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Abstract: Azimuth non-uniform signal-reconstruction is a critical step for azimuth multi-channel
high-resolution wide-swath (HRWS) synthetic aperture radar (SAR) data processing. However, the
received non-uniform signal has noise in the actual azimuth multi-channel SAR (MCSAR) operation,
which leads to the serious reduction in the signal-to-noise ratio (SNR) of the results processed by
a traditional reconstruction algorithm. Aiming to address the problem of reducing the SNR of the
traditional reconstruction algorithm in the reconstruction of non-uniform signal with noise, a novel
signal-reconstruction algorithm based on two-step projection technology (TSPT) for the MCSAR
system is proposed in this paper. The key part of the TSPT algorithm consists of a two-step projection.
The first projection is to project the given signal into the selected intermediate subspace, spanned
by the integer conversion of the compact support kernel function. This process generates a set of
sparse equations, which can be solved efficiently by using the sparse equation solver. The second
key projection is to project the first projection result into the subspace of the known sampled signal.
The secondary projection can be achieved with a digital linear translation invariant (LSI) filter and
generate a uniformly spaced signal. As a result, compared with the traditional azimuth MCSAR
signal-reconstruction algorithm, the proposed algorithm can improve SNR and reduce the azimuth
ambiguity-signal-ratio (AASR). The processing results of simulated data and real raw data verify the
effectiveness of the proposed algorithm.

Keywords: signal-reconstruction; high-resolution wide-swath (HRWS); synthetic aperture radar (SAR);
non-uniform sampling; two-step projection technology (TSPT); signal-to-noise ratio (SNR); azimuth
ambiguity-signal-ratio (AASR)

1. Introduction

As a mature remote-sensing technology, synthetic aperture radar (SAR) can realize
all-day and all-weather imaging of the Earth’s surface, and it plays a vital role in Earth
observation and remote sensing [1–5]. With the development of remote-sensing applica-
tion demand in recent years, SAR is expected to observe a wide range of scenes while
having the ability to detect small targets. However, due to the limitation of the minimum
antenna area, the conventional single-channel SAR systems cannot meet the requirements
of simultaneous high resolution and wide swath [6,7]. To obtain high azimuth resolution, a
small azimuth antenna length is needed to obtain a wide Doppler bandwidth, and a high
pulse repetition frequency (PRF) is needed to avoid azimuth spectrum ambiguity [8–11].
However, a wide-range swath requires low PRF to avoid range ambiguity. Therefore, high
azimuth resolution and wide swath are irreconcilable contradictions in the conventional
single-channel SAR system.
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To solve the above contradiction, the concept of the azimuth multi-channel is proposed
as a potential solution [12–15]. The multi-channel SAR (MCSAR) has more spatial degrees
of freedom than the conventional single-channel SAR by setting a series of receiving
apertures in azimuth. An azimuth MCSAR system transmits a signal with low PRF to
achieve a wide swath, and at the same time, all the apertures receive signals to increase
the sampling rate equivalently, alleviating the constraint of the minimum antenna area of
the conventional single-aperture spaceborne SAR [8,16–18]. When the actual PRF of the
MCSAR system satisfies the uniform sampling requirement, i.e.,

PRFuni =
2vs

Nda
(1)

where vs denotes the velocity of the SAR carrier, N represents the number of the channels,
and da is the displacement between the adjacent receivers, then the uniformly sampled
azimuth signal can be generated by simply rearranging the MCSAR echo. However, PRF
is difficult to satisfy the uniform sampling condition in azimuth MCSAR system design.
Non-uniform sampling will cause azimuth Doppler ambiguity in the echo signal received
by each channel. The comparison between uniform sampling and non-uniform sampling
has been shown in Figure 1, where a triangle, a circle and a square represent the echo
signal received by the first channel, the second channel and the third channel, respectively.
If azimuth multi-channel SAR echo data are directly imaged without reconstruction, the
quality of the image will be greatly reduced. Therefore, to achieve unambiguous images,
Doppler spectrum reconstruction is necessary.
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Figure 1. (a) Uniform sampling; (b) Non-uniform sampling.

At present, several effective algorithms [19–25] have been proposed to solve the
problem of non-uniform sampling reconstruction for azimuth multi-channel spaceborne
SAR. The representative azimuth MCSAR signal-reconstruction algorithms are the dig-
ital beamforming (DBF) algorithm proposed by Kriger et al. [3,9,25] and the space-time
adaptive processing (STAP) algorithm proposed by Li et al. [19,20]. The DBF algorithm
solves a set of linear equations to explicitly reconstruct the Doppler spectrum from the
aliased multi-channel signals. In contrast, the STAP algorithm used a minimum variance
distortionless response (MVDR) beamformer to suppress the azimuth ambiguity. If az-
imuth MCSAR echo data are an idea band-limited signal without noise, the performance
of the two algorithms is consistent, as demonstrated in [25]. However, in the above two
signal-reconstruction algorithms, the ambiguity number and ambiguity index are consid-
ered to be fixed without changing the baseband Doppler frequency, which will lead to
a reduction in the SNR of the reconstructed signal in the case of non-uniform sampling.
In fact, the ambiguity information will change with the Doppler frequency, which also
complicates the construction of the steering vector. Aiming at solving the above problem,
several methods are proposed to improve the DBF and STAP reconstruction algorithms to
improve the performance of azimuth ambiguity suppression [21–24]. The improved DBF
(IDBF) algorithm proposed in [21] defined the equivalent sampling interval to calculate the
equivalent reconstructed Doppler bandwidth (ERDB). The IDBF algorithm overcomes the
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shortcomings of Kriger’s DBF algorithm to some extent, but at the cost of increasing the
azimuth ambiguity-signal-ratio (AASR) and decreasing the azimuth resolution. Inspired
by the IDBF algorithm, Liu et al. proposed the ImpMMSE reconstruction algorithm in the
literature [22]. The ImpMMSE algorithm calculates ERDB by weighted operations and
uses the minimum mean square error (MMSE) criterion to suppress azimuth ambiguity,
which improved AASR. In the literature [23], the baseband Doppler center and ERDB were
calculated according to the Capon spectrum estimation method. In the above-mentioned
improved DBF method, the calculation of ERDB and the operation of ambiguity index
screening (AIS) depend on the system parameters. To solve the problem of the insufficient
suppression of strong scattering points by the STAP algorithm, Zhang et al. proposed a
Doppler ambiguity suppression algorithm based on multiple Doppler direction constraints
to eliminate the ambiguity component in the Doppler domain [24].

This paper innovatively proposes the idea of sparse uniform resampling to solve the
problem of azimuth MCSAR non-uniform signal-reconstruction [26]. A two-step projection
technique (TSPT) is derived, and the general method of TSPT algorithm processing is
summarized. The main idea of the TSPT algorithm is to construct an interim subspace
that is designed to reconstruct an azimuth MCSAR signal. The signal-reconstruction
process of the TSPT algorithm includes two important projection sequences. The first
projection projects the given azimuth MCSAR non-uniform frequency domain signal into
the intermediate subspace formed by the integer translation that tightly supports the kernel
function. After the first step of projection, a sparse equation system can be derived, which
describes the relationship between the non-uniform sample and the coefficient vector of
the auxiliary subspace. The second projection uses a digital linear shift invariant (LSI) filter
to project the result of the first projection into the subspace where the sampled signal is
known. After completing the above operations, the evenly spaced signal can be generated
in the frequency domain. Finally, the reconstructed image can be obtained by performing
the Fourier transform on a uniform sample. The proposed method can effectively suppress
the ambiguity of the azimuth Doppler spectrum caused by non-uniformity and maintain a
good SNR.

The succeeding organization of this paper is as follows. Section 2 gives some char-
acteristics of the signal model of azimuth MCSAR. Section 3 reviews the traditional re-
construction algorithm and its improved algorithm. Section 4 details the derivation of
the proposed algorithm. Section 5 shows the experimental and analytical results. Finally,
Section 6 provides conclusions.

2. Signal Model

The MCSAR system, with a planar antenna array, is composed of N sub-apertures
uniformly placed in azimuth. Figure 2 shows the geometry of a typical azimuth five-channel
SAR system, where Wg and hz denote the swath width and platform height, respectively.
In the Cartesian geometric coordinate system in Figure 2, the X-axis is the radar flight
direction, the Y-axis points to the left and is perpendicular to the X-axis, and the Z-axis
is far from the center of the Earth. The platform moves at speed vs along the X-axis. The
mid-aperture of the azimuth five-channel SAR system is the transmitting and receiving
aperture. The remaining apertures are the receiving apertures, that is, one transmitting and
five receiving in azimuth. The echo data of each channel are compensated by the constant
phase term, which is equivalent to the data transmitted and received by the corresponding
effective phase center (EPC) [9,24]. As shown in Figure 2, the EPC is located in the middle
position of the transmitter and corresponding receiver. Therefore, the distance between
adjacent EPCs is da.
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Considering an azimuth MCSAR system composed of N channels uniformly arranged
in azimuth, among the N channels, the middle channel is selected as the reference channel
to transmit the signal, and all of the N channels receive echo simultaneously. Assuming
that the azimuth slow time η = 0, the observed target P is directly above the transmitter
aperture, and R0 represents the closest slant range from the target P(x, y, z) in the scene
to the movement trajectory of the platform. Rm represents the instantaneous slant range
from the transmitting antenna to the target P and then to the receiving channel m. The
relationship between the three angles can be expressed as

sin θ = sin ϕ sin φ (2)

where ϕ indicates the azimuth angle, φ represents the depression angle, and θ means the
cone angle. Assuming that the coordinate position of EPC m at η = 0 is (∆xm, 0, hz),
then the coordinate position of the mth EPC is (vsη + ∆xm, 0, hz). da is the azimuth
offset between EPC m and the reference EPC, and ∆xm = (m− (N + 1)/2)da. For a single
point target, after demodulation, the two-dimensional time-domain echo model of the mth
sub-aperture can be expressed as [24,27,28]

xm(τ, η) =
s

σ(x, y)g
(

τ − 2Rm(x,y,η)
c

)
a
(

η − x−∆xm−x0
vs

)
exp

(
−j 4π

λ Rm(x, y, η)
)

dxdy
(3)

where
Rm(x, y, η) =

√
(vsη − ∆xm − x)2 + R2

0(x, y) (4)

where τ represents range fast time, g(τ) is the pulse signal transmitted by the SAR system,
c is the velocity of light, a(η) indicates the azimuth antenna pattern, σ(x, y) represents
the scattering characteristics of the target at (x, y), and R0(x, y) =

√
y2 + hz2 indicates

the shortest slant range of the target (x, y) from the radar platform. Carrying out the
azimuth Fourier transform on (3), the echo signal model in the range-Doppler domain can
be obtained as

xm(τ, fa) = s(τ, fa) exp
(

j2π fa
∆xm

vs

)
(5)
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where

s(τ, fa)=
x

σ(x, y)G

(
τ − 2R0(x, y)

/
c

√
1− c2 f 2

a

4v2
s f 2

0

)

× A( fa − fdc) exp
(
−j

4πR0(x, y)D( fa, vs) f0

c

)
× exp

(
−j2π fa

∆xm

vs

)
dxdy

(6)

G(τ) indicates the range complex signal and A( fa − fdc) represents the Doppler spectrum
envelope with fdc as the Doppler center.

When the PRF is higher than the Doppler bandwidth of each channel echo, each
Doppler frequency unit contains numerous scene echo signals with the same cone angle θ,
that is, the Doppler frequency fa has a linear relationship with the cone angle θ [29,30], i.e.,

fa =
2vs sin θ

λ
(7)

To obtain HRWS and range unambiguity SAR images, the signals received by each
channel are usually under-sampled in azimuth. The MCSAR signal causes Doppler aliasing
due to azimuth under-sampling, so each Doppler unit contains echo signals of different
azimuth frequencies, and the minimum interval between these frequencies is PRF. Figure 3
shows the unambiguous Doppler spectrum and the ambiguous Doppler spectrum, where
the Doppler ambiguity number I = 3. The dashed line in Figure 3 shows that there is no
Doppler aliasing when the PRF is greater than the Doppler bandwidth of the echo signal.
Each Doppler unit corresponds to the echo signal from the same cone angle θ. The solid line
represents Doppler aliasing, and each Doppler unit contains an echo signal from different
cone angles. In the azimuth MCSAR system, due to the azimuth under-sampling, the echo
signal of the mth sub-aperture in the range-Doppler domain can be rewritten as

xm(τ, fa) =
imax

∑
i=imin

exp
(

j2π( fa + i · PRF)
∆xm

vs

)
· s(τ, fa + i · PRF) (8)

Note that the value range of fa is (−PRF/2, PRF/2) or (0, PRF). i represents the Doppler
ambiguity index and the Doppler ambiguity number I = imax − imin + 1. s(τ, fa + i · PRF)
denotes the equivalent unaliased Doppler spectrum of range bin τ at frequency fa + i · PRF.
The azimuth MCSAR system signal with the addition of the noise signal and the use of
vector symbols can be expressed as

x(τ, fa) =
imax

∑
i=imin

ai( fa) s(τ, fa + i · PRF) + n(τ, fa) (9)

where the N × 1 vector n(τ, fa) represents the noise vector. The specific form of (9) is
as follows

x(τ, fa) = [x1(τ, fa), . . . , xN(τ, fa)]
T (10)

n(τ, fa) = [n1(τ, fa), . . . , nN(τ, fa)]
T (11)

ai( fa ) = [ai( fa), · · · , aN( fa)]
T (12)

ai( fa) = exp
(

j2π( fa + iPRF)
∆xi
vs

)
, i = 1, · · · , N (13)

where the symbol (•)T represents vector transpose.
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3. Related Work
3.1. The DBF Reconstruction Algorithm

If the digital sampling signal satisfies the average Shannon-Nyquist sampling the-
orem, regardless of whether its spatial distribution is uniform, the signal spectrum can
be recovered without ambiguity. Based on the above idea, Krieger et al. proposed the
DBF algorithm to perform azimuth MCSAR signal-reconstruction [9]. The DBF algorithm
obtains the equivalent single-channel uniformly sampled signal by reconstructing the
azimuth MCSAR non-uniformly sampled signal. According to (3), the azimuth echo signal
of the mth channel can be expressed as

xm(η) = σ · exp

−j
2π
√

R2
0 + (vsη)2 +

√
R2

0 + (vsη − ∆xm)
2

λ

 (14)

The echo signal of the reference channel can be written as

xre f (η) = σ · exp
(
−j

4π

λ
R0

)
· exp

(
−j

2πv2
s η2

λR0

)
(15)

For ∆ηm = ∆xm/(2vs), (14) can be reformulated as

xm(η) = xre f (η − ∆ηm) · exp
(
−j

π∆x2
m

2λR0

)
(16)

We then transform (16) to the range-Doppler domain:

Xm( fa)= Xre f ( fa) · exp
(
−j

π∆x2
m

2λR0

)
· exp(−j2π fa∆ηm)

= Xre f ( fa) · Hm( fa)

(17)
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Therefore, the filter function of each channel can be written as

Hm( fa) = exp
(
−j

π∆x2
m

2λR0

)
· exp

(
−j

π∆xm

vs
fa

)
(18)

The filter function matrix can be expressed as

HN×N( fa) =

 H1( fa) · · · HN( fa)
...

. . .
...

H1( fa + (N − 1)PRF) · · · HN( fa + (N − 1)PRF)

 (19)

According to the literature [9], the signal of each channel is reconstructed by its own
filters and then superimposed. Finally, an unambiguous single-channel signal spectrum can
be obtained. The relationship between the reconstruction filter matrix P( fa) and H( fa) is

PN×N( fa) =

 P11( fa) · · · P1N( fa + (N − 1) · PRF)
...

. . .
...

PN1( fa) · · · PNN( fa + (N − 1) · PRF)

 = H−1
N×N( fa) (20)

For filter H( fa), if the sampling positions coincide, H( fa) is irreversible, and the DBF
algorithm is invalid. According to Formula (20), the filter function of each channel in
the azimuth can be obtained. Each row of PN×N( fa) represents the reconstruction filter
Pn( fa) of each channel. Pn( fa) is composed of N filters Pnj( fa) (j = 1, . . . , N). The N filters

divide the whole frequency band IS =
[
−N · PRF

2 , N · PRF
2

]
into N sub-bands, and the

center frequency of each sub-band is f0,j =
(

j− N+1
2

)
· PRF, the corresponding sub-band

range is

Ij =

[
−N · PRF

2
+ (j− 1) · PRF,−N · PRF

2
+ j · PRF

]
(21)

Moreover, the DBF algorithm is implemented without any prior knowledge of the
covariance matrix and can be implemented by matrix inversion. At the same time, the
DBF algorithm is computationally efficient and does not need to know the unambiguous
Doppler spectrum and the azimuth antenna pattern. However, the DBF algorithm does
not consider the additive noise and was derived for a band-limited signal. In the ideally
configured MCSAR system, the DBF algorithm can perfectly reconstruct the signal with
low ambiguities and noise levels. However, when the PRF is close to the coinciding with
PRF, the SNR of the DBF algorithm will be severely reduced.

3.2. The IDBF Reconstruction Algorithm

To overcome the shortcoming of Kriger’s DBF algorithm, wherein the SNR is reduced
in the case of highly non-uniform sampling, Liu et al. proposed the IDBF algorithm [21].
The IDBF algorithm consists of two procedures: the first realizes an operation of AIS based
on the equivalent sampling interval and ERDB. The second implements Doppler spectrum
weighting based on the maximum-to-minimum ratio of the noise spectrum.

The IDBF algorithm starts from the perspective of the SNR scale factor and improves
the performance of the DBF algorithm by reducing the value of the SNR scale factor.
Liu et al. proved that the value of the SNR scale factor could be reduced by reducing the
dimensionality of the MCSAR signal. Additionally, the IDBF algorithm determines which
Doppler components need to be restored and which components need to be ignored by
defining AIS (see Table I in [21]). Having constructed the AIS, a new channel-transfer func-
tion matrix can be constructed (see Equation (38) [21]). According to the QR-factorization
version of the DBF algorithm (see Table II [21]), the two-dimensional spectrum reconstruc-
tion can be completed. To overcome the problem of the occurrence of discontinuities for the
noise spectrum after applying the new version of the DBF algorithm, the IDBF algorithm
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considers adopting a weighting strategy. However, the cost of weighting is the loss of
azimuth resolution.

The key point of the IDBF algorithm is to calculate ERDB and AIS so as to obtain
ambiguous information but at the cost of increasing AASR and decreasing the azimuth
resolution.

4. Proposed Approach
4.1. Problem Formulation

The DBF algorithm ignores the influence of noise when solving the filter coefficients,
but the noise always exists. Therefore, the signal model shown in (9) will be considered in
this paper. SNR scale factor characterizes the influence of the digital reconstruction filter
network on the SNR. In the literature [25], it was proven that the output noise power of
the DBF algorithm is significantly amplified in the case of highly non-uniform sampling,
and the amplification ratio is as high as 15 dB [31]. The SNR scale factor is defined as
the SNR of the input signal to the SNR of the reconstruction filter output signal. It can
also be understood as the ratio of the noise amplification factor to the signal amplification
factor [24]. To facilitate subsequent discussion, the definition of the SNR scale factor in [25]
is repeated in this section. The specific expression of the SNR scale factor Φb f is as follows:

Φb f =
SNRin
SNRout

=
An

As
(22)

where SNRin represents the SNR of the input signal, SNRout represents the SNR of the
reconstruction filter output signal, An represents the noise amplification factor, and As
represents the signal amplification factor. Since the reconstruction filter system is lin-
ear and only considers additive white noise, the signal power and noise power can be
analyzed separately.

The input power of the signal is defined as the average energy of the signal input to
the digital reconstruction filter network within the equivalent reconstruction bandwidth
Ba. Combined with the multi-channel SAR echo signal model, the input signal power Psi
can be written as

Psi = E

[
imax

∑
i=imin

sH(τ, fa + iPRF)aH
i ·

imax

∑
i=imin

s(τ, fa + iPRF)ai

]
(23)

where E(•) means to find the mean value in the range of Ba, (•)H represents conjugate
transpose. Taking into account the incoherence of different signal components, that is,
E[x(τ, fa + iPRF)x(τ, fa + jPRF)] = 0(i 6= j), (23) can be simplified as

Psi= E

[
imax

∑
i=imin

sH(τ, fa + iPRF)aH
i ais(τ, fa + iPRF)

]

= E

[
M

imax

∑
i=imin

sH(τ, fa + iPRF)s(τ, fa + iPRF)

] (24)

The reconstructed Doppler frequency fb = fa + i · PRF, the range of fb is [−Ba/2, Ba/2].
Since the value range of fa is [0, PRF] or [−PRF/2, PRF/2], the input power Psi of the filter
network can be rewritten as

Psi = M · E
[

sH(τ, fb)s(τ, fb)rect
(

fb
Ba

)]
(25)
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The meaning of the window function rect
(

fb
Ba

)
is

rect
(

fb
Ba

)
=


1,
∣∣∣ fb

Ba

∣∣∣ ≤ 1/2

0,
∣∣∣ fb

Ba

∣∣∣ > 1/2
(26)

We can assume that the noise in the raw data is the additive white noise (only Gaussian
white noise). Then, SNRin can be expressed as

SNRin =
Psi
σ2

n
=

M · E
[
sH(τ, fb)s(τ, fb)rect

(
fb
Ba

)]
σ2

n
(27)

where σ2
n represents the noise power of the input filter. The power of the output signal can

be expressed as

Pso= E
[
||ωH

i ai||2s(τ, fb)rect
(

fb
Ba

)]
= E

[
ωH( fb)ais(τ, fb)sH(τ, fb)a

H
i ωirect

(
fb
Ba

)]
= E

[
sH(τ, fb)s(τ, fb)rect

(
fb
Ba

)] (28)

where ωi represents the filter coefficient and ω( fb) = ωi (see [31], Equations (2)–(54)).
After the azimuth ambiguity suppression, the output noise power Pno of the reconstruction
filter network can be expressed as

Pno = σ2
nE
[
ωH

i ωirect
(

fb
Ba

)]
(29)

Combining Formulas (28) and (29), the SNRout of the reconstruction filter network
can be calculated as

SNRout =
Pso

Pno
=

E
[
sH(τ, fb)s(τ, fb)rect

(
fb
Ba

)]
σ2

nE
[
ωH

i ωirect
(

fb
Ba

)] (30)

According to the definition of the SNR scale factor, combining (22), (27), and (30), we
can obtain

Φb f = M · E
[
ωH( fb)ω( fb)rect

(
fb
Ba

)]
(31)

For the DBF algorithm, the ambiguity number of each Doppler unit is M. Substituting
ωi into (31), we can obtain

Φb f = M · 1
M

E

[
∑

i
ωH

i ωi

]
= trace

[(
PH( fb)P( fb)

)−1
]
=

1
λ2

1
+

1
λ2

2
+ · · ·+ 1

λ2
N

(32)

where trace[•] represents finding the trace of the square matrix and λm means the singular
value of the square matrix P( fb).

It is worth noting that (32) is similar in form to the equation derived in [25] (see
Equation (36) in [25]). When the PRF of the azimuth multi-channel SAR system satisfies
the uniform sampling condition, λ2

1 = λ2
2 = · · · = λ2

N = N, Φb f = 1 is the minimum value.
It can be seen from (32) that as the degree of non-uniform azimuth sampling increases,
the noise power of the signal is gradually amplified, and the SNR of the DBF algorithm is
greatly reduced. When redundant sampling occurs, the DBF algorithm stops working. This
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occurs because the matrix H( fa) is singular and noninvertible. For the redundant sampling
scenario, the value of Φb f is infinite, which means that the noise power is amplified to
infinity, and the DBF algorithm cannot work as a result.

4.2. The Proposed Method

As discussed in Section 3, in the case of highly non-uniform sampling, the SNR of
the DBF algorithm would be severely reduced. To solve the above problem, this section
proposes the TSPT algorithm based on the idea of sparse uniform resampling. The TSPT
algorithm reconstruction process consists of two steps in Figure 4. The first is to project
the azimuth multi-channel SAR signal obliquely to T [26]. It can recover a consistent
approximation of xm(τ, fa) in T , denoted xT . In this case, consistency means that the
original sample will produce b. The second projection is to orthogonally project the result
of the first projection ontoA. This projection restores the signal closest to the signal xT inA.
Using a digital LSI filter can achieve the secondary projection and generate evenly spaced
signal values. The introduction of intermediate subspace can achieve low computational
complexity and keep the approximation error.
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Introducing the intermediate subspace T ∈ H(Hilbert space), which is spanned by
the set { tn} , including the integer translation of the compact support function t(k), i.e.,

tn(k) = t(k/∆− n) (33)

Using xT = T c to represent the consistent reconstruction of xm(τ, fa) in T , which is given
by the oblique projection of F⊥ to T , i.e.,

xT = T c = T (F∗T )†b = T (F∗T )†F∗xm(τ, fa) = ET F⊥xm(τ, fa) (34)

where (•)† represents Moore-Penrose pseudoinverse, and when (F∗T )† is invertible,
(F∗T )† = (F∗T )−1. F corresponds to a set of vectors {fm}; these vectors form the subspace
F and form the Riesz basis; F∗ is the adjoint of F. Using this notation, the vector b can be
given by b = F∗xm(τ, fa), where b[m] = fm, xm(τ, fa) .

c is obtained by formalizing and solving the equation relating the non-uniform sample
b to the coefficient vector c, i.e.,

b = F∗T c (35)

Using c to define xT , and given the knowledge that xm(τ, fa) ∈ A, the next projection
is to project xT to A, and in the sense of L2, the best projection scheme is xT orthogonal
projection to A, denoted PA. Since both A and T are shift-invariant subspaces, PAxT
can be calculated by using LSI filters. According to the geometric interpretation of signal
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projection given in Figure 4, the two projection sequences of the proposed method can be
expressed as

ĝ = A(A∗A)† A∗T (F∗T )†F∗xm(τ, fa) (36)

where PA = A(A∗A)† A∗ and ET F⊥ = T (F∗T )†F∗.
We divide the above formula into two steps for calculation. First, for a given azimuth

multi-channel SAR signal b, in the sense of least squares, c is calculated by (35), i.e.,

c = (F∗T )†b (37)

Subsequently, we use c to calculate the coefficients d, i.e.,

d = (A∗A)†(A∗T )c (38)

The reconstruction process is given by ĝ = Ad.
To calculate c, let us explicitly formalize xm(τ, fa) as defined in (8):

b[m] = ∑
n

c[n]t(km − kn) (39)

where km is the non-uniformly sampling points in the frequency domain. On account
of the compact support of t, only a few coefficients c[n] in (39) can calculate the value of
b[m]. Therefore, using a M× N sparse matrix Φ represents the sparse relation between the
coefficient vectors b and c. The elements in Φ can be expressed as

{Φ}m,n = {F∗T }m,n (40)

To find c, a weighted regularized least-squares problem is formulated

c = argmin
∣∣∣∣∣∣∣∣¯Γ(b−Φc

′
)∣∣∣∣∣∣∣∣2 + ρ

∣∣∣∣∣∣c′ ∣∣∣∣∣∣2 (41)

where ||·|| represents the norm of c, ρ is a Tikhonov regularization parameter,
¯
Γ is an

M×M diagonal weighting matrix, and
¯
Γ = Γ

1
2 .

To calculate (41), the Hachtel-augmented matrix method gives a useful sparse preserv-
ing formula for normal equations. This formulation is extended by us to accommodate

for the weights and the regularization. By defining the remainder r =
¯
Γ(b−Φc), after

deriving (41), it can be reformulated as

(
¯
Γb
0

)
=

 I
¯
ΓΦ

ΦT
¯
Γ

T

−ρI

( r
c

)
= Ψ

(
r
c

)
(42)

where Ψ maintains the sparsity of Φ.
Using the direct inversion method to calculate Ψ, the complexity is O

(
(M ∗ N)3

)
,

which is prohibited by the computer. Moreover, even if Ψ−1 were known, it would still
require O

(
(M ∗ N)2

)
operations to compute c from b in (42). To solve the matrix Ψ with

low computational complexity, the sparse equation solver is used to calculate the LU factor
of Ψ. The process of solving (42) is divided into two steps: first, LU factorization of Ψ using
the sparse solver package UMFPACK [32], i.e.,

P
(

R−1Ψ
)

Q = LU (43)
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where P and Q are permutation matrices; R is a diagonal scaling matrix, which helps
to achieve a sparser and more stable decomposition; and L and U are upper and lower
triangular matrices, respectively [32]. For more calculation details, please refer to [33].
Secondly, for a given non-uniformly sampled azimuth MCSAR signal b, the calculation of
c using L and U is completed through forward substitution and backward elimination.

The vector c can be calculated by the above, and then the vector d in (38) is calculated.
Since both T andA correspond to the integer shift of the kernel function, d can be calculated
efficiently by an LSI filter [34], i.e.,

HLSI

(
ejω
)
=

RAT
(
ejω)

RAA
(
ejω
) (44)

where
RAT

(
ejω
)
= F{rat[n]} = ∑

n∈Z
rat[n]e−jωn (45)

is the Fourier transformation of the sampled correlation sequence, and F{•} represents the
Fourier transformation. rat[n] can be expressed as

rat[n] = 〈a(k), t(k + n∆)〉 =
∫ ∞

−∞
a(k), t(k + n∆)dk (46)

Combined with (45), (46) can be rewritten as

RAT
(

ejω
)
=

1
∆ ∑

n∈Z
A
(

ω

∆
− 2πn

∆

)
T
(

ω

∆
− 2πn

∆

)
(47)

where T (ω) is the Fourier transform of t(k/∆), i.e.,

T (ω) = F{t(k/∆)} =
∫ ∞

−∞
t(k/∆)e−jωkdk (48)

The derivation process of RAA
(
ejω) and A(ω) is similar to the derivation process of

RAT
(
ejω) and T (ω). The coefficients of the vector d can be expressed as

d[n] = ∑
k∈Z

c[n]hLSI [n− k] (49)

According to the convolution nature of the Fourier transform, the above formula can be
rewritten as

D
(

ejω
)
= HLSI

(
ejω
)

C
(

ejω
)

(50)

where C
(
ejω) and D

(
ejω) are the Fourier transform of c and d, HLSI

(
ejω) = F{hLSI [n]}.

After calculating d, a uniformly sampled signal can be obtained. After the traditional
SAR chirp scaling (CS) algorithm, an image without ambiguity can be obtained. Since the
proposed algorithm is actually performed in the frequency domain, it is relatively simple
to use the CS algorithm.

To summarize, the TSPT algorithm solves the sparse equation of (42) by LU decom-
position for a given non-uniformly sampled multi-channel SAR signal b. Then, using the
digital correction filter HLSI of formula (44) to filter the solved result, we store the finally
calculated uniformly sampled samples in the vector d. The flow of the proposed algorithm
can be seen in Figure 5. To introduce the proposed algorithm in more detail, Algorithm 1
shows the pseudocode of the TSPT algorithm.
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Algorithm 1: TSPT—Preparation and Solution

Input:

• Γ: an M×M diagonal weighting matrix and
¯
Γ = Γ

1
2 ;

• ρ: a regularization parameter and ρ > 0;
• b: an M× 1 vector of non-uniformly frequency domain sample values of azimuth

MCSAR data.

Algorithm:

(1) Construct an M× N sparse matrix Φ;
(2) Calculate the sparse matrix Ψ by (42);
(3) Use LU to factor Ψ to obtain the matrix L, U, P, Q, R;

(4) Construct the vector
^
b =

( ¯
Γb
0

)
, and the matrix dimension of

^
b is (M× N) + 1;

(5) Solve the following formula to obtain w: z = PR−1
^
b, Lv = o, Uw = v;

(6) Calculate
^
c = Qw =

(
r
c

)
, and r =

¯
Γ(b−Φc);

(7) Calculate HLSI

(
ejω
)

by (44) and take Fourier transform to obtain hLSI [n];

(8) Filter the N × 1 vector c using hLSI [n] and store the results.

Output: uniform sample signal.
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5. Experiment Results
5.1. Simulation Results

In this section, a simulation experiment is carried out to evaluate the performance of
the proposed reconstruction algorithm. At the same time, the comparison experiment with
the DBF algorithm, the TSPT algorithm, and the IDBF algorithm is completed. Azimuth
MCSAR system simulation parameters are shown in Table 1. In the simulation, the system
sets three receiving channels uniformly along the azimuth and sets the middle channel
as the reference channel to transmit and receive signals. According to Formula (1), the
PRF value of uniform sampling can be calculated as 1495 Hz. When the azimuth sampling
rate of the system deviates from the PRF value of uniform sampling, the azimuth MCSAR
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system signal can be regarded as non-uniform sampling. The value of PRF of the simulation
experiment is set to 1100 Hz.

Table 1. Simulation parameters.

Parameter Value

Carrier Wavelength 0.03 m
Doppler Band Width 3737.4 Hz

Channel Number 3
Platform Velocity 7474.8 m/s

Adjacent Channel Interval 3.3333 m
Slant Range 890 km

Uniform PRF 1495 Hz

Due to the working frequency of the azimuth MCSAR system deviating from the ideal
PRF, the echo signal will appear as Doppler spectrum aliasing. The imaging result will
appear as ambiguous without reconstruction. Obviously, azimuth ambiguity occurs in
each channel of MCSAR signal during azimuth under-sampling, resulting in virtual targets.
In this section, point target contrast experiments and multiple-point targets simulation
experiment are carried out. We added independent white noise to the data so that the SNR
of the image domain after signal-reconstruction is about 50 dB. It can be clearly seen from
Figure 6 that in the case of signal with noise, the imaging results of the TSPT algorithm
are significantly better than the DBF algorithm and the IDBF algorithm. As shown in
Figure 7, according to the imaging result of nine point targets, the TSPT algorithm has
good reconstruction performance in the case of multiple point targets. In Figure 7, the
left half is the imaging result of nine points, and it can be seen that there is no azimuth
ambiguity after the reconstruction of the azimuth signal by the proposed method. The
right half of Figure 7 shows the contour map, azimuth profile, and range profile of the edge
point target. In summary, the accuracy of the proposed reconstruction algorithm can meet
the requirements of SAR imaging and also lays a foundation for the processing of real data.
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Figure 7. (Left) Mutiple point targets imaging. (Right) Edge point target contour map, azimuth
profile, and range profile.

To verify the performance of the proposed method, this section gives a comparison
experiment on the SNR and AASR of the DBF algorithm, the TSPT algorithm, and the
IDBF algorithm. For the calculation method of the SNR of the TSPT algorithm, refer
to [26], and for the calculation method of AASR, refer to [25,35]. For each PRF in the
interval of [1495–2803] Hz, we generate azimuth three-channel SAR data according to the
parameters shown in Algorithm 1. Then, the DBF algorithm, the TSPT algorithm, and the
IDBF algorithm were used to process the data of the three channels. Figure 8 shows the
SNR and AASR of the three methods calculated for different PRF values. It can be seen
from Figure 8a that the SNR of the DBF algorithm, TSPT algorithm, and IDBF algorithm
are consistent under uniform sampling. It can be seen that when the system PRF deviates
from the uniformly sampled PRF, the SNR of the DBF algorithm will drop sharply. For
PRFs close to coinciding with PRF, the DBF algorithm has a quite low SNR compared with
the TSPT algorithm and the IDBF algorithm.

To observe the inhibitory effect of the three methods on the AASR after the azimuth
reconstruction, the AASR of the DBF algorithm, the TSPT algorithm, and the IDBF algo-
rithm was calculated. To view the suppression effects of the different methods, AASR after
azimuth reconstruction by the DBF algorithm, the TSPT algorithm, and the IDBF algorithm,
respectively, are depicted in Figure 8b. Examining Figure 8b, it can be seen that the AASR
of the TSPT algorithm is higher than those of the other two algorithms.

Furthermore, the comparison results in this section validate such an argument that
the proposed algorithm is a relatively reasonable candidate algorithm. The TSPT algorithm
can solve the problem of spectrum reconstruction of non-uniformly sampled azimuth
MCSAR signals. The proposed algorithm can not only ensure high SNR but also suppress
azimuth ambiguity.
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5.2. MCSAR Real Data Processing

Aiming at better showing the performance of the proposed algorithm, this section
has carried out the MCSAR real data processing. The real data used are the stripe mode
of the L-band airborne azimuth MCSAR system, and the real data parameters are shown
in Table 2. It can be seen from the parameters in Table 2 that since the PRF is less than the
azimuth Doppler bandwidth, the non-uniform real data are formed.

Table 2. Main parameters of real airborne data.

Parameter Value

Carrier Frequency 1.3 GHz
PRF 149.92 Hz

Channel Number 2
Platform Velocity 129.8 m/s

Adjacent Channel Interval 0.86 m
Slant Range 1.58 km

Azimuth Band Width 190.91 Hz
Range Band Width 210 MHz

Range Sampling Rate 266 MHz
Antenna Length 1.36 m

In this experiment, three typical areas were selected for comparative analysis, as shown
in the red box in Figure 9. Figure 9a presents the imaging result using the DBF algorithm
to reconstruct the azimuth signal. It can be seen that the serious azimuth ambiguities are
caused by non-uniform sampling and noise. In Figure 9b, the IDBF algorithm reduces
azimuth ambiguity, but the imaging result is still not ideal. The imaging result using the
proposed algorithm in this paper is shown in Figure 9c. The azimuth ambiguities denoted
in red box can hardly be seen in Figure 9c, which means that the proposed algorithm can
effectively suppress azimuth ambiguity. By comparing with the conventional algorithm
and its improved algorithm, it becomes clear that the azimuth signal of MCSAR is well
reconstructed based on the proposed algorithm.
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6. Conclusions

This paper proposes a novel reconstruction algorithm for azimuth MCSAR signals
based on two-step projection technology. This algorithm performs a series of projections by
introducing an intermediate subspace consisting of an integer shift of a tightly supported
kernel. In the reconstruction process, the proposed algorithm can effectively eliminate the
azimuth ambiguity caused by non-uniform sampling signals with noise. Simulation and
real data processing results show that the proposed algorithm offers better SNR scaling
and better AASR than the conventional algorithm and its improved algorithm. Therefore,
the proposed algorithm can be used as a candidate algorithm for azimuth MCSAR signal-
reconstruction.
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