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Abstract: The characteristics of a wide variety of scales about objects and complex texture features
of high-resolution remote sensing images make deep learning-based change detection methods
the mainstream method. However, existing deep learning methods have problems with spatial
information loss and insufficient feature representation, resulting in unsatisfactory effects of small
objects detection and boundary positioning in high-resolution remote sensing images change de-
tection. To address the problems, a network architecture based on 2-dimensional discrete wavelet
transform and adaptive feature weighted fusion is proposed. The proposed network takes Siamese
network and Nested U-Net as the backbone; 2-dimensional discrete wavelet transform is used to
replace the pooling layer; and the inverse transform is used to replace the upsampling to realize
image reconstruction, reduce the loss of spatial information, and fully retain the original image
information. In this way, the proposed network can accurately detect changed objects of different
scales and reconstruct change maps with clear boundaries. Furthermore, different feature fusion
methods of different stages are proposed to fully integrate multi-scale and multi-level features and
improve the comprehensive representation ability of features, so as to achieve a more refined change
detection effect while reducing pseudo-changes. To verify the effectiveness and advancement of the
proposed method, it is compared with seven state-of-the-art methods on two datasets of Lebedev
and SenseTime from the three aspects of quantitative analysis, qualitative analysis, and efficiency
analysis, and the effectiveness of proposed modules is validated by an ablation study. The results
of quantitative analysis and efficiency analysis show that, under the premise of taking into account
the operation efficiency, our method can improve the recall while ensuring the detection precision,
and realize the improvement of the overall detection performance. Specifically, it shows an average
improvement of 37.9% and 12.35% on recall, and 34.76% and 11.88% on F1 with the Lebedev and
SenseTime datasets, respectively, compared to other methods. The qualitative analysis shows that
our method has better performance on small objects detection and boundary positioning than other
methods, and a more refined change map can be obtained.

Keywords: change detection; 2-dimensional discrete wavelet transform; feature fusion; high-resolution
remote sensing images

1. Introduction

Change detection on the bi-temporal images involves identifying the regions and
ground objects that change within a period of time between the corresponding images
by processing and analyzing images of the same area acquired at different times. In the
situation of global change, change detection using remote sensing images provides an
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effective way to quickly obtain information about surface changes, and has been applied in
different domains.

Surface changes are closely related to the environmental ecosystem and regional
economic development, and it is of great significance to study the change detection. Many
scholars currently use change detection methods to explore different types of surface
changes with a view to better understand the relationships and interactions between
human activities and the environment and the economy. In order to ensure food security,
Xu et al. [1] applied change detection methods of remote sensing images to agricultural
surveys to investigate and analyze the status of cultivated land in Africa. To make better
decisions on regional planning, Rahnama et al. [2] investigated and analyzed land use
changes and made targeted recommendations for adverse changes. The main concern
of [3–5] was urban buildings, and the purpose was to grasp the urban development process
and expansion speed. In addition, the application of change detection technology in
disaster detection [6] also makes it possible to quickly realize the emergency response. It
is worth mentioning that, since high-resolution remote sensing images (whose resolution
can reach meter or sub-meter level) contain rich ground information and have a clear
description of the spatial and texture structure of ground objects of different scales, the
application range of change detection can be further enhanced [7]. Furthermore, in this
case, the pseudo-changes in change detection cannot be ignored. In addition, it can be
mainly divided into two categories. One is brought by noise such as shadow, light, and
seasonal variation, which has not really changed. The other is changes we are not interested
in, such as the appearance or disappearance of cars in the detection of land type changes.
Therefore, reducing the impact of pseudo-changes and finely identifying changed objects
of different scales offers a new paradigm for change detection in high-resolution remote
sensing images.

Deep learning methods with stacked convolutional operation and backpropagation
technique make it possible to automatically learn data intrinsic distribution and under-
stand more complex image data. Therefore, in recent years, deep learning methods have
been widely used for remote sensing images change detection, and the methods that have
recently improved the performance of change detection are roughly divided into two
categories. One increases the robustness of the model to pseudo-changes by enhancing
the distinction between features, which means increasing the difference between features
of changed regions and reducing the difference between features of unchanged regions.
In [8–11], constraints were placed on the features of unchanged regions based on the
label to reduce the pseudo-changes and increase the model’s attention to the interested
changed regions. On the other hand, the performance of change detection is improved by
feature fusion and enhancing the ability of feature representation. The network structure
of encoder and decoder, such as the fully convolutional network (FCN) [12], U-Net [13],
and Nested U-Net [14], which are able to fuse shallow features and deep features us-
ing the skip connection, have achieved good results in change detection. The Siamese
network [15] is also a classic network architecture in the field of change detection. It is
composed of two networks which enable features to be fused in different ways at different
stages. More importantly, the network can perform feature extraction on two images
separately, which has natural advantages for the change detection of bi-temporal images
with certain differences. In [16,17], the use of the dilated convolution with different dilation
rates to aggregate feature information of different scales has also achieved good results.
Furthermore, the attention mechanism [18–21] is also a common feature fusion method,
which works by assigning weights to features to reinforce important information and
suppress non-important information. However, existing deep learning-based methods
for high-resolution remote sensing images change detection still have the following short-
comings. (1) Changing detection for high-resolution remote sensing images is expected
to obtain fine change information on objects of different scales. In existing methods, the
spatial information of small objects and the boundary of objects decay with pooling and the
increasing depth of network, and even disappear in the deep network [22–24]. This makes
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the detection results of small objects and the boundary of change maps not ideal, and the
overall performance of change detection is difficult to improve. (2) Feature fusion methods
that do not consider the relationship between features and the purpose of feature fusion are
difficult to make full use of the advantages of features themselves, which limits the ability
of feature representation and the performance of change detection to a certain extent.

To address the above problems and obtain fine change detection results, an adaptive
feature weighted fusion network which, based on 2-dimensional discrete wavelet transform,
is proposed for high-resolution remote sensing images change detection. The focus is on the
design of 2-dimensional discrete wavelet transform module and adaptive feature weighted
fusion module. Among them, the 2-dimensional discrete wavelet transform module aims
to solve the problem of spatial information loss in the deep network. The motivation of the
module mainly includes two aspects. First, through the previous analysis to other methods,
we found that there are still some problems with the change detection results of small
objects and boundary positioning, which is related to the loss of spatial information in the
deep network. Second, [25,26] indicated that the operation of pooling is difficult to capture
complex features, and processed the feature maps in different ways. This finally helped to
obtain better results in image classification, object detection, instance segmentation, and
image restoration. On the other hand, inspired by existing feature fusion methods, we
propose the adaptive feature weighted fusion module. The difference from other methods
is that our method can effectively combine features according to the feature characteristics
of different stages to ensure that the fused features are more conducive to subsequent
tasks. Our method is based on Siamese network with bi-temporal images as input and
a single change map as output. Moreover, the Nested U-Net is used as the backbone to
fully integrate different hierarchical features and improve the feature description ability.
The difference is that the 2-dimensional discrete wavelet transform replaces the pooling
layer and the inverse transform replaces the upsampling to reduce information decay in
the process of feature abstraction and achieve the purpose of retaining the fine spatial
position of small objects and object boundaries. Furthermore, in different stages of feature
fusion, learnable weight parameters are calculated in different ways, depending on the
relationship between features and the purpose of feature fusion to fuse features of different
levels and scales in a better way and further improve the feature description ability, so
that the model’s ability to distinguish between changed regions and unchanged regions
is enhanced.

Overall, the main contributions of this paper for high-resolution remote sensing
images change detection are as follows:

1. 2-dimensional discrete wavelet transform is introduced into the Nested U-Net, which
can reduce the loss of spatial information resulting from pooling during encoding,
and provide sufficient feature information for further change detection and change
map reconstruction.

2. Adaptive weight parameters are calculated in different ways in the feature fusion
of the decoding and output stages. Moreover, in the process of training, the rela-
tionship between the features is adaptively modeled, which improves the feature
representation ability.

3. The comparative experiments with seven state-of-the-art methods on two change
detection datasets show that the proposed method has better performance than other
methods in detecting changed objects of different scales and positioning the boundary
of changed objects.

The structural arrangement of paper is as follows. Existing deep learning methods
for change detection of high-resolution remote sensing images are described in Section 2.
Section 3 details the method proposed in this paper. In Section 4, the comparative experi-
ments and ablation study are performed on two datasets to verify the effectiveness and
advancement of our method, and the rationality and overall performance of the model are
discussed in detail. Finally, the paper is summarized in Section 5.
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2. Related Work

Enhancing the feature discrimination, fusing multi-scale and multi-level features, and
improving the feature representation ability are the main ways for deep learning meth-
ods to improve the change detection performance. Therefore, existing change detection
methods of deep learning are briefly introduced from the perspectives of enhancing feature
discrimination and feature fusion.

2.1. Methods of Enhancing Feature Discrimination

Many methods improve the change detection performance by enhancing the discrimi-
nation of features; the main idea is to increase the inter-class distance between changed
regions and reduce the intra-class distance between unchanged regions. Refs [27,28] con-
structed mapping relationship between unchanged regions by selecting reliable unchanged
regions as training samples which were obtained from the generated coarse change maps.
Finally, similarity analysis was performed on the mapped feature pairs to realize change
detection. In [29], unchanged regions were selected as the training samples by prepro-
cessing with the method of change vector analysis (CVA) and K-means. Then, they were
projected into a high-dimensional space by using the FCN, before a projection matrix
of the unchanged features was obtained by using the slow feature analysis. Finally, the
extracted deep features were projected to the unchanged space using the projection matrix,
and the change map was obtained by threshold segmentation. Xu et al. [11] used the
capsule network as backbone, and improved the feature discrimination by reconstruct-
ing the unchanged regions and constraining the feature consistency between unchanged
regions. However, the weakness of the above methods is that the threshold needs to be
artificially determined. In addition, the GAN [30] is also widely used in change detection.
Fang et al. [10] believed that the bi-temporal images were from different domains because
of the different image acquisition conditions, and the change detection effect was not as
good as the images in the same domain. Thus, bi-temporal images were transformed onto
the same domain using the GAN. Then, image features were extracted using the FCN, and
change maps were predicted by calculating the Euclidean distance between feature maps.
In [31,32], the generator was used to predict the regions of changed, and then the generated
change map was discriminated from the real change map, and the changed regions of
the bi-temporal images were identified by training alternately. Although the GAN is able
to make the task of change detection into a closed loop through alternating training of
the generator and discriminator, the problem is that training GAN needs to achieve Nash
equilibrium and gradient extinction may occur during training, causing the training to
crash [33]. More importantly, the above methods which focus on the pseudo-changes in
high-resolution remote sensing images change detection; thus, there are still some problems
in the detection of small objects and the objects boundary positioning.

2.2. Methods of Feature Fusion

For deep learning-based change detection methods, the high-quality feature repre-
sentation can improve the detection accuracy of changed objects of different scales while
simultaneously reducing pseudo-changes. The feature fusion methods to fuse information
from different features is an effective way to obtain high-quality features, which can be
divided into image-level fusion and feature-level fusion. Among them, according to the
data type and fusion stage, the image-level fusion method can be divided into heteroge-
neous fusion [34–36], early fusion [37], and late fusion [8]. On the other hand, in deep
network, shallow features have high spatial resolution and sufficient geometric localization
information, while deep features are more abstract and contain more context informa-
tion due to the stacking of convolution and pooling, but a certain geometric localization
information is lost [38,39]. The feature-level fusion method is used to integrate features
which have high resolution and less semantic information with features which have low
resolution and rich semantic information. Moreover, it can combine the advantages of
the two types of features to reduce pseudo-changes and improve the detection accuracy
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of changed objects of different scales. In [40,41], the skip connection was used to connect
the encoding and the decoding layer with the same resolution, which was expected to
use the spatial information of shallow layer to compensate for the missing information
of deep layer, so as to realize fine change detection. Hou et al. [9] used high-resolution
networks (HRTNet) with parallel extraction of high-resolution features and low-resolution
features to solve the problem that the deep features with low-resolution extracted from
deep network lose the characteristics of high-resolution images, and fused features of
different scales and levels using dynamic convolution. The proposed method reduced
the loss of information resulting from pooling and partly enhanced the ability of feature
representation. The densely connected Nested U-net was used as a backbone to fully fuse
the features of different scales and levels, with improved performance in the detection
of subtle changes [37]. In [17,42,43], dilated convolution was introduced to extract multi-
scale features with different receptive domains, and the information from multi-level and
multi-scale were fused to generate accurate change maps. Xu et al. [44] proposed that
the one-way fusion flow hinders the feature expression, and proposed a feature fusion
method of multi-directional which includes the direction of bottom-up, top-down, and
shortcut-connection to improve the accuracy of change detection. In addition, the atten-
tion mechanism [45] can enhance useful information and suppress useless information,
making it an effective method of feature fusion. An ensemble channel attention module
was proposed in [46] to integrate different levels of semantic information, and realized
the effective integration of multi-level channel features. A change detection method with
dual attention mechanism was proposed in [47], which combined the channel and spatial
attention mechanism, and made the extracted features more discriminative. Chen et al. [48]
considered the temporal dimension of bi-temporal images and introduced the self-attention
module into network to model the spatial-temporal relationship of bi-temporal images,
effectively reducing the false detection due to registration errors and more refined change
maps which were obtained. The loss of spatial information makes the accuracy of small
objects change detection and boundary localization still relatively weak, even though the
above feature fusion methods which fuse features of different levels and scales partly
increase geometric localization information for deep features. Furthermore, the feature
fusion methods, regardless of the relationship between features and fusion purposes, in
some scenarios, increase the computational amount without significantly improving the
ability of feature representation.

From the above review of deep learning-based change detection methods, we know
that the methods of enhancing feature discrimination focus on improving the network
robustness to pseudo-changes, while feature fusion methods which can improve the
overall detection performance while reducing pseudo-changes are effective in change
detection. However, the existing high-resolution remote sensing images change detection
performance is still limited by the loss of spatial geometric information and insufficient
feature representation caused by the deep network. Since the 2-dimensional discrete
wavelet transform is able to decompose and accurately reconstruct the image, we consider
introducing it into the network to solve the problem of spatial geometric information loss.
On the other hand, starting from the network structure and feature characteristics, the
adaptive feature weighted fusion is conducted in different weight calculation ways in
different stages, so as to enhance the feature comprehensive representation ability and
improve the identification rate of small objects in change detection. The methods of this
paper are described in detail below.

3. Methodology

The proposed method is presented in detail in this section. First, Section 3.1 compre-
hensively describes the overall architecture of the network. The key parts of the proposed
method, the 2-dimensional discrete wavelet transform module and the adaptive feature
weighted fusion module, are elaborated in Sections 3.2 and 3.3, respectively.
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3.1. Network Architecture

The proposed network is based on the densely connected Nested U-Net. The differ-
ence is that, in our method, the encoder is a Siamese network with shared parameters,
while using 2-dimensional discrete wavelet transform to reduce image spatial resolution
instead of pooling, and the inverse transform to recover image spatial resolution instead
of upsampling which can improve the model’s sensitivity to spatial location information.
Furthermore, features are fused using the different feature weighted fusion methods at
different stages to enhance the discrimination between unchanged and changed features.
The overall network architecture is shown in Figure 1.
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Figure 1. Illustration of the architecture of adaptive feature weighted fusion network with the discrete
wavelet transform.

First, the bi-temporal images of T1 and T2 are used as the input of network, and feature
extraction is performed using the encoder. The encoder mainly includes convolutional
module and 2-dimensional discrete wavelet transform module. Additionally, the convo-
lutional module consists of convolution, batch normalization, and activation. During the
encoding process, the abstract features are first extracted using the convolutional module,
and then are inputted to the 2-dimensional discrete wavelet transform module to reduce
the image spatial resolution. The next convolution and 2-dimensional discrete wavelet
transform are then performed. After encoding, decoding is performed to change detection.
The decoder mainly includes convolutional module, 2-dimensional discrete wavelet inverse
transform module, and adaptive feature weighted fusion module. During the decoding
process, the inverse wavelet transform is used to recover the deep features with low spatial
resolution to the same higher spatial resolution as the adjacent layer feature maps, and then
the feature maps with the same spatial resolution (features obtained from 2-dimensional
discrete wavelet inverse transform and features of the same level) are fused by the adaptive
feature weighted fusion method of decoding. The out_1, out_2, out_3, and out_4 are the
outputs of different levels, which are then fused by using the adaptive feature weighted
fusion method which is different from the fusion method in the decoding process. Finally,
the last convolution is performed, the operation of argmax determines whether each pixel
changed, and then the change map is obtained.

As mentioned in the previous analysis, the pooling operation of the standard con-
volutional module in the classical convolutional neural network (CNN) can reduce the
image spatial resolution and help to extract semantic information, but can also cause
a certain loss of positional information. The 2-dimensional discrete wavelet transform
module is designed to transform irreversible image downsampling into a reversible image
decomposition so that the image spatial resolution reduced in the encoding stage can be
accurately reconstructed in the decoding stage. In addition, the feature maps of different
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levels represent different feature information, and the feature fusion strategy can be used
to fuse them to obtain features with rich spatial and semantic information. Therefore, it is
possible to improve the recall and precision by adding the above two modules.

3.2. 2-Dimensional Discrete Wavelet Transform Module

The CNN architecture mainly includes the convolutional layer, the pooling layer, and
the activation layer. The pooling layer can reduce the number of parameters and calculation
amount by reducing the spatial information of image. More importantly, the operation
of pooling enables the model to extract a larger range of features and increase the context
information. In practice, this operation can obtain more context information by discarding
the precise location of features which are important for high-resolution images change
detection. The 2-dimensional discrete wavelet transform can decompose and accurately
reconstruct the image, and the downsampling included in the decomposition process can
also reduce the spatial resolution. Based on this, the decomposition and reconstruction of
the 2-dimensional discrete wavelet transform which replaces the pooling and upsampling
can not only reduce the loss of spatial information, but can also expand the receptive
field and increase the context information that the pooling operation is expected to realize
through downsampling.

The 2-dimensional discrete wavelet transform is essentially a kind of convolution,
which can be naturally embedded into the neural network. For the input 2-dimensional
image signal, the decomposition process is shown in Figure 2. First, along the image row
direction, each row of the image is convolved with the low-pass filter and the high-pass
filter to obtain the low-frequency component and the high-frequency component in the
row direction. Then, low-frequency and high-frequency filtering is performed again on
the column direction of the low-frequency component and the high-frequency component,
and the obtained four sets of results are the decomposed images which contain all the
image information. The reconstruction of the image is the inverse of decomposition, and
the reconstructed image can be obtained by inverse transformation along the column and
then along the row.
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Different results can be obtained by performing 2-dimensional discrete wavelet trans-
form with different wavelet bases on the image signal. In order to obtain a good transfor-
mation effect, an appropriate wavelet basis needs to be selected according to the properties
of the wavelet basis and actual application requirements. Vanishing moment, compactly
supported, orthogonality, symmetry, and regularity are the five important properties of the
wavelet basis [49,50]. The vanishing moment is the wavelet order; the higher the vanishing
moment, the more concentrated the energy after the wavelet transformation. It is worth
mentioning that this will also cause a wider support width. The width of the wavelet
basis is compactly supported. The shorter the support width, the stronger the localization
ability of the wavelet basis and the higher the operational efficiency. Orthogonality ensures
that there is no redundancy in the decomposition of the signal, which is conducive to the
accurate reconstruction of wavelet coefficients. The symmetry of the wavelet basis ensures
that it has a linear phase, which can avoid phase distortion during image reconstruction
and make the reconstructed signal closer to the original signal. Regularity reflects the
smoothness of the wavelet function, and the two are directly proportional. Furthermore,
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the better the regularity, the smaller the reconstruction error caused by quantization or
truncation, and the better the image reconstruction effect. In most cases, the regularity
of the wavelet basis increases with the increase in the vanishing moment. According to
the above properties, from the perspective of image reconstruction effect and operational
efficiency, since the Haar wavelet [51] has orthogonality, symmetry, certain regularity, and
short support width, it is embedded in the network to perform the decomposition and
reconstruction of the image.

For image decomposition, the filters are:

fLL =

(
1 1
1 1

)
fLH =

(
−1 −1
1 1

)
fHL =

(
−1 1
−1 1

)
fHH =

(
1 −1
−1 1

)
(1)

among them, L and H represent low frequency and high frequency, respectively. The
decomposition results can be expressed as:

XLL = (fLL ⊗X) ↓ 2
XLH = (fLH ⊗X) ↓ 2
XHL = (fHL ⊗X) ↓ 2
XHH = (fHH ⊗X) ↓ 2

(2)

here, X is the feature of image, ⊗ is the operation of convolution, and ↓ 2 represents two
times downsampling.

The reconstruction with Haar wavelet can be expressed as:

X(2i− 1, 2j− 1) = (XLL(i, j)−XLH(i, j)−XHL(i, j) + XHH(i, j))/4
X(2i, 2j− 1) = (XLL(i, j)−XLH(i, j) + XHL(i, j)−XHH(i, j))/4
X(2i− 1, 2j) = (XLL(i, j) + XLH(i, j)−XHL(i, j)−XHH(i, j))/4

X(2i, 2j) = (XLL(i, j) + XLH(i, j) + XHL(i, j) + XHH(i, j))/4

(3)

where i and j, respectively, represent the pixel coordinates in the row and column direction.

3.3. Adaptive Feature Weighted Fusion Module

It is difficult to make full use of features and improve the feature expression ability
for the fusion methods without considering the relationship between features and the
purpose of fusion. On the one hand, feature fusion methods directly using the operation
of concatenating or adding cannot reflect the importance of features, causing excessive
attention to irrelevant information and neglect of important information. On the other
hand, when the attention mechanisms with different structures are used for feature fusion,
there are also some differences in performance. In order to address the above problems, the
feature fusion methods of the decoding stage and the output stage introduced in Section 3.1
are designed separately. Furthermore, an adaptive weighted feature fusion module suitable
for the two stages is proposed, aiming to fully combine the semantic and geometric features
of multi-level and multi-scale feature maps to improve the model performance.

The feature fusion in the decoding stage is a kind of comprehensive expression of
the features from different sources, while the feature fusion in the output stage is to fully
integrate the semantic information of deep layers with the spatial geometric information of
shallow layers, and improve the feature representation and geometric positioning ability
of the model. According to the difference between them, different feature fusion methods
are proposed, as shown in Figure 3.

Feature fusion in the decoding stage is achieved by weighting features from different
sources. Taking Figure 3a as an example, the features to be fused include n − 1 con-
volutional feature maps and 1 upsampled feature map, and the fused features can be
expressed as:

f f usion = w1 × f1 + w2 × f2 + · · ·+ wn × fn (4)

wi =
frelu(wi)

3
∑

i=1
wi

(5)
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where wi represents the weight of different source features, which is adjusted during
training along with the model parameters. fi represents different feature maps, while frelu
indicates that Relu is used to map the weight parameters between 0 and 1.
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Figure 3. Illustration of adaptive feature weighted fusion. (a) Feature fusion in decoding; (b) Feature
fusion in output.

Feature fusion in the output stage is achieved by weighting the spatial positions of
the output at different levels. Figure 4 shows the detailed process of weight calculation
and feature fusion. The calculation process of the weight matrix is as follows. First,
1 × 1 convolution is performed on out_1, out_2, out_3, and out_4. Next, the obtained
4 sets of feature maps are concatenated along the channel, and the 1 × 1 convolution is
performed again to obtain a matrix with 4 channels. Then, the weight matrix is obtained by
normalization. In this way, the importance of spatial information of different level features
is encoded in the weight matrix. The weight of different channels indicates the importance
of the features from different levels at each spatial position. Respectively, multiply out_1,
out_2, out_3, out_4, and the weight of the corresponding channel in the weight matrix, and
add the corresponding elements to get the final fusion feature map. The calculation process
can be formulated as:

W = fso f t max(conv1×1[conv1×1 (out_1), conv1×1(out_2), conv1×1(out_3), conv1×1(out_4)]) (6)

f f usion =
4

∑
i=1

out_i�W[:,i− 1 : i, :, :] (7)

where W ∈ Rb*c*h*w represents the weight matrix with multiple channels; b is the batch
size; c is the number of channels; and h and w are the height and width of the feature
map, respectively. [ , ] represents the operation of feature concatenating along the channel.
conv1×1 means convolution of 1 × 1. The using purpose of fso f t max is to normalize the
weight matrix, map the weight to (0,1), and normalize so that the sum equals 1. In addition,
� represents the element-wise multiplication.
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4. Experiments and Discussion

To verify the effectiveness of the proposed method, our method and the seven state-
of-the-art methods are tested on two publicly available datasets. Preliminary preparation
for the experiment is presented in the first five sections, including the introduction of the
two datasets, comparison methods, loss function, evaluation indices, and implementation
settings. Section 4.6 elaborates and analyzes the experimental results, including the quanti-
tative, qualitative analysis and efficiency comparison analysis of all methods on the two
datasets. Then, the effectiveness of the 2-dimensional discrete wavelet transform module
and the adaptive feature weighted fusion module are verified on the ablation study of the
two datasets. Finally, Section 4.7 discusses the rationality and overall performance of the
proposed method.

4.1. Datasets

To verify the effectiveness of our method in the change detection task for different
change types, the Lebedev dataset [52] (with change objects of buildings, roads, and cars)
and the SenseTime dataset [53] (which contains different types of land use conversion) are
selected as experimental datasets. The first dataset of Lebedev is derived from Google
Earth, including seven pairs of images with pixels of 4725 × 2700 and four pairs of images
with pixels of 1900 × 1000 with significant seasonal change, and whose spatial resolution
is from 100 cm/px to 3 cm/px. Furthermore, the corresponding labels are manually
annotated. In the practical experiments, the data set is composed of 256 × 256 image
blocks obtained by randomly rotating the original images and cropping them. Overall,
the entire dataset contains 10,000 image pairs for training, 2998 image pairs for validation,
and 3000 image pairs for testing. The second dataset of SenseTime which was adopted by
the artificial intelligence remote sensing interpretation competition of SenseTime in 2020.
Unlike the Lebedev dataset, the SenseTime dataset focuses on detecting changes among
land use types, with a more complex texture information. In the dataset, the total number
of samples labeled is 2968 pairs and the image size is 512 × 512, corresponding to the
spatial resolution of 0.5 to 3 m. In practical experiments, 2968 image pairs are divided into
training, validation, and test sets in a ratio of 8:1:1.

4.2. Comparison Methods

To verify the effectiveness of our method, it is compared with seven methods and
described as follows:

• FC-EF [40]: The method of fully convolutional early fusion, which is an early fusion
method in the level of image, takes U-Net as the backbone and concatenates bi-
temporal images along the channel. Then, the images with six channels are inputted
to network to train.

• FC-Sima-conc [40]: The method of fully convolutional Siamese concatenation extends
FC-EF to the Siamese network, and encodes bi-temporal images with shared weights.
In the process of decoding, the feature-level fusion method is used to fuse the original
encoded features and the joint encoded features of bi-temporal images in a directly
connected manner.

• FC-Sima-diff [40]: The fully convolutional Siamese difference method differs from FC-
Sima-conc in the joint features of bi-temporal images are constructed in a differential
manner rather than concatenation.

• STANet [48]: STANet applies the self-attention mechanism to the network to extract
the relationship with time dependence from bi-temporal images. Then, a pyramid
spatial-temporal attention module is established to generate a multi-scale spatial-
temporal attention map for multi-scale feature fusion.

• DASNet [47]: The starting point of DASNet is to reduce the pseudo-changes in change
detection of high-resolution remote sensing images. In the network, features are
extracted in a Siamese network with weight sharing, and a dual attention that coupled
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channel attention and spatial attention is used to perform feature fusion, and the
network is trained through metric learning.

• MFPNet [44]: In the MFPNet, a method of multi-directional feature fusion combining
bottom-up, top-down, and shortcut-connection is proposed, and features are fused by
weighting features from different sources in an adaptive weighting manner. Then, a
perceptual similarity module is proposed as a loss function for network training.

• SNUNet [46]: SNUNet aims to improve the accuracy of small objects detection and
objects boundary positioning in high-resolution remote sensing images change de-
tection. It applies Nested-UNet to the Siamese network, and proposes an ensemble
channel attention module to integrate the output feature maps of different levels, and
finally achieves the balance of accuracy and efficiency.

4.3. Loss Function

The loss function can guide the direction of gradient descent and plays a vital role
in the model optimization, and thus the selection of the loss function is crucial to the
model training. The application scenario in this paper is change detection, which is
essentially a binary classification problem with the categories of changed and unchanged,
and binary cross entropy is a loss function commonly used in classification. While, unlike
the classification, there is a proportional imbalance between the two categories, there are
far more unchanged pixels than changed pixels in change detection. Dice loss [54] is able
to effectively deal with the problem of data imbalance. Therefore, we combine the two loss
functions as the total loss function, which can be expressed as:

L = Lbce − log(Ldice) (8)

where Lbce and Ldice represent binary cross entropy loss and dice coefficient, respectively,
and the dice coefficient takes the form of logarithm in order to put the two losses on the
same scale. The two loss functions can be expressed as, respectively:

Lbce = −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)) (9)

Ldice = (2 ∗ ŷ ∗ y)/(ŷ + y) (10)

where y ∈ [0, 1] is the label, and 1 and 0 indicate the changed sample and the unchanged
sample, respectively. ŷ represents the probability that the predicted sample is positive.

4.4. Evaluation Indices

In the task of change detection, we expect as many the predicted changed pixels
as possible are really changed pixels (correctly found), and as many changed pixels as
possible to be detected (all found). Based on the above, three indices of precision, recall,
and F1-score(F1) are selected for quantitative evaluation.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(13)

where precision and recall are used to quantify the degree of “correctly found” and “all
found”; and F1 is the harmonic mean of precision and recall, used for comprehensive
evaluation. TP indicates that the prediction result is consistent with the label, which are
changed pixels. TN means that they are all unchanged pixels. FP and FN indicate that the
prediction results are different from the label, and the label corresponding to the two are
unchanged pixels and changed pixels, respectively.
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4.5. Implementation Settings

The experiments are implemented using pytorch as the framework on a workstation
with CPU as Intel (R) Xeon (R) Gold 5118 CPU @ 2.30 GHz and a graphics card as NVIDIA
Quadro P5000. In the experiments, the optimizer is AdamW, the initial learning rate is set to
0.001, and when the loss of the validation set does not decrease for five consecutive epochs,
the learning rate is updated at a rate of 0.5. In the comparative experiments, for fair compar-
ison, all methods are trained 100 epochs from scratch in the same computing environment.

4.6. Experiments Results
4.6.1. Performance Comparison on the Lebedev Dataset

Quantitative evaluation: The proposed method and comparison methods are tested
in the same environment, and precision, recall, and F1 are used as evaluation indices. The
experimental results are shown in Table 1, and the best results are shown in bold.

Table 1. Quantitative results on the Lebedev dataset.

Methods
Lebedev

Precision (%) Recall (%) F1 (%)

FC-EF 44.46 23.60 27.70
FC-Sima-conc 66.97 39.63 46.47
FC-Sima-diff 69.99 34.61 42.38

STANet 85.01 95.82 90.09
DASNet 53.41 42.18 47.13
MFPNet 94.93 89.34 91.87
SNUNet 80.59 66.44 71.87

Ours 95.04 93.85 94.40

As seen from Table 1, our method has the best overall performance, with an F1 of
94.40%. The reason is that after two-stage adaptive feature weighted fusion, the extracted
features have a stronger representation ability, and the changed and unchanged regions can
be better distinguished. In particular, compared to the MFPNet, which has the sub-optimal
overall performance, our method improves by 4.51% on recall. It suggests that, since the
2-dimensional discrete wavelet transform module adopted in the feature extraction stage
retains more spatial information, more small objects and object boundaries can be detected.
In addition, the STANet has the highest recall but has relatively low precision and brings
out more false detections. Overall, our method achieves a good trade-off between precision
and recall.

Qualitative evaluation: To validate the robustness of our method in different scenes,
the experimental scenes are divided into five categories: large, medium, and small changed
objects, as well as long and narrow changed objects with clear boundaries and complex
scene. An image from each is selected, the experimental results of our method and com-
parison methods in five scenes are presented in the form of change map, as shown in
Figures 5–9.
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Figure 5 shows the detection results of large changed objects. It can be seen that, in
the bi-temporal images, the change of the tree caused by seasonal change is more obvious
than those of roads and buildings, while the goal of change detection is to identify changed
roads and buildings instead of the tree. The FC-EF fails to identify changed roads and
buildings under the influence of seasonal changes due to the weak feature representation
capability. Furthermore, the FC-Sima-conc and FC-Sima-diff have improved performance
compared to the FC-EF, but they also identify only a small number of changed samples.
The changed regions detected by the DASNet are inconsistent inside, and there are many
samples were not detected. Although the MFPNet can roughly locate the changed regions,
the overall detection effect is slightly poor. Specifically, the detected roads are distorted
and the buildings are incomplete. Our method and the STANet are the best, but there are
burrs on the boundaries of the changed objects detected by the STANet, which makes the
change map rough. In contrast, our result has clearer boundaries and is closer to the label.
The reason is that the 2-dimensional discrete wavelet transform module in the proposed
network can fully retain the original image information, so that the extracted features have
more abundant spatial location information.

Figure 6 shows the detection results of medium changed objects. All the methods,
except the FC-EF and the FC-Sima-diff, could not identify the changed regions, while other
methods can roughly determine the range of changed regions. However, judging from
the detection accuracy and the boundary details of the change map, the detection result
of our method is the closest to the label, followed by the MFPNet and the STANet. The
specific performance of our method is superior to the other two methods of accurately
identifying the interval between buildings and better distinguishing the changed regions
from unchanged regions.

Figure 7 shows the detection results of small changed objects. It can be seen from the
figure that the object is too small for humans to recognize it under the influence of seasonal
changes. However, the STANet and our method can roughly locate the changed region,
while no other method can identify the object under the influence of pseudo-changes. In
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the above two methods, the changed region of the STANet is significantly larger than the
label, and parts of the unchanged regions are mistakenly identified as changed regions.
Since our method retains more spatial location information during the feature extraction
process, changed objects with small scale can be accurately detected and located.

Figure 8 shows the detection results of a long and narrow changed object, and our
method can obtain a change map with an accurate regional shape. The MFPNet and the
STANet can also obtain good detection results, but compared with our method, the false
positive predictions of the STANet expand the boundary range and significant missed and
false detections appear in the lower right corner of the change map. Furthermore, the
boundary of the MFPNet is better than the STANet, but the road is broken in the lower
right corner of the change map and there are some wrong distinctions between the changed
and unchanged regions.

Figure 9 shows the change detection results of a complex scene and that our method
and the STANet can better distinguish changed regions from unchanged regions. While, in
contrast, the gap formed by the change regions in the unchanged regions in the upper left
corner of the label is not shown in the result of the STANet, and the right boundaries are
discontinuous in the change map of the STANet. Our method can effectively distinguish
real changes from pseudo-changes, while obtaining the change map with refined bound-
aries. The reason is that the adaptive feature weighted fusion method and 2-dimensional
discrete wavelet transform can extract features with stronger representation ability and
richer spatial information. Although the MFPNet can identify most of the changed regions,
it cannot avoid the influence of pseudo-changes, resulting in many false detections. In
addition, the other methods are not effective.

The results of Figures 5–9 show that, in the change detection of different scenes,
compared with other methods, our method can retain more spatial information and the
change detection results are more refined. Specifically, it is able to improve the detection
accuracy of small objects while reducing the pseudo-changes caused by season and light,
and return the change map with clear boundaries. As shown in the figures, there are still
false detections, missed detections, and incomplete boundaries in some complex regions.
The reason is that the training of the model is completed on the training set, and when
tested using the test set, there are missed or false detections of difficult-to-detect samples
due to the limitation of the model generalization ability. However, the overall detection
effect is better than other methods.

Efficiency analysis: Considering the limitation of hardware computing power and
the requirement of computing efficiency in practical applications, the number of parameter
and the training speed of our method are compared with other methods. The parameter
amount (take M as the unit) and the training time of an epoch (take min/epoch as the unit)
are used as quantitative indicators for evaluation. The result is shown in Figure 10.
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In the previous analysis, the STANet, MFPNet, and our method outperform other
methods in change detection. However, it can be seen from Figure 10 that the MFPNet has
the largest number of parameters, and it takes the longest time to train an epoch, followed
by the DASNet and STANet, with some limitations in practical applications. Compared
with the STANet and MFPNet, the parameter amount of our method is reduced by 15.53%
and 76.40%, and the training time is reduced by 11.57% and 72.04%, respectively, making
our method more available in practical applications. The FC series methods have the
minimum number of parameters and training time, but from the quantitative analysis
and qualitative analysis of the previous change detection results, the detection effect is
not as good as other methods. The above facts show that our method obtains the optimal
detection results while ensuring the efficiency, and has a good trade-off between accuracy
and efficiency.

4.6.2. Performance Comparison on the SenseTime Dataset

Quantitative evaluation: The quantification results of our method and comparison
methods on the SenseTime dataset are shown in Table 2.

Table 2. Quantitative results on the SenseTime dataset.

Methods
SenseTime

Precision (%) Recall (%) F1 (%)

FC-EF 63.97 38.53 45.56
FC-Sima-conc 62.22 49.32 53.07
FC-Sima-diff 70.86 41.16 50.05

STANet 56.04 72.43 63.18
DASNet 57.16 68.83 62.45
MFPNet 70.83 55.86 60.46
SNUNet 65.71 61.47 62.76

Ours 70.89 67.72 68.67

As can be seen from Table 2, our method performs best comprehensively, with the
F1 increased by 5.49% compared to the suboptimal STANet. The FC-EF, which has the
simplest network structure, performs the worst overall, with a F1 of 45.56%. The perfor-
mance is significantly improved as the FC-Sima-conc and FC-Sima-diff add the combined
information of bi-temporal images on the basis of the FC-EF. Specifically, the F1 increased
by 7.51% and 4.49%, respectively. Other methods have similar performance, where the
method of STANet has the highest recall, but its precision is the lowest, leading to more
false detections. In addition, the precision of the MFPNet is close to our method, but the
recall is relatively weak, and it is difficult to achieve a great trade-off between precision
and recall. Furthermore, compared with Table 1, it can be seen that the detection effect on
the SenseTime dataset is not as good as that on the Lebedev dataset. The reason is that,
firstly, the number of training samples in the SenseTime dataset is much smaller than the
Lebedev dataset, and the performance of the deep learning model is largely related to the
sample size. Second, training on the SenseTime dataset is to identify changes in different
land use types, which performed more varied and complex on images, making it difficult
for the network to train.

Qualitative evaluation: To verify the effectiveness of our method for different change
scenes, two from the test set are selected as experimental scenes, and the detection results
of the different methods are analyzed qualitatively, as shown in Figures 11 and 12.
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As seen from Figures 11 and 12, there are many missed detections in the results of the
FC-EF, because the extracted feature information is insufficient with the basic structure of
encoder–decoder. The FC-Siam-conc and FC-Siam-diff incorporate combined information
of bi-temporal images to each layer of the decoder, making significant improvements in the
recognition rate and recognition accuracy of changed objects. The STANet, consistent with
the results in the previous quantitative analysis, is able to detect more regions of change,
but also increases the proportion of false detection, identifying partially unchanged regions
as changed. Compared with the label, the detection result of DASNet has more holes,
and there are relatively more missed and false detections. The SNUNet, MFPNet, and
our method obtained better results. However, the SNUNet misidentifies partial changed
samples within the changed regions as unchanged, making the change results incomplete.
The detection results of the MFPNet are better than the SNUNet, but it is still slightly
inferior to our method in detecting small objects and distinguishing between changed
and unchanged regions. There are still missed and false detections and the change map
boundaries are inconsistent with the label. This is mainly because, in the case of an
insufficient sample size, the model has an insufficient representation of the features of
some difficult-to-detect samples, making it difficult to obtain the correct prediction results.
Moreover, due to the weak regularity of the Haar wavelet, the errors generated in the
image reconstruction process may also cause prediction errors. Overall, compared with
other methods, our detection results are closer to the label, showing optimal performance
in the detection and localization of objects at different scales.

4.6.3. Ablation Study

To verify the effectiveness of the proposed method, the ablation study is performed
on the two datasets, examining the effect of the 2-dimensional discrete wavelet transform
module and the adaptive feature weighted fusion module on the model performance.

Verification of 2-dimensional discrete wavelet transform. This module replaces
pooling and upsampling in the classical CNN architecture with 2-dimensional Haar wavelet
transform and the inverse transform, respectively. To verify the effect of this module, the
pooling layer in the encoding is set to the max pool and the avg pool, while the upsampling
in decoding is realized by deconvolution, and the rest of the network is consistent with
the original setting. The architecture of baseline is the Nested U-Net without adding the
2-dimensional discrete wavelet transform module and the adaptive feature weighted fusion
module. The results are shown in Table 3.

Table 3. Ablation study of 2-dimensional discrete wavelet transform.

Methods
Lebedev SenseTime

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

Baseline 90.44 88.29 89.11 65.22 63.58 63.20
Our Network 95.04 93.85 94.40 70.89 67.72 68.67

Max pool 93.01 89.89 91.12 66.63 65.81 64.89
Avg pool 94.29 90.93 92.50 67.94 65.92 65.65

As shown in the table, the model with 2-dimensional discrete wavelet transform
module improves 3.96% and 2.92% on recall, and 3.28% and 1.9% on F1 on the Lebedev
dataset, compared to the two models which use the operation of maxpool and avgpool to
downsample. Similarly, on the SenseTime dataset, recall increased by 1.91% and 1.8%, and
F1 increased by 3.78% and 3.02%, respectively. It is shown that the 2-dimensional discrete
wavelet transform module can reduce the impact of spatial information loss and retain
more feature information, significantly improving recall and the overall performance of
change detection.

To explore the applicability and validity of the 2-dimensional discrete wavelet trans-
form module on other architectures, we apply it to the FC-Sima-conc and the FC-Sima-diff.
The experimental results are shown in Table 4.
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Table 4. Performance comparison of two methods with/without 2-dimensional discrete wavelet transform. (+indicates the
addition of the 2-dimensional discrete wavelet transform module).

Methods
Lebedev SenseTime

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

FC-Sima-conc 66.97 39.63 46.47 62.22 49.32 53.07
FC-Sima-conc+ 68.63 42.77 50.01 63.83 53.64 56.35

FC-Sima-diff 69.99 34.61 42.38 70.86 41.16 50.05
FC-Sima-diff+ 71.85 38.47 46.17 71.79 44.25 52.76

As seen from Table 4, the recall and F1 of both methods are significantly improved
after the addition of the 2-dimensional discrete wavelet transform module. This, again,
confirms that the 2-dimensional discrete wavelet transform module is effective for reducing
information loss. Furthermore, it also indicates model’s portability.

Verification of adaptive feature weighted fusion. The proposed adaptive feature
weighted fusion method integrates the features from different sources and different levels
in the decoding and output stages to improve the comprehensive representation ability of
the features. To quantify the role of the proposed feature fusion method, the two stages of
feature fusion in the original model are removed separately. The baseline architecture is
the same as previously mentioned. These results are shown in Table 5.

Table 5. Ablation study of adaptive feature weighted fusion.

Methods
Lebedev SenseTime

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

Baseline 90.44 88.29 89.11 65.22 63.58 63.20
Our Network 95.04 93.85 94.40 70.89 67.72 68.67

Non-decoding fusing 94.32 92.60 93.39 69.06 66.94 66.92
Non-output fusing 94.63 92.13 93.30 70.10 65.48 67.06

Non-fusing 93.07 91.65 92.31 68.05 65.39 65.47

It can be seen from Table 5 that, on the Lebedev dataset, compared with the results
without weighted feature fusion, the models that only feature weighted in the decoding
stage and the output stage improves the performance of 1.56%, 0.48%, and 0.99%, and 1.25%,
0.95%, and 1.08% in precision, recall, and F1, respectively. Similarly, on the SenseTime
dataset, precision, recall, and F1 are improved, by 2.05%, 0.09%, and 1.59%, and 1.01%,
1.55%, and 1.45%, respectively. Furthermore, compared with the results of our complete
network structure, it can be seen that performing feature fusion in two stages at the same
time has better performance than using only a single stage of feature fusion. Specifically, it
shows that, compared to model without feature fusion, the precision, recall, and F1 are,
respectively, improved by 1.97%, 2.2%, and 2.09% on the Lebedev dataset, and 2.84%, 2.33%,
and 3.2% on the SenseTime dataset with our method. Meanwhile, the results compared to
baseline also demonstrate the effectiveness of our method. The above facts show that the
feature fusion method proposed in this paper can fully combine the advantages of features
and enhance the ability of feature representation so that the truly changed objects can be
more detected and the changed objects detected are more truly changed objects.

Similarly, we perform adaptive feature weighted fusion on the FC-Sima-conc and the
FC-Sima-diff to verify the applicability of the module in other network architectures. Since
the network architectures of these two methods are different from ours, feature fusion can
only be performed in the decoding stage in the experiment. The experimental results are
shown in Table 6.
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Table 6. Performance comparison of two methods with/without adaptive feature weighted fusion. (+indicates the addition
of the adaptive feature weighted fusion module).

Methods
Lebedev SenseTime

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

FC-Sima-conc 66.97 39.63 46.47 62.22 49.32 53.07
FC-Sima-conc+ 67.77 40.87 47.69 64.35 50.44 54.73

FC-Sima-diff 69.99 34.61 42.38 70.86 41.16 50.05
FC-Sima-diff+ 73.01 37.55 46.29 71.71 42.91 51.21

Available from Table 6, the precision, recall, and F1 of both methods improved signifi-
cantly after the addition of the adaptive feature weighted fusion module. This suggests
that simple feature concatenation or subtraction is insufficient for feature fusion, and our
method can combine features more effectively.

4.7. Discussion
4.7.1. Analysis of Module Rationality

The rationality of 2-dimensional discrete wavelet transform. The 2-dimensional
discrete wavelet transform module, which exists as an alternative operation to pooling
in the classical CNN architecture, is related to the pooling operation, and there are some
differences between them. To visualize the relationship between them, the 2-dimensional
Haar wavelet transform given by Equation (2) is expressed in a clearer way:

XLL = (a + b + c + d)/2
XLH = (−a− b + c + d)/2
XHL = (−a + b− c + d)/2
XHH = (a− b− c + d)/2

(14)

And the operation of avg pool and max pool can be expressed as:{
Xavg = (a + b + c + d)/4

Xmax = Max(a, b, c, d)
(15)

where a, b, c, and d are the pixel values of the corresponding positions. Furthermore, the
downsampling of the 2-dimensional discrete wavelet transform module and the avg pool
and max pool can be represented in Figure 13.
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From Equations (14) and (15), Xavg is formally consistent with XLL, equivalent to a sub-
feature of the 2-dimensional discrete wavelet transform. Due to the different normalization
factors, the feature properties are not affected. Furthermore, Xmax can only obtain the
features with the largest pixel value, and may lose other important features. It is worth
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noting that, as shown in Figure 13, the 2-dimensional Haar wavelet transform and avg
pool and max pool can be expressed as a filter with a kernel size of 2 to convolve the image
with a step size of 2. What the two kinds of methods have in common is that they both
perform downsampling during the convolution, which enlarges the receptive field with
the same proportion and adds contextual information. The difference is that both avg pool
and max pool can only get one kind of feature, while the 2-dimensional Haar wavelet
transform can get four kinds of features, which makes it more informative compared to
pooling. Therefore, the addition of a 2-dimensional discrete wavelet transform module
to the network can reduce the feature loss, while increasing contextual information and
facilitate the recovery of image information in the decoding stage. The improvement of the
recall in the ablation study of the 2-dimensional discrete wavelet transform also confirms
that the above analysis is reasonable.

The rationality of adaptive feature weighted fusion. Feature fusion can combine
the features with different properties, strengthen the effective features, and realize the
improvement of the feature comprehensive representation ability. The adaptive feature
weighted fusion module proposed in this paper is a feature fusion method of incorporating
prior knowledge, guided by the relationship between features and the purpose of feature
fusion. The main difference among the features to be fused in the decoding stage is their
different sources, including the features obtained by the 2-dimensional discrete wavelet
inverse transform, the encoded features, as well as the fused features. Thus, weighting
features from different sources is a natural idea. Moreover, the main difference among the
features of the output stage is that they come from different levels, and the spatial and
semantic information of them are quite different due to different network depths. However,
in the change detection task, the semantic information contributes to the identification
of the regions of change, while the spatial information is crucial to the positioning of the
regions of change. Weighting the spatial position of the output results at different levels
can effectively combine the semantic and spatial information of the features. The ablation
study shows that the feature fusion method in both stages can improve model performance
and it is better to use both at the same time.

4.7.2. Analysis of Overall Performance

The results of experiment confirm the effectiveness of the proposed network archi-
tecture. The quantitative results show that, compared with other methods, our method
can improve the recall and achieve the optimal effect while ensuring the precision on both
datasets. This indicates that our model can exploit more image information and have more
powerful feature extraction ability.

The qualitative results show that, in experiments with different scenarios, the FC
series methods are inferior to other methods due to the simple network structure. The
SNUNet performs better in both datasets compared to the FC series methods, suggesting
that the densely connected network structure contributes to improving accuracy. There
are some holes in the change map of DASNet, which makes the change regions broken
and the internal compactness poor. Although the STANet and MFPNet can get good
results on the two datasets, it can be seen from the results of small changed objects and
complex scenes in the experimental scenes that their detection sensitivity to small objects
and boundary positioning accuracy are both not as good as our method. Meanwhile, the
results of the Lebedev dataset show that our method is robust to noise and can accurately
identify real changes under the influence of pseudo-changes. Additionally, the results of
the SenseTime dataset further validate the robustness of our method to different scenes
and different change types. It is worth mentioning that our method can perform well in
the quantitative and qualitative analysis, mainly due to the following aspects. First, we
take the densely connected Nested U-Net as the backbone, which can reduce the semantic
gap between the features of different levels and enhance the feature representation ability.
Second, the proposed 2-dimensional discrete wavelet transform can capture more feature
information during downsampling and reduce the information loss in the deep network.
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Third, the adaptive feature weighted fusion module can more efficiently combine the
features, making the model focuses on useful information and further improving the model
to identify changed regions. Finally, the adopted loss function can effectively guide the
model learning and improve the overall performance of the model.

Efficiency analysis shows that, for our model on the Lebedev dataset, the parameter
amount is 14.3 M and the time required for training an epoch is 27.51 min, which are far
smaller than the most complex MFPNet with 60.6 M and 98.4 min. It is shown that the
network architecture proposed in this paper has higher availability in practical applications,
and can take into consideration operation efficiency and accuracy.

The above analysis shows that our method can be more widely used in change
detection scenarios with higher requirements on small objects detection and boundary
positioning, and does not require excessive hardware configuration.

5. Conclusions

In this paper, we propose an adaptive feature weighted fusion network based on 2-
dimensional discrete wavelet transform from the perspective of reducing spatial geometric
information loss and enhancing feature comprehensive representation capability for high-
resolution remote sensing images change detection. Among them, embedding the 2-
dimensional Haar wavelet transform and the inverse transform in the network can retain
more spatial geometric information, make the feature information of small objects and
object boundaries more sufficient, and contribute to the reconstruction of more refined
change map. In addition, the two-stage feature fusion guided by feature relationship and
fusion purpose can improve the feature representation ability and further improve the
robustness of the model to pseudo-changes and the ability to detect changed regions.

Experimental results on publicly available datasets show that our method achieves
optimal results on the Lebedev dataset with obvious seasonal variation and SenseTime
dataset with complex image texture, with F1 of 94.40% and 68.67%, respectively. It is
worth noting that, in experimental scenarios with different changed object scales and
complexity, detection results with high internal compactness and clear boundaries can
be obtained with our method. Furthermore, the detection effect of small objects is also
better than other methods. From the perspective of operation efficiency, compared to other
methods, the parameter amount and the training time of our method decreased by up to
76.4% and 72.04%, respectively. The above shows that our method can improve the overall
performance of change detection while considering the efficiency, which is feasible in the
task of change detection. However, our method has some limitations under small size of
samples; thus, subsequent work should focus on few-shot learning about change detection.
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