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Abstract: Joint analysis of spatial and spectral features has always been an important method for
change detection in hyperspectral images. However, many existing methods cannot extract effective
spatial features from the data itself. Moreover, when combining spatial and spectral features, a
rough uniform global combination ratio is usually required. To address these problems, in this paper,
we propose a novel attention-based spatial and spectral network with PCA-guided self-supervised
feature extraction mechanism to detect changes in hyperspectral images. The whole framework
is divided into two steps. First, a self-supervised mapping from each patch of the difference map
to the principal components of the central pixel of each patch is established. By using the multi-
layer convolutional neural network, the main spatial features of differences can be extracted. In the
second step, the attention mechanism is introduced. Specifically, the weighting factor between the
spatial and spectral features of each pixel is adaptively calculated from the concatenated spatial and
spectral features. Then, the calculated factor is applied proportionally to the corresponding features.
Finally, by the joint analysis of the weighted spatial and spectral features, the change status of pixels
in different positions can be obtained. Experimental results on several real hyperspectral change
detection data sets show the effectiveness and advancement of the proposed method.

Keywords: hyperspectral images; change detection; self-supervised learning; attention mechanism

1. Introduction

Change detection (CD) has been a popular research and application in the field of
remote sensing in recent years, which aims to acquire the change information from multi-
temporal images in the same geographical area. The change information is vital in many
applications, such as disaster detection and assessment [1], environmental governance [2],
ecosystem monitoring [3], urban sustainable development [4,5], etc.

With the advances in sensing and imaging technology, hyperspectral images (HSIs)
have attracted increasing attention and been widely utilized in earth observation applica-
tions [4,6]. Some characteristics of HSIs should be noticed: unlike multispectral images
and SAR images, HSIs typically have hundreds of spectral bands, and this rich spectral
information helps detect finer changes for CD. Although HSIs bring some key advantages,
redundant spectral bands may introduce interference information as adjacent bands have
similar spectral values, which are continuously measured by the hyperspectral sensor [4].
Moreover, the high-dimensional spectral band also leads to a significant increase in the
storage and computational complexity of HSIs processing and analysis [7]. In addition, for
HSIs, spatial feature extraction is more challenging than multispectral image as the serious
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mixed pixels phenomenon caused by low spatial resolution [8]. Furthermore, it is very
difficult to obtain enough labeled training samples in HSIs analysis.

In view of the characteristics of HSIs, many approaches have been proposed for CD in
HSIs. These methods can be mainly summarized into two categories:

(1) One is to directly use spectral features to obtain change information for multi-
temporal HSIs. For example, Liu et al. promoted a sequential spectral change vector
analysis to detect multiple changes for HSIs [9], which employs an adaptive spectral
change vector representation to identify changes. Liu et al. employed spectral change
information to detect change classes for achieving unsupervised HSIs change detection [10].
Different from the common method by reducing or selecting the band to reduce the band
redundancy for CD in HSI, in [11], change information of each band is utilized to construct
the hyperspectral change vectors for detecting multiple types of change. Recently, a general
end-to-end convolutional neural network (CNN) has been proposed for HSI CD in [6],
named GETNET, which introduces a unmixing-based subpixel representation to fuse multi-
source information. The performance of these methods is often hindered as they usually
utilize change vector analysis of spectral feature to generate directly change magnitude
between multi-temporal HSIs.

(2) However, only using spectral features is bound to ignore spatial contextual in-
formation [12]. Therefore, joint spatial-spectral analysis is a common technical means in
HSI-based tasks [13–17]. Therefore, the other is to obtain changes and improve detection
accuracy through joint analysis of spectral and spatial features of HSI. For instance, Wu et al.
stacked first multi-temporal HSIs, and then the local spatial information around the pixel
is presented through joint sparse representation for hyperspectral anomalous CD [18].
Recently, a CD approach based on multiple morphological profiles has been proposed in
HSIs [19]. This approach employed multiple morphological profiles to extract spatial infor-
mation, and then a spectral angle weighted-based local absolute distance and an absolute
distance are used to obtain changes. In addition, some deep learning-based techniques
can help improve the performance of CD due to its ability to effectively capture and fuse
spectral and spatial features. A recurrent 3D fully convolutional networks is designed
to capture spectral-spatial features of HSIs simultaneously for CD in [12]. Zhan et al.
promoted a three-directions spectral-spatial convolution neural network (TDSSC) in [20],
which can capture representative spectra-spatial features by concatenating the feature of
spectral direction and two spatial directions, and thus improving detection performance.
Such methods are usually weighted to equalize spatial and spectral features to conduct
joint analysis and classification, and have achieved good performance, but they usually
have the following common problems:

• The spatial features extracted by existing methods may not target for CD. For exam-
ple, some methods require transfer learning from other tasks such as classification,
segmentation, etc. These tasks require large-scale labeled data sets for supervised
training, which increases the cost of use. There are also some methods that use au-
toencoders to extract the deep expression of each image. The features extracted by
these two methods may not be suitable for CD. Therefore, how to extract sufficiently
good spatial differential representations for CD tasks is a very critical issue.

• Most methods adopt a uniform global weight factor when combining spatial and spec-
tral features, that is, spatial and spectral features are analyzed according to the same
ratio for each pixel at each location, which is obviously a little rough. Therefore, how
to balance these two features in a task-driven adaptive way is also worth studying.

To address these two problems mentioned above, in this paper, we propose an
attention-based spatial and spectral network with PCA-guided self-supervised feature
extraction for CD in HSIs. The whole framework consists of two parts. In the first part, a
PCA-guided self-supervised spatial feature extraction network is devised to extract spatial
differential features. Concretely, two HSIs are compared to generate a difference map (DM)
first. Then, the principal component analysis is utilized to obtain the transferred image
that only contains several principal components. Afterwards, a mapping from the image
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patch, i.e., a neighborhood with a certain size for each pixel in the DM, to the correspond-
ing principal component vector in the transferred image is established, where the spatial
targeted differential features can be extracted. Finally, the extracted spatial features can be
used in the subsequently joint analysis combined with the spectral features. In the whole
process, no additional supervisory information is involved, and the training data used in
the training only comes from the processing of the data itself, which is categorized into
the self-supervised learning task recently [21–23]. These methods mine useful supervisory
information from the data itself and can obtain performance not weaker than external
supervised learning. Besides, the designed mapping relationship can make the extracted
spatial features more distinctive. In the second part, we propose an attention-based spatial
and spectral CD network. Different from the above-mentioned methods, the attention
mechanism [24–26] is introduced to balance the spatial and spectral features adaptively.
Specifically, the spatial and spectral features are first combined directly to calculate a
weight factor for the corresponding pixel via several fully-connected layers. After that, the
calculated factor is applied to weight the two features. Finally, by combining the weighted
spatial and spectral features, the final change status for each pixel can be inferred. The
introduction of attention mechanism enables the network to calculate its own weight factor
for the spatial and spectral features of each pixel, which avoids multiple trials to select
the optimal factor and allows for more detailed detection of changes. In order to improve
the network performance and the detection effect, a few ground truth labels are used for
semi-supervised training detection network. Experiments on several real data sets show
the effectiveness and advance of our algorithm. The main contributions of our work are
summarized below:

(1) A novel PCA-guided self-supervised spatial feature extraction network, which estab-
lishes the mapping relationship from the difference to the principal components of
the difference, so as to extract more specific difference representation.

(2) The attention mechanism is introduced, which adaptively balances the proportion of
spatial and spectral features, avoiding rough combination with global uniform ratio,
making the model more adaptable.

(3) We propose an innovative framework for hyperspectral image change detection,
which involves a novel PCA-guided self-supervised spatial feature extraction network
and an attention-based spatial-spectral fusion network. Moreover, the proposed
ASSCDN can achieve the superior performance using only a small number of training
samples on three widely used HSI CD datasets.

The rest of this paper is organized as follows. Related works are presented in Section 2.
Section 3 describes the proposed ASSCDN in detail. In Section 4, experiments and analysis
based on three pairs of HSI dataset are presented and discussed. Finally, the conclusion is
provided in Section 6.

2. Related Works
2.1. Traditional CD Methods

During past few decades, many CD methods have been proposed and applied in
practical applications [27,28]. In the early development of CD, two main steps are usually
required to realize CD: measuring the difference image (DI) and obtaining the change
detection map (CDM). Many techniques are commonly used to measure DI, such as
image difference [29], image log-ratio [30], change vector analysis (CVA) [29,31], etc. Gen-
erally, these approaches calculate the change magnitude of bi-temporal images by the
distance between two pixels. Afterwards, the methods widely used to generate CDM are
threshold segmentation techniques (OTSU [32], expectation maximum [33]) or clustering
algorithms (k-means [34], fuzzy c-means [35], k-nearest neighbors (KNN) [36], and support
vector machines (SVM) [37]). With the development of CD technology, some methods
are further promoted to improve the detection performance. For example, Zhuang et al.
combined spectral angle mapper and change vector analysis for CD of multispectral im-
ages [38]. Thonfeld et al. proposed a robust change vector analysis (RCVA) [39] approach
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for multi-sensor satellite images CD. In addition to the above methods, some techniques
are also helpful to improve the performance of CD, such as principal component analysis
(PCA) [34,40], level set [41,42], Markov field [43,44], etc. However, these approaches rely
significantly on the quality of hand-crafted features in order to measure the similarity
between bi-temporal images.

2.2. Deep Learning-Based CD Methods

In recent years, with the booming development and wide application of deep learning
technology in the field of computer vision, many scholars have extended this technol-
ogy to remote sensing image CD. According to different manners of supervision, we
place these deep learning-based CD approaches into three groups [28,45]: supervised CD,
unsupervised CD, and semi-supervised CD.

(1) Supervised CD. This kind of method is commonly used in CD, which refers to the
method of using artificially labeled samples in model training to realize supervised learning.
For instance, in the early stage, Gong et al. designed a deep neural network for synthetic
aperture radar (SAR) images CD, which can perform feature learning and generate CDM by
supervised learning [46]. Zhang et al. recently promoted a deeply supervised image fusion
network for CD, which devises a difference discrimination network to obtain CDM of
bi-temporal images through deeply supervised learning [47]. Other methods are available
in [48,49]. Although these supervised CD approaches can achieve acceptable performance
for CD, manually labeled data is expensive and time consuming, and the quality of the
manually labeled data has a significant impact on the performance of the model.

(2) Unsupervised CD. In addition to supervised learning-based CD approaches, unsu-
pervised CD approaches have received much attention, which can acquire CDM directly
without the need for manually labeled data. In recent years, many studies have been
proposed for unsupervised CD, for example, Saha et al. designed an unsupervised deep
change vector analysis (DCVA) method based on pretrained CNN for multiple CD [50]; an
unsupervised deep slow feature analysis (DSFA) was proposed based on two symmetric
deep networks for multitemporal remote sensing images in [51], which can effectively
enhance the separability of changed and unchanged pixels by slow feature analysis. More-
over, other unsupervised change detection methods are available in [52–55]. However,
at present, the unsupervised CD method is difficult to promote for practical application,
this is because unsupervised CD approaches rely heavily on migrating features from data
sources with different distribution, resulting in poor robustness and unreliable results.

(3) Semi-supervised CD. To overcome the limitation of supervised and unsupervised
CD methods to a certain extent, semi-supervised learning approaches have been further
developed for CD. In semi-supervised CD, in addition to a small amount of labeled data,
unlabeled data are also effectively used to achieve the semi-supervised learning, and thus
obtaining CDM. For example, Jiang et al. proposed a semi-supervised CD method, which
extracts discriminative features by using unlabeled data and limited labeled samples [56].
In [57], a semi-supervised CNN based on a generative adversarial network was proposed,
which can employ two discriminators to enhance the feature distribution consistency
between the labeled and unlabeled data for CD. These semi-supervised CD methods
significantly reduce the dependence on a large number of labeled data, and meanwhile
maintain the performance of the model to a certain extent. However, unlabeled data may
cause some interference to network training due to its unreliability, so developing reliable
methods to apply unlabeled data is a crucial procedure in semi-supervised learning.

3. Proposed Method

In order to effectively detect changes based on the joint spatial and spectral features of
HSIs, in this paper, we propose a novel self-supervised feature extraction and attention
based CD framework, as shown in Figure 1. From the figure, it can be seen that the entire
framework is divided into two steps. In the first step, the PCA-guided self-supervised
spatial feature extraction network is designed, which can extract the most important change
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feature representation in each difference patch. In the second step, in order to effectively
combine the extracted spatial and spectral features, the attention mechanism is introduced
into the spatial and spectral CD network, which can adaptively learn a matching ratio for
the spatial and spectral features of each patch, highlighting where is the most conducive
for detecting changes. Below, we will introduce the proposed framework in detail.
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Figure 1. Framework of the proposed ASSCDN. The first step is PCA-guided self-supervised spatial feature extraction
network. The second step is to combine the spectral and spatial features by introducing a attention mechanism and obtain
the final class.

3.1. Data Preparation
3.1.1. Data Preprocessing

Before comparing and analyzing the target HSIs, as the original HSIs usually contain
noise and interference channels caused by atmospheric and water vapor scattering, it is
often necessary to perform preprocessing such as dead pixel repair, strip removal, atmo-
spheric correction, etc., on the original images. In addition, as change detection requires
joint analysis of these two images, unaligned pixels will cause higher false detection, so
joint registration of these two images is also essential.

3.1.2. Training Data Generation

It is a common method to directly analyze the difference image and obtain the final
change map, since it can analyze the difference more directly and specifically. In addition,
considering the lack of labeled data for HSIs, analysis based on a certain size of neighbor-
hood of each pixel, i.e., a small patch, can often improve the reliability of change detection.
After comprehensive consideration, we select the small patch centered on each pixel in the
difference map of the two HSIs as the processing unit. Formally, let I1 and I2 represent the
two HSIs of size H ×W × C to be detected, where H, W, and C represent the height, width,
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and the number of spectral bands of the images, respectively. First, by comparing the two
images, a difference map DM can be generated, i.e.,

DM = |I1 − I2|. (1)

Then, by cutting the pixel-by-pixel neighborhood of DM, a total of H ×W patches of
size P× P× C can be obtained for the input of CD, where P is the patch size.

3.1.3. Principal Component Analysis (PCA) for DM

Principal component analysis (PCA) is a popular dimensional reduction machine
learning technique, which has been widely used in change detection due to its simplicity,
robustness, and effectiveness. For DM, PCA technique can transform the image into an
orthogonal space with larger data variance, where the data can be represented by fewer
dimensional features with almost little information loss, consequently finding the most
expressive difference representation. Formally, for the DM data matrix D which has
H ×W × C samples of M-dimensional features, the transformed data can be calculated by

D′ = PD, (2)

where P> is the transposed eigenvector matrix sorted according to the eigenvalue of the
eigencovariance matrix C of D. That is, P> satisfies the following equation:

P>CP =


λ1

λ2
. . .

λM

, (3)

where {λ1, λ2, · · · , λM} are M eigenvalues of C, which satisfies λ1 ≥ λ2 ≥ · · · ≥ λM.
In this way, the original data can be transformed into a new feature space, and

the former K-dimension features can contain most of the information. The data after
dimensionality reduction can be expressed as

D̃ = TD, (4)

where T is the matrix of the eigenbasis vectors for the first K rows of P. Then, the obtained
D̃ can be reshaped as the dimension reduced difference map DMPCA.

3.2. PCA-Guided Self-Supervised Spatial Feature Extraction

When the data are ready, it can be fed into the designed framework for change
detection. We first extract spatial features based on these patches. As DMPCA contains
several major differential features, we expect to establish a mapping relationship from patch
to several principal components of its central pixel. In this way, we propose a PCA-guided
spatial feature extraction network (PCASFEN) which is supposed learn the spatial features
that can express the most dominating features of the central pixel from the neighborhood
information. There is no artificially labeled labels involved in the whole learning process;
the supervised information can be obtained completely by the transformation of data
itself, which is actually a self-supervised task. Specifically, given a patch with of size
P× P× C, several convolutional layers are used to extract deep spatial features. In this
process, a pooling layer is not used, mainly considering that the patch size is usually small
and pooling may lose more spatial details. In addition, batch normalization is adopted
to prevent distributed drift and thus ensure the stability of training. After the feature
extraction, in order to ensure the same spatial and spectral dimensions in joint spatial and
spectral analysis, the processed features are flattened and processed into a C-dimensional
vector with the same feature dimensions as the input via a fully-connected layer. Finally,
after several fully connected layers of processing, the output is a vector of K dimensions,
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which is utilized to regression-fitted with the principal component features of the central
pixel of the patch.

3.3. Attention-Based Spatial and Spectral Network

At present, we have obtained spatial and spectral features representing each pixel
in the DM. Joint analysis of spatial and spectral features is a common method in change
detection tasks, because it can comprehensively analyze data from spatial and spectral
perspectives, thus reduce isolated noise points and improve detection robustness. Generally
speaking, to better balance these two features, a weighting factor γ ∈ [0, 1] is often used.
The fusion feature F of a pixel can be represented as

F = [γFspa, (1− γ)Fspe]. (5)

It can be seen that γ is a very important parameter, which is used to determine which
of the spatial and spectral features contributes more to the final CD result. In most methods,
a suitable γ usually requires multiple experiments to obtain, which undoubtedly greatly
increases the actual use cost. In addition, for all pixels in the image, γ will eventually
be set globally, but in fact, the spatial and spectral features of different pixels contribute
differently to their change status. Inspired by the attention mechanism, we propose an
attention-based spatial and spectral change detection network (ASSCDN). Concretely,
given the spatial feature Fspa ∈ RC and a spatial feature Fspe ∈ RC of the n-th pixel in DM,
first, they are concatenated as Fn ∈ R2C, where n = 1, 2, · · · , H ×W. Then, Fn is fed into a
fully-connected layer to calculate the γn only for the corresponding pixel, which can be
expressed as

γn = σ(wFn + b) =
1

1 + e−(wFn+b)
, (6)

where σ is the Sigmoid activation function which can ensure that γn is between 0 and 1,
and w and b represent the weight and bias of the fully-connected layer, respectively. Then,
Fspa and Fspe are weighted by multiplying γn and 1− γn, respectively. At this time, the
weighted Fspa and Fspe can be concatenated into a new feature, represented as

Fn
′ = [γnFspa, (1− γn)Fspe]. (7)

Finally, the obtained features can be input into several fully-connected layers for
classification to obtain the final change status.

3.4. Training and Testing Process
3.4.1. Training and Testing PCASFEN

As PCASFEN establishes a regression mapping from the patch to the principal com-
ponent features of the central pixel, the mean square error (MSE) function is adopted as the
loss of training PCASFEN. Given the input patch and feature pairs, training the PCASFEN
can be seen as minimizing the MSE loss LMSE between the output K-dimensional vectors v̂
and the target principal component features v. LMSE can be represented as

LMSE =
1
N

N

∑
n=1

(v− v̂)2, (8)

where N is the mini-batch size. Here, the Stochastic Gradient Descent (SGD) optimizer
is adopted to reduce the loss and update the network parameters. After the training of
several epochs, LMSE will converge, and then the C-dimensional spatial features of each
pixel neighborhood extracted from the network can be used for subsequent spatial and
spectral joint analysis.
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3.4.2. Training and Testing ASSCDN

For ASSCDN, it establishes the mapping from the spatial features combined with the
spectral features of pixels to the final change status, which is a classification task. Therefore,
the cross-entropy loss LCE function is employed to guide parameter updating. LCE can be
represented as

LCE = −∑ y log(ŷ), (9)

where y and ŷ are the ground truth label to be fitted and the output of the network,
respectively. Similarly, the SGD optimizer is used to optimize the ASSCDN. Due to the
effectiveness of the extracted features, only a very small number of labeled samples are
enough to satisfy the training. Here, we use random selection from the reference CD map
to simulate this process. The number of samples selected will be discussed in detail in the
next section. After several rounds of training, the spectral features and the spatial features
extracted from PCASFEN of each pixel can be directly input to the well-trained ASSCDN
to obtain the change category of this pixel, and thus generate the final change map.

4. Experiments and Analysis

In this section, the experimental datasets are firstly described. Then, the experi-
mental settings, including comparative methods and evaluation metrics are illustrated.
Subsequently, the effects of different components in the proposed ASSCDN method on
the detection performance are studied and analyzed. Finally, experimental results are
presented and discussed in detail.

4.1. Dataset Descriptions

To evaluate the effectiveness of the proposed ASSCDN approach, three groups of HSIs
are conducted in the experiments. These datasets are presented as follows.

The first and second datasets are Santa Barbara dataset and Bay Area dataset, which were
released in [58]. As shown in Figures 2 and 3, these datasets were captured by AVIRIS sensor,
which both have 224 spectral bands. In the Santa Barbara dataset, Figure 2a,b was acquired
over the Santa Barbara region, California, in 2013 and 2015, respectively. The images have
30 m/pixel spatial resolution and a size of 984× 740 pixels. As presented in Figure 3a,b, in the
Bay Area dataset, two HSIs were collected over the city of Patterson, California, in 2007 and
2015, respectively. These images are with the size of 600× 500 pixels and the spatial resolution
of 30 m/pixel. Besides, the reference images of two datasets are shown in Figures 2c and 3c,
which are obtained by manual interpretation, separately.

(a) (b) (c)

Figure 2. Barbara dataset: (a) T1-time image, (b) T2-time image, and (c) reference image. (Notation:
gray color, white color, and black color denote unchanged pixels, changed pixels, and uninteresting
pixels, respectively).
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(a) (b) (c)

Figure 3. Bay dataset: (a) T1-time image, (b) T2-time image, and (c) reference image. (Notation:
gray color, white color, and black color denote unchanged pixels, changed pixels, and uninteresting
pixels, respectively).

The third dataset is River dataset, which was published in [6], as shown in Figure 4.
Figure 4a,b was acquired by Earth Observing-1 (EO-1) Hyperion in 3 May 2013, and
31 December 2013, respectively, which contain total 242 spectral bands, and depict a river
area in Jiangsu Province, China. In the River dataset, 198 bands are employed, and these
images have a size of 463× 241 pixels and a spatial resolution of 30 m/pixel. In addition,
Figure 4c provides a reference image, which is obtained by manual interpretation.

(a) (b) (c)

Figure 4. River dataset: (a) T1-time image, (b) T2-time image, and (c) reference image. (Notation:
white color and black color denote changed pixels and unchanged pixels, respectively).

4.2. Experimental Settings
4.2.1. Evaluation Metrics

To evaluate quantitatively the accuracy of the proposed ASSCDN approach, three
commonly used comprehensive evaluation metrics are selected [56,59,60], including overall
accuracy (OA), F1-score (F1), and kappa coefficient (KC). Here, true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) are first counted by confusion
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matrix of the detection results, where TP indicates the number of pixels correctly detected
as changed class; TN indicates the number of pixels correctly detected as unchanged class;
FP and FN indicate the number of pixels falsely detected as changed and unchanged classes,
respectively. On this basis, these evaluation metrics can be computed as follows:

OA =
TP + TN

TP + TN + FP + FN
(10)

KC =
OA− pe

1− pe
(11)

pe =
(TP + FP)× RC + (TN + FN)× RU

(TP + TN + FP + FN)2 (12)

PRE =
TP

TP + FP
(13)

REC =
TP

TP + FN
(14)

F1 =
2× PRE× REC

PRE + REC
(15)

where RC and RU represent the number of pixels that are changed and unchanged classes
in the reference image, respectively. The larger values of these evaluation metrics indicate
better detection performance.

4.2.2. Comparative Methods

In the experiments, eight widely used or state-of-the-art methods are selected to vali-
date the superiority of the proposed ASSCDN approach. These methods are summarized
as follows:

(1) CVA, which is a classic method for CD, is a comprehensive measure for the differ-
ences in each spectral band [61]. Therefore, CVA is suitable for HSI CD.

(2) KNN, aims to acquire the prediction labels of new data through the labels of the
nearest K samples, which is used to acquire CDM.

(3) SVM, a commonly applied supervised classifier, which is exploited to classify a
difference image into a binary change detection map.

(4) RCVA, was proposed by Thonfeld et al. for multi-sensor satellite images CD to
improve the detection performance [39].

(5) DCVA, can achieve an unsupervised CD based on deep change vector analysis,
which implemented a pretrained CNN to extract features of bitemporal images [50].

(6) DSFA, which employs two symmetric deep networks for multitemporal remote
sensing images in [51]. This approach can effectively enhance the separability of
changed and unchanged pixels by slow feature analysis.

(7) GETNET, which is a benchmark method on River dataset [6]. This method intro-
duces a unmixing-based subpixel representation to fuse multi-source information
for HSI CD.

(8) TDSSC, which can capture representative spectral–spatial features by concatenating
the feature of spectral direction and two spatial directions, and thus improving
detection performance [20].

4.2.3. Implementation Details

In the experiments, the proposed ASSCDN approach and other comparative methods
were deployed on Pycharm platform with Pytorch or TensorFlow framework by using a
single NVIDIA RTX 3090 or NVIDIA Tesla P40. During the training stage, the parameters
of the model were optimized by a SGD optimizer with the momentum of 0.5 and the weight
decay of 0.001. In all the experiments, the batch size is set as 32.
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4.3. Ablation Study and Parameter Analysis on River Dataset

In this section, to investigate the effectiveness of the proposed ASSCDN, we conduct
a series of ablation studies on the River dataset. These ablation studies mainly contain
three aspects as follows: (1) In the proposed ASSCDN, we devise a novel PCA-guided
self-supervised feature extraction network (PCASFEN) and attention-based CD framework
to combine effectively the spatial and spectral features. Therefore, we first test the influence
of different components on the performance of CD in the proposed ASSCDN. (2) As
the patch size is an inevitable parameter in the proposed self-supervised spatial feature
extraction framework, the sensitivity of patch size for network performance is investigated
subsequently. (3) In addition, the relationship between the number of training samples and
performance is also analyzed to validate the effectiveness of the proposed ASSCDN when
only a small number of training samples are available.

4.3.1. Ablation Study for Different Components

In the ablation study, to investigate the contribution of different components in the
proposed ASSCDN, three comprehensive evaluation metrics, including OA, KC, and F1,
are selected to evaluate quantitatively the results of these ablation studies. Besides, to
ensure the fairness of the experiment, we set the same parameter for each experiment, that
is, the patch size was set as 15, the number of training samples of each class was 250, and
other hyperparameter settings were the same.

In this ablation study, four major components are adopted in the our ASSCDN,
i.e., “spe”, “spa”, “spe + spa”, and “spe + spa + Attention”, where “spe” denotes that only
spectral features are used, “spa” denotes that only spatial features are exploited, “spe + spa”
indicates that spectral features and spatial features are combined in equal proportions, and
“spe + spa + Attention” indicates that spectral features and spatial features are combined
through the application of the proposed attention mechanism. According to the afore-
mentioned settings, the results were obtained on River dataset, as shown in Table 1 and
Figure 5. From the quantitative results, compared with “spe”, “spa” can improve the de-
tection performance to a certain extent, which indicates that the most important change
feature representation is extracted by our proposed self-supervised spatial feature extrac-
tion framework. In addition, “spe + spa” can achieve better accuracy due to the improved
discriminable feature expression by fusing spectral and spatial features, thus ameliorating
the detection performance. Note that “spe + spa + Attention” reached the best accuracy
(95.82%, 0.7609, and 78.37%) in terms of OA, KC, and F1. Compared with “spe + spa”,
“spe + spa + Attention” was significantly improved in all three evaluation criteria (1.21%,
0.0575, and 5.10%). From the visual results, the same conclusion can be obtained. Besides,
as shown in Figure 6, we also tested the performance of different components with differ-
ent patch sizes, and the results further verified the contribution of the components of our
proposed ASSCDN.

In summary, two aspects can be obtained by the comparison results of the above
ablation study: (1) The most useful change feature representation can be captured by
our proposed PCASFEN, which can help to enhance the separability between changed
and unchanged classes. (2) As it is unreasonable to combine spectral and spatial features
by equal proportions for different patches, a novel attention mechanism is designed to
adaptively adjust the proportion of spectral and spatial features for different patches to
achieve effective and reasonable fusion of spectral and spatial features, thus significantly
improving the accuracy of CD. Therefore, the effectiveness of each component of the
proposed ASSCDN can be validated, it can join effectively spectral and spatial features by
our proposed self-supervised spatial feature extraction network and attention mechanism,
thereby elevating the performance of CD for HSI.
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Table 1. Quantitative comparison for ablation study of the combination of different features on the
River dataset.

Methods OA(%) KC F1 (%)

spe 92.32 0.6441 68.38
spa 93.60 0.6661 70.06

spe + spa 94.61 0.7034 73.27
spe + spa + Attention 95.82 0.7609 78.37

(a) (b) (c) (d)

True Positive True Negative False Positive False Negative 

Figure 5. Visual results for ablation study of the combination of different features on the River
dataset: (a) spe, (b) spa, (c) spe + spa, (d) spe + spa + Attention.

4.3.2. Sensitivity Analysis of Patch Size

In the proposed ASSCDN framework, patch size is an inevitable parameter in our
PCASFEN step, which provides the spatial neighborhood information of a central pixel.
Therefore, to comprehensively investigate the relationship between the patch size and
accuracy, each component of our proposed ASSCDN, including “spe”, “spa”, “spe + spa”,
and “spe + spa + Attention”, is employed in this experiment. Here, KC is selected to
evaluate the results for each component of our proposed ASSCDN. In addition, to ensure
the fairness of the comparison, in all experiments, the number of the training samples of
each class was fixed to 250, and the other hyperparameter settings were the same.

Based on the above settings, the results of patch sizes ranging from 7 to 17 for each
element were acquired, as presented in Figure 6. Notably, “spe” does not actually involve
patch size as “spe” denotes that only spectral features are used to obtain detection results.
Therefore, to facilitate comparison with the results of other components, the results of
each patch size for the “spe” are the same, as the red line shown in Figure 6. By observing
Figure 6, we can find that the results of “spa” present unstable fluctuation at different
patch sizes. That is because different patch sizes may contain different information with
various scales. Small patch sizes are more suitable for the different information of the small
scale, but the extraction of the difference information of large scale is insufficient, which
limits the accuracy. Similarly, larger patch size is more suitable for large-scale difference
information, but for small-scale difference information, the noise may be introduced and
the performance may is damaged in turn. Moreover, the relationship between the results
of “spe + spa” and “spe + spa + Attention” and the patch size is similar to that of “spa”.
Overall, compared with “spa” and “spe + spa”, the performance of “spe + spa + Attention” is
relatively stable, and can achieve good performance in each patch size.

4.3.3. Analysis of the Relationship between the Number of Training Samples and Accuracy

In this subsection, to further promote the proposed ASSCDN (i.e., “spe + spa + Attention”)
in practical application, we conducted an experiment to explore the relationship between
the number of training samples and the accuracy. Here, when testing the performance of
different numbers of training samples, we set the same hyperparameter, and the patch size
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was fixed at 11. Additionally, KC is employed to evaluate the accuracy of the all the results.
On this basis, the results were acquired with the number of training samples ranging from
10 to 1000 (see Figure 7). As can be seen in Figure 7, with the number of training samples
increasing, the value of KC increases gradually, and when the number reaches around 200,
the value of KC tends to be stable. Figure 7 also reveals that the proposed ASSCDN can
acquire convincing performance even with a small number of training samples.

7 9 11 13 15 17

Patch Size

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

K
C

Spe Spa Spe+Spa Spe+Spa+Attention

Figure 6. Sensitivity analysis of patch size for each component of the proposed ASSCDN on the
River dataset.
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Figure 7. Relationship between the number of training samples and accuracy for the proposed
ASSCDN on the River dataset.
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4.4. Comparison Results and Analysis

In this section, we tested the performance of the proposed ASSCDN on three real
public available HSI datasets. Moreover, to verify the superiority of the proposed ASS-
CDN, eight approaches are selected for comparison, including four widely used methods:
CVA [61], KNN, SVM, and RCVA [39], and four deep learning-based methods: DCVA [50],
DSFA [51], GETNET [6], and TDSSC [20]. Furthermore, five metrics (OA, KC, F1, PRE, and
REC) are exploited to evaluate the accuracy of the proposed ASSCDN and the compared
methods. Moreover, we employed a patch size of 15, and the number of the training
samples of 250 to perform the proposed ASSCDN on these three datasets. In addition, to
ensure the fairness of comparison, GETNET [6], and TDSSC [20] are deployed under the
same semi-supervised learning framework as the proposed ASSCDN.

4.4.1. Results and Comparison on Barbara and Bay Datasets

The CD results were acquired by different approaches on Barbara and Bay datasets,
as shown in Figures 8 and 9, and the results of the quantitative evaluation are listed in
Tables 2 and 3. From Figures 8a and 9a, the traditional CVA method shows more pixels
of false positive due to its lack of effective use of spatial features. Different from CVA,
as shown in Figures 8d and 9d, although RCVA introduces neighborhood information,
it is unreliable as changed targets of various scales are inevitable. Besides, KNN and
SVM present fewer pixels of false positive and false negative for both Barbara and Bay
datasets, especially, SVM achieved the highest PRE (93.01%), as listed in Table 2. Notably,
unsupervised-based deep learning methods, i.e., DCVA and DSFA, did not reach satisfac-
tory performance on Barbara and Bay datasets, respectively. Among them, DCVA aims to
acquire CD results by comparing differences between transferred deep features, but the
generalization ability of the transfer model is unreliable, while DSFA may be limited by the
results of the pre-detection. GETNET [6] can obtain the second best performance on Barbara
dataset, but it cannot get satisfactory accuracy on Bay data. By contrast, TDSSC [20] can achieve
relatively stable accuracy on these two datasets as it captures more robust feature representa-
tion by fusing the features of spectral direction and two spatial directions. For the proposed
ASSCDN, spectral and spatial features are fused adaptively for different patches, which is
helpful to obtain more reliable detection results. As listed in Tables 2 and 3, compared with
the above methods, our proposed ASSCDN can achieve the best accuracy for both Barbara
and Bay datasets in terms of OA, KC, and F1. From the visual results of Barbara and Bay
datasets (Figures 8i and 9i see), the proposed ASSCDN acquires very few pixels of false
positive and false negative, and it obtains the results closest to the reference image.

Table 2. Quantitative comparison results of various methods applied on the Barbara dataset.

Methods OA (%) KC F1 (%) PRE (%) REC (%)

CVA [61] 87.12 0.7320 83.96 82.26 85.72
KNN 91.02 0.8122 88.64 88.24 89.05
SVM 93.21 0.8568 91.20 93.01 89.46

RCVA [39] 86.74 0.7226 83.22 82.83 83.62
DCVA [50] 79.21 0.5313 66.96 89.24 53.59
DSFA [51] 86.76 0.7174 69.83 87.06 77.92

GETNET [6] 95.01 0.8962 93.80 91.62 96.09
TDSSC [20] 94.22 0.8789 92.67 92.39 92.95
ASSCDN 95.39 0.9046 94.33 91.45 97.39
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(a) (b) (c) (d)

True Positive True Negative False Positive False Negative 

(e)

(f) (i) (j)(g) (h)

Figure 8. The visual results of different methods on the Barbara dataset: (a) CVA [61], (b) KNN,
(c) SVM, (d) RCVA [39], (e) DCVA [50], (f) DSFA [51], (g) GETNET [6], (h) TDSSC [20], (i) our
ASSCDN, and (j) Reference image.

(a) (b) (c) (d)

True Positive True Negative False Positive False Negative 

(e)

(f) (i) (j)(g) (h)

Figure 9. The visual results of different methods on the Bay dataset: (a) CVA [61], (b) KNN, (c) SVM,
(d) RCVA [39], (e) DCVA [50], (f) DSFA [51], (g) GETNET [6], (h) TDSSC [20], (i) our ASSCDN, and
(j) Reference image.
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Table 3. Quantitative comparison results of various methods applied on the Bay dataset.

Methods OA (%) KC F1 (%) PRE (%) REC (%)

CVA [61] 87.61 0.7534 87.45 94.16 81.64
KNN 91.37 0.8268 91.87 91.58 92.16
SVM 92.58 0.8516 92.80 95.35 90.38

RCVA [39] 87.90 0.7598 87.46 96.77 79.79
DCVA [50] 82.48 0.6546 80.62 97.19 68.87
DSFA [51] 63.37 0.2800 58.34 73.24 48.48

GETNET [6] 85.50 0.7076 86.80 83.73 90.10
TDSSC [20] 94.63 0.8927 94.73 98.50 91.19
ASSCDN 95.53 0.9107 95.66 98.45 93.02

4.4.2. Results and Comparison on River Dataset

For the River dataset, as presented in Figure 4, more fine changed ground targets exist
in this dataset, which increases the difficulty of obtaining fine CD results. As shown in
Figure 10, the CD results were obtained by various approaches on the River dataset. From
the Figure 4a–c, although typical CVA, KNN, and SVM display a few pixels of false
negative, many unchanged pixels are misclassified as changed pixels as spatial information
is not considered. Compared with CVA, KNN, and SVM, the result of the RCVA (see
Figure 10d) shows fewer noises by introducing spatial contextual information for each pixel.
By contrast, DCVA performs poorly performance, as presented in Figure 10e; this is because
DCVA depends heavily on transferred deep features. For the DSFA, it generated CD result
with relatively few false positive pixels but many missed detection. Both GETNET [6] and
TDSSC [20] exhibit fewer false negative pixels, and compared to TDSSC [20], GETNET [6]
reaches fewer false positive pixels. From the visual observations, compared with the other
methods, our proposed ASSCDN presents the fewest false positive pixels, thus realizing
the best visual performance. Although the proposed ASSCDN shows relatively more false
negative pixels for GETNET [6] and TDSSC [20], our ASSCDN can obtain a good trade-off
between false positive pixels and false negative pixels. In addition to visual comparison,
quantitative comparison results have further demonstrated that the proposed ASSCDN
can reach the improvements of 0.4%, 0.0113, 0.92%, and 3.47% of OA, KC, F1, and PRE,
respectively, as listed in Table 4.

In summary, in this section, the aforementioned comparative experiments based on
three real HSIs have been demonstrated that the proposed ASSCDN outperforms some
traditional methods and state-of-the-art methods. The comparison results have further
verified that effective spatial features can be captured for CD by introducing a novel
PCASFEN, which can present the most significant difference representation. Furthermore,
spectral and spatial features are fused in an adaptive proportion manner by exploiting an
attention mechanism, which is able to enhance feature representation, and thus improves
the separability of difference features.

Table 4. Quantitative comparison results of various methods applied on the River dataset.

Methods OA (%) KC F1 (%) PRE (%) REC (%)

CVA [61] 92.16 0.6272 66.81 52.86 90.76
KNN 92.58 0.6532 69.17 54.15 95.72
SVM 92.42 0.6504 68.96 53.52 96.92

RCVA [39] 94.65 0.6760 70.54 67.62 73.72
DCVA [50] 88.47 0.2466 30.94 32.27 29.72
DSFA [51] 94.61 0.6645 69.41 68.44 70.41

GETNET [6] 95.42 0.7496 77.45 67.71 90.45
TDSSC [20] 94.29 0.7134 74.38 60.94 95.43
ASSCDN 95.82 0.7609 78.37 71.18 87.18
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(a) (b) (c) (d) (e)

(f) (g) (h)

True Positive True Negative False Positive False Negative 

(i) (j)

Figure 10. The visual results of different methods on the River dataset: (a) CVA [61], (b) KNN,
(c) SVM, (d) RCVA [39], (e) DCVA [50], (f) DSFA [51], (g) GETNET [6], (h) TDSSC [20], (i) our
ASSCDN, and (j) Reference image.

5. Discussion

In this paper, effective ablation studies and comparison experiments are conducted on
three groups of popular benchmark HSI CD datasets. In the ablation studies, three aspects
can be observed. First, the effect of different components in our proposed ASSCDN has
been proved that the proposed PCA-guided self-supervised feature extraction network
and an attention-based CD framework can capture and fuse spatial and spectral features to
further improve the performance of HSI CD. Second, although the sensitivity analysis of
the patch size reveals that the patch size is more likely to affect the network accuracy (see
Figure 6), the proposed ASSCDN significantly improves the accuracy of each patch size.
Third, the relationship between the number of training samples and the accuracy has been
explored, that is, the results show that the accuracy increases gradually with the increase of
the number of training samples. In particular, the proposed ASSCDN can obtain relatively
satisfactory performance when fewer training samples are employed. In addition, in the
comparison experiments, eight cognate approaches, including four traditional methods
(CVA [61], KNN, SVM, and RCVA [39]) and four state-of-the-art methods (DCVA [50],
DSFA [51], GETNET [6], and TDSSC [20]), were selected to investigate the performance of
the proposed ASSCDN. By observing the quantitative comparison, the proposed ASSCDN
is superior to the other eight methods in OA, KC, and F1 for three datasets. Meanwhile,
through visual comparison, it can be found that the change detection maps acquired by
our ASSCDN can obtain a good trade-off between false detection and missed detection.
Despite the proposed ASSCDN can provide a better result for HSI CD, the complexity of
performing this method is relatively high, because the training process of our ASSCDN
needs to be divided into two stages (i.e., first train the proposed self-supervised spatial
feature extraction network, and then train our semi-supervised attention-based spatial and
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spectral network). Besides, the computational cost of our ASSCDN framework is evaluated
by multiply-accumulate operations(MACs), i.e., in the PCA-guided self-supervised spatial
feature extraction network step, 0.81 G MACs are needed; in the semi-supervised attention-
based spatial and spectral network step, 0.0051 G MACs are needed.

6. Conclusions

In this paper, we propose an attention-based spectral and spatial change detection
network (ASSCDN) for hyperspectral images, which mainly contains the following steps
as follows. First, the main spatial features of differences can be extracted by our proposed
PCASFEN. Second, the attention mechanism is introduced to allocate adaptively the ratio of
spectral features and spatial features for fused features. Finally, by the joint analysis of the
weighted spatial and spectral features, the change status of each pixel can be obtained. We
conducted ablation study and parameter analysis experiment to validate the effectiveness
of each component in the proposed ASSCDN. In addition, the experimental comparisons
based on three groups of publicly available hyperspectral images have demonstrated that
our promoted ASSCDN outperforms the other eight compared methods. In our future
work, other HSIs will be collected to further investigate the robustness of this method.
Furthermore, there will be a focus on weakly supervised and unsupervised HSI CD.
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