They can be found throughout
most of Australia’s mainland and many of its larger islands, where they are adaptable predators
responsible for the decline and extinction of many species of native fauna. Managing feral cat
populations to mitigate their impacts is a conservation priority. Control strategies can be better
informed by knowledge of the locations that cats frequent the most. However, this information is
rarely captured at the population level and therefore requires modelling based on observations of a
sample of individuals. Here, we use movement data from collared feral cats to estimate home range
sizes by gender and create species distribution models in the Pilbara bioregion of Western Australia.
Home ranges were estimated using dynamic Brownian bridge movement models and split into 50%
and 95% utilisation distribution contours. Species distribution models used points intersecting with
the 50% utilisation contours and thinned by spacing points 500 m apart to remove sampling bias.
Male cat home ranges were between 5 km2 (50% utilisation) and 34 km2 (95% utilisation), which were
approximately twice the size of the female cats studied (2–17 km2). Species distribution modelling
revealed a preference for low-lying riparian habitats with highly productive vegetation cover and a
tendency to avoid newly burnt areas and topographically complex, rocky landscapes. Conservation
management can benefit by targeting control effort in preferential habitat.

Keywords: Felis catus; species distribution models; MaxEnt; Pilbara; extinction; predation; Brownian
bridge modelling; GPS collar; Lagrangian methods; home range

1. Introduction

Most invasive species have been introduced without consideration of their pervasive-
ness or environmental ramifications [1]. In Australia, invasive plants and animals are a
significant economic burden, with their cost of management estimated to be more than
AUD 13 billion per year [2]. Unfortunately, eradication success stories are few (e.g., [3]),
particularly if invasion is advanced or occupying a broad range of biomes (e.g., [4]). Some
invasive species have come from locations where their physiological tolerances are well
adapted to their new environment and have occupied niches that were not filled when they
arrived, such as by the cane toad (Rhinella marina) in Australia [5]. Similarly, some introduc-
tions can prosper by slotting into niches between existing native species [6]. This includes
the feral domestic cat (Felis catus), which is a ubiquitous predator throughout the globe [7].
In Australia, feral cats could fill a niche between quolls (Dasyurus spp.) and dingoes (Canis
familiaris) [5]. Determining strategies for their management requires knowledge of their
preferred habitat and, for animals, of the extent and frequency of locations they utilise for
their everyday activities [8].

Movement data acquired from Global Positioning System (GPS) tracking collars
enable the passive monitoring of an animal’s movements throughout their range at regular
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intervals [9]. This information can be analysed to estimate their home range—the space
utilised as they undertake their daily activities, such as hunting, seeking a mate or caring for
young [10]. Home ranges can be estimated using conventional tools, such as kernel density
surfaces or convex polygons, but these methods do not take full advantage of the temporal
nature of the data, which can lead to poor and unrealistic results [11]. The dynamic
Brownian Bridge Movement Models (DBBMMs) does take advantage of these positional
sequences (tracks), by using space as a probability surface that models the transition from
one location to the next, based on how much time was available in between [12].

Determining the spatial behaviour and delineating the home ranges of invasive ani-
mals is important for informing the scale of the problem and analysing interactions within
species (e.g., territorialism), between sexes and for predator-prey interactions [13]. How-
ever, as collars are usually only placed on a few individuals, identification of habitats
beyond the sample set often needs to be extrapolated. Identifying correlations between
high density utilisation locations and covariates may be useful for identifying high use
areas over less exhaustively sampled terrain. Species distribution models (SDMs) have
proven useful to this end [14–16].

Feral cats occur in heterogeneous abundances across 99.8% of Australia and many
of its larger territorial islands, from deserts to tropical woodlands [17]. Their population
size fluctuates between 1.4 and 5.6 million, depending on available prey, which generally
correlates with wetter conditions [17]. They are opportunistic, generalist carnivores that
kill millions of native animals every day, including 3.2 million mammals, 1.2 million birds,
1.9 million reptiles, 0.25 million frogs and 3 million invertebrates [18]. This has resulted
in the decline of many mammal species, with more than 20 extinctions and many more
threatened species on the brink [19]. Culling using the aerial application of poisoned bait is
currently recognised as the only feasible method for controlling feral cats at a large scale, if
the risk to non-target species is minimal [20,21]. Clearly, for baiting to be effective, the bait
needs to be distributed in areas that feral cats are likely to frequent [8].

Twelve species of mammal have been lost from the mainland portion of the Pilbara
bioregion of Western Australia in the past 200 years [22]. Predation by feral cat poses
an ongoing risk to numerous populations of declining species, including the threatened
night parrot (Pezoporus occidentalis), northern quoll (Dasyurus hallucatus) and greater bilby
(Macrotis lagotis) [23,24]. Feral cat management was identified as one of the top three
most cost-effective conservation strategies for the Pilbara, together with the management
of feral ungulates and the creation of sanctuaries [23]. A trial aerial baiting study using
Eradicat® feral cat bait, a manufactured sausage-style bait containing the toxin ‘1080′

(sodium fluoroacetate), was undertaken in the Pilbara from 2016 to 2019. GPS radio-collars
were fitted to 15 feral cats primarily to provide estimates of mortality rates following the
baiting operations in 2018 and 2019 [21].

Land managers can improve their control strategies if armed with mapped estimates
of their habitat preferences. However, much of this knowledge is anecdotal and rarely
available in mapped form. Furthermore, the Pilbara bioregion includes landscapes with
many inland mountain ranges with cliffs and deep gorges [25], making comprehensive
surveys of nocturnal and evasive feral cats extremely difficult. The size, inaccessibility and
heterogeneity of the Pilbara necessitate a more targeted approach to baiting in areas of high
utilisation. The recent advances in GPS radio-collars and their batteries have helped to
overcome these difficulties. However, this rich temporal, dynamic data has seldom been
used to drive conventionally static habitat models. Here we incorporate dynamic Brownian
Bridge Movement models into species distribution models to identify suitable feral cat
habitats for informing baiting programs in a naturally fragmented rocky landscape.

We have two main aims. The first is to use GPS collar data to identify the home ranges
of feral cats, as a cohort and separated by gender. We expect that male cats will range
further than female cats due to increased territoriality and for seeking a mate. Our second
aim is to subsample the GPS collar data to extract the highly utilized territory of each cat
that correlates with environmental variables to produce an accurate species distribution
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model at the landscape scale. We expect that, under the rugged conditions of the Pilbara
bioregion, feral cats will seek habitat that enables efficient hunting and relief from the hot
midday sun.

2. Materials and Methods
2.1. Study Site and Sample Collection

The study was conducted on Yarraloola station, located in the northwest Pilbara biore-
gion of Western Australia (Figure 1). The Hamersley subregion section of this large cattle
grazing station was the focal area for this study. Topography is considerably more complex
in the south-eastern portion of the station, which also lies adjacent to the rugged Hamersley
range (Figure 1). The study site experiences a semi-arid climate with very hot summers,
with maximum temperatures above 40 ◦C and milder winters with daily temperatures
ranging from 13 ◦C to 28 ◦C [26]. Average annual rainfall recorded at Pannawonica is 407
mm but varies depending on the frequency of summer tropical cyclones [26]. Vegetation is
predominately made up of hummock grasses with scatted low open woodlands of Acacia
species [26]. Non-perennial rivers and creeks include the Robe River, Warramboo and
Mungarathoona creeks.
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Figure 1. Location of the study site (Yarraloola station) located in the northwest Pilbara Bioregion of Western Australia. 
Tracking data of fifteen collared cats are shown as coloured pins. Identification numbers are centroids of the tracking data 
per cat. YF and YM are prefixes denoting female (F) and male (M) cats, respectively, on Yarraloola (Y) station. Demo-
graphic and collaring data for individual cats can be seen at https://doi.org/10.1371/journal.pone.0251304.s007 (accessed 
17 July 2020). 

2.2. Spatial Layers 
We used the hydrologically enforced 30 m resolution digital elevation model (DEM) 

obtained from the Shuttle Radar Topographic Mission [27] shown in Figure 1 to derive 
metrics related to valley depth (Figure 2A) and terrain ruggedness (Figure 2B) using 
SAGA software [28]. Valley depth is calculated as the difference between the elevation 
and an interpolated ridge level, and terrain ruggedness is a measure of topographic het-
erogeneity, where 0 indicates even terrain and larger values indicate more rugged terrain 
[28]. To summarise vegetation productivity over a full year, we used the large integral of 
the moisture adjusted vegetation index (LI-MAVI; [29,30] based on Landsat 8 imagery for 
the year 2019 (Figure 2C). To explore the impact of fire scars, we used fire history from 
1999 to 2019 ([31]; Figure 2D). This was provided by DBCA as the year of fire and con-
verted to a time since burnt variable for modelling. 

Figure 1. Location of the study site (Yarraloola station) located in the northwest Pilbara Bioregion of Western Australia.
Tracking data of fifteen collared cats are shown as coloured pins. Identification numbers are centroids of the tracking data per
cat. YF and YM are prefixes denoting female (F) and male (M) cats, respectively, on Yarraloola (Y) station. Demographic and
collaring data for individual cats can be seen at https://doi.org/10.1371/journal.pone.0251304.s007 (accessed 17 July 2020).

GPS/VHF radio-telemetry collars (Advanced Telemetry Systems, Isanti, MN, USA)
were fitted to feral cats captured using padded leg-hold traps in 2018 and 2019 [21]. Only

https://doi.org/10.1371/journal.pone.0251304.s007
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cats over ca. 1.7 kg were collared to ensure that the cat’s movements were not impeded
by the mass of the collar in any way (i.e., the collar was <5% of the animal’s body mass).
The tracking collars were programmed to take 24 GPS fixes per day between July and
September (the baiting season) and four fixes per day for other months [21]. The GPS
fixes for fifteen cats are displayed in Figure 1. The density of feral cats in the study site
are relatively low [21]. Collared cats range from sub-adults to large mature adults of both
sexes, presumably representing the population present.

2.2. Spatial Layers

We used the hydrologically enforced 30 m resolution digital elevation model (DEM)
obtained from the Shuttle Radar Topographic Mission [27] shown in Figure 1 to derive
metrics related to valley depth (Figure 2A) and terrain ruggedness (Figure 2B) using SAGA
software [28]. Valley depth is calculated as the difference between the elevation and an
interpolated ridge level, and terrain ruggedness is a measure of topographic heterogeneity,
where 0 indicates even terrain and larger values indicate more rugged terrain [28]. To
summarise vegetation productivity over a full year, we used the large integral of the
moisture adjusted vegetation index (LI-MAVI; [29,30] based on Landsat 8 imagery for the
year 2019 (Figure 2C). To explore the impact of fire scars, we used fire history from 1999 to
2019 ([31]; Figure 2D). This was provided by DBCA as the year of fire and converted to a
time since burnt variable for modelling.
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2.3. Home Range Analysis

To incorporate the temporal component in our estimation of space use, we used
dynamic Brownian bridge movement modelling (dBBMM) to explore the home ranges of
our collared cats. The original Brownian bridge movement model quantified the probability
of a given cell to be utilised based on the time taken to move from one location to the
next, as recorded in the tracking data [32]. This family of modelling types quantifies
the utilisation distribution (UD) based on an animal’s movement path rather than just
individual points and are suitable for temporally correlated data of high volumes [33].
Kranstauber et al. [33] made them more “dynamic” by allowing for changes in behaviour
to determine change points along a movement path and demonstrated that this extension
outperforms the classical model in their simulations and exemplars.

We used the move package in R [34] for dBBMM and to extract UDs for each cat. The
UD represents the home range by estimating the size of the area used by the animal but can
also provide information regarding how intensely an animal is using different areas within
that home range [33]. We extracted a 95% and 50% UD contour for each individual cat.

2.4. Species Distribution Models

We filtered GPS tracking points to only those occurring within the 50% UD contours
to train the model from locations in highly utilised territory. These points were used in
maximum entropy modelling together with the spatial layers. Maximum entropy (MaxEnt)
finds the probability distribution of maximum entropy subject to a set of constraints derived
from the sampling data [35,36]. The use of background points, rather than true absences,
means non-presence does not preclude the possibility of occurrence, which is appropriate
for exotic species (e.g., [37,38]). The contribution of each spatial layer was evaluated
using permutation importance, which is determined by randomly permuting the values of
each variable amongst the training points and measuring the reduction in discrimination
potential [39]. Large reductions denote a spatial layer that is highly important. Variable
importance metrics were interpreted together with the response curves of each spatial layer.
Overall model importance was summarised using the AUC statistic, where 0.5 is random
and 1 indicates a perfect model [40]. The worst performing variable at each iteration of the
model was removed, and the model of most appropriate complexity was chosen based on
the second-order Akaike Information Criterion (AICc), which rewards models that fit the
data well while penalising unnecessary parameters [41].

3. Results
3.1. Home Ranges

At the individual scale, the estimated home ranges using the dBBMM for each of the
feral cats varied in size considerably. Home ranges were between 3.91 km2 (Cat ID: YF02)
and 69.79 km2 (Cat ID: YM03), based on the 95% UD, and averaged 27.32 km2 (Table 1).
Home ranges were considerably smaller at the more condensed 50% UD contour, ranging
from 0.59 km2 to 13.07 km2 and averaging 4.12 km2. T-tests identified home ranges of male
cats were approximately double the size of female cats. This was significantly different at
both the 50% UD contour (5.40 km2 vs. 2.21 km2) and the 95% UD contour (34.44 km2 vs.
16.65 km2). Exemplars of the UDs for the two genders are shown in Figure 3.
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Table 1. Estimated areas for the 50% and 95 % predicted home ranges, calculated using the dynamic
Brownian Bridge Movement Model for all the cats with tracking collars at the study site.

Cat ID Sex Body Mass (g)
Area of Estimated Home Range (km2)

50% 95%

YF02 1700 0.59 3.91
YF03 3390 6.41 46.55
YF04 3120 1.61 25.81
YF05 2630 1.53 7.83
YF06 2930 2.04 7.85
YF07 4040 1.08 7.98
YM02 4170 5.63 25.70
YM03 4200 13.07 69.79
YM04 5000 3.69 27.91
YM05 2050 0.75 8.63
YM06 4630 10.62 47.21
YM08 3080 5.99 66.01
YM09 4400 2.47 15.99
YM10 4075 2.10 11.04
YM11 4535 4.27 37.64

Mean 4.12 27.32
Median 2.47 25.70
Std Dev 3.69 21.72
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3.2. Species Distribution Models

An SDM was built using all spatial layers and the points within the 50% UD contour
and yielded an AUC of 0.90 (Table 2). Subsequent models were produced by backward
selection, yielding AUC values between 0.74 and 0.88 (Table 2). Nonetheless, the full model
had the lowest AICs and was therefore retained, and all other models were ignored from
further analysis. Valley depth was the strongest predictor of feral cat habitat, contributing
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47% to the final model (Table 2). This was followed by terrain ruggedness, time since fire
and LI-MAVI (Table 2). The final model is shown in Figure 4.

Table 2. The permutation importance of the environmental variables used in MaxEnt modelling.

Spatial Layer Variable Importance (%)

Model 1 Model 2 Model 3 Model 4

Valley depth 47.0 50.1 53.0 100
Ruggedness 36.1 38.7 47.0

Time since fire 10.3 11.2
LI-MAVI 6.6

AUC 0.90 0.88 0.85 0.74
AICc 23,260 23,557 23,599 24,778
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Figure 4. Species distribution model showing the preferred habitat locations of feral cats in the study area produced using
the Maximum entropy method.

The response curves for the four explanatory variables are shown in Figure 5. These
plots represent a Maxent model created using only the corresponding variable. Valley
depths between 5 and 40 m were found to be most suitable, indicating an inclination
for cats to spend a disproportionate amount of time in riparian zones (Figure 5A). The
response curve for topographic ruggedness peaked at a value of 0.12 and rapidly declined,
indicating a proclivity for even terrain and hence the avoidance of rugged topography
(Figure 5B). Areas with the highest level of year-round green and moist vegetation based on
the LI-MAVI index were favoured habitats, and these were often coincident with riparian
zones within the study area (Figure 5C). The time since fire variable suggests avoidance of
recently burnt areas, up to 1 year, but was otherwise randomly arranged (Figure 5D).
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4. Discussion

Defining the environmental niche of invasive animals, as opposed to plants, has
unique challenges. Not only is it difficult to define the potential range of most exotic
species (e.g., [37]), animals are generally not stationary and can be difficult to observe,
especially if they are nocturnal or deliberately evasive, as in the case of feral cats [42]. This
can make obtaining a suitable sample size indicative of their habitat preferences difficult,
rendering traditional spatial analysis techniques for habitat delineation unsuitable. How-
ever, trapping and fitting GPS/VHF radio-telemetry collars allows for semi-continuous
movement data that produces many hundreds of points per animal, per season, which can
provide insight into the locations more commonly utilised.

Here, we used movement data, acquired from fifteen cats, in dynamic Brownian
bridge movement models (dBBMM). These models remove random forays that are unlikely
to be highly suitable habitat and can be used to delineate utilisation distributions (UDs),
which illustrate an animal’s space-use patterns or relative frequency of occurrence at a
given point in space. For example, several cats (e.g., YM05, YM08 and YF04) undertook
long distance forays during the study (Figure 1), but these were excluded from habitat
modelling by restricting training data to only movement data that intersected with the
50% UD contour (where cats spend at least half their time). This enabled the construction
of a species distribution model, with very high discrimination between presence and
background locations, which highlighted riparian zones as a desirable habitat for feral cats.
This has broader implications for more targeted baiting strategies.
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4.1. Home Ranges

We found the average home range size was significantly larger for male cats than for
female cats, as did Bengsen et al. [8]. However, our average home range size, measured
using the 95% UD contour, was twice as large for males as it was for females (34.44 km2

for males and 16.65 km2 for females). This is considerably larger than that identified by
Bengsen et al. [8], who found male cats utilised around 5.10 km2 and female cats around
4.36 km2 from 47 study sites across the globe. The home ranges of the Pilbara feral cats are
also considerably larger than the average home ranges of domestic feral cats, which mostly
roam in an area of less than 1 km2 [42]. However, these studies reported UDs based on the
minimum convex polygon method, which does not exclude random forays. Nonetheless,
the obvious gender disparity does suggest that males occupy large territories, potentially
for finding a mate, hunting and patrolling. Other studies have also found that the male
home ranges are larger and may overlap the home ranges of several females [43]. This
suggests that species distribution models may be further refined by separating by gender.

4.2. Species Distribution Models

In Australia, feral cats have been found to be associated with open habitats such as
spinifex grasslands. In the Cape York Peninsula, cats were also found to select areas with
little canopy cover and shallow water [44]. These preferences may enable more efficient
hunting practices [45]. However, they differ from our findings. Our study identified
creek lines with persistent vegetation cover as the most preferred locations. This habitat
preference more closely resembled cats in the arid areas of South Australia, which also
preferred vegetated creek lines as well as sand dunes [46]. It is likely that these habitats
provide protection from heat, a corridor for hunting purposes and additional protection
from locally occurring apex predators such as dingoes and wedge-tailed eagles (Aquila
audax). Feral cats are excellent climbers, so the larger trees associated with creek lines
provide the opportunity to seek refuge when required [47].

Our model also identified that the cats have no preference for the steep, rugged
topography found to the east of the study area. Hohnen et al. [48] also recognised an
aversion to complex topography in their study of feral cats in the adjacent Kimberley
region of Western Australia. In our study area, this avoidance has proven beneficial to
northern quolls, as they use these rocky and hilly areas as refuges and for breeding [49,50].
Rugged terrain may also provide a natural barrier to feral cat movement, particularly to
areas subjected to control [51].

Some studies in Australia have shown that feral cats select habitats affected by frequent
fires [44,52]. However, this is not shown to be the case in this study area. The time since
fire response curve suggests that our cats reject freshly burnt locations. Fires in our study
area over the period when cats were collared were very hot and removed much of the
vegetation. The cats appear to return to burnt areas after about 12 months.

4.3. Conservation Implications

There is evidence that feral cat control by active baiting had a positive influence on
Northern Quoll activity on Yarraloola [21]. Once the feral cat numbers are reduced, limiting
re-invasion from surrounding areas remains an ongoing challenge in open systems [53].
Camera trap monitoring of cats only identified a single re-invasion event at the study site
in the three years that followed the initial baiting program in 2016, with no recovery in the
cat population in 2017 and 2019 [21]. The large areas of unsuitable rocky habitat and the
narrow corridors provided by the drainage channels, as suggested by the SDM’s in this
study, may be a factor limiting the recolonisation of the baited area by cats.

The movement corridors provided by the riparian drainage channels represent areas
to be targeted for intensive cat control action. A uniform winter aerial baiting approach
was used in the current study at Yarraloola; however, it is thought that a combination
of targeted aerial and ground-baiting by hand would be more cost effective [21]. The
SDMs produced here highlight the areas where this focused approach would possibly
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expose more cats to the bait, and the efficacy of such an approach should be quantified. As
‘bait-resistance’ [54] occurs in feral cat populations subjected to annual baiting programs,
periodic trapping is required to remove these individuals, typically large male cats [20].
Our model will allow these traps to be placed strategically in the areas where they are most
likely to be encountered.

5. Conclusions

Advances in tracking animals with GPS/VHF radio-telemetry collars will continue
to improve our ability to model their behaviours and habitat preferences. This data has
provided a wealth of information on the movement of feral cats at our study site that
would not otherwise be available or derivable, including delineation of their home range,
behaviour, and habitat preferences. We found males had significantly larger home ranges
(5–34 km2) than females (2–17 km2). Coupled with terrain derivatives and vegetation
productivity, species distribution modelling was accurate and identified riparian zones
with persistent vegetation cover as preferred habitat and topographically complex, rugged,
hilly areas in the eastern parts of the study area as least preferred habitat. Trapping and
baiting strategies are likely to benefit from focusing on these habitats as opposed to uniform
control actions.
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