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Abstract: Accurate estimation of forest biomass is the basis for monitoring forest productivity and
carbon sink function, which is of great significance for the formulation of forest carbon neutralization
strategy and forest quality improvement measures. Taking Guizhou, a typical karst region in
China, as the research area, this study used Landsat 8 OLI, Sentinel-1A, and China national forest
resources continuous inventory data (NFCI) in 2015 to build a deep belief network (DBN) model for
aboveground biomass (AGB) estimation. Based on the introduction of forest canopy density (FCD),
we improved the DBN model to design the K-DBN model with the highest estimation accuracy is
selected for AGB inversion and spatial mapping. The results showed that: (1) The determination
coefficients R2 of DBN is 0.602, which are 0.208, 0.101 higher than that of linear regression (LR) and
random forest (RF) model. (2) The K-DBN algorithm was designed based on FCD to optimize the
DBN model, which can alleviate the common problems of low-value overestimation and high-value
underestimation in AGB estimation to a certain extent to improve the estimation accuracy. The
maximum R2 of the model reached 0.848, and we mapped the forest AGB using the K-DBN model
in the study area in 2015. The conclusion of this study: Based on multi-source optical and radar
data, the retrieval accuracy of forest AGB can be improved by considering the FCD, and the deep
learning algorithm K-DBN is excellent in forest AGB remote sensing estimation. These research
results provide a new method and data support for the spatio-temporal dynamic remote sensing
monitoring of forest AGB in karst areas.
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1. Introduction

Forest ecosystems play a key role in the terrestrial ecosystem carbon cycle, water
cycle, and radiant energy exchange [1–3]. They are the largest carbon pools in terrestrial
ecosystems and play a vital role in absorbing greenhouse gases such as carbon dioxide
in the atmosphere, reducing the greenhouse gas concentration, and mitigating global
climate change [4,5]. Forests are an important part of terrestrial ecosystems, which have a
complex community structure, rich biodiversity, and important ecological functions. They
play an extremely important and irreplaceable role in regulating the carbon balance and
improving the regional ecological environment. At the same time, they are also the main
topic of global climate warming research [6,7]. Forest biomass is the accumulation of dry
matter produced by a forest plant community in its life process, which is expressed by
the dry matter mass accumulated per unit area or per unit time, usually including the
total weight of stems, branches, leaves, and roots [8]. The forest AGB used in this study
was only the aboveground biomass of trees, excluding underground roots, herbs, and
understory litter. It reflects the management level and utilization value of forests [9–11].
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Therefore, accurate estimation of forest biomass is the top priority in the study of the
Earth’s carbon cycle and global climate change. It plays an important role in understanding
and monitoring the response of forest ecosystems to greenhouse gas emissions. It can also
provide strategic guidelines for sustainable forest management and is of great significance
for the rational utilization of forest resources and the improvement of the forest ecological
environment [12–15].

It takes a long time and requires lots of manpower and material resources for tradi-
tional forest biomass ground survey estimation. Thus, it is difficult to measure the forest
AGB in a large area in real-time by ground survey method [2,16,17]. With the development
of remote sensing and information technology, scholars have begun to use remote sensing
technology with ground survey data to monitor regional forest biomass. Since the Landsat
series satellites were put into use in the 1970s, they have good stability and sustainability,
which is very conducive to the study of long-term biomass changes. Many studies use
Landsat images for long time-series forest monitoring and mapping [18–20]. Li et al. [21]
constructed a linear forest biomass estimation model for different vegetation types and
integrated the forest canopy density (FCD) using Landsat 8 OLI images and fixed the
sample plot data in western Hunan. Although there are still the problems of low-value
overestimation and high-value underestimation, the accuracy of forest biomass estimation
has generally improved. It has been confirmed that there is a close relationship between
FCD and forest biomass. Generally, the forest biomass with higher FCD is higher; on
the contrary, the forest biomass with lower FCD is lower [22]. Li et al. [14] used Landsat
8 OLI images and the NFCI data to compare the performances of three algorithms of
Linear regression (LR), random forest (RF), and extreme gradient enhancement (XGBoost).
Compared to the LR model, the estimation accuracy (R2) of XGBoost and the RF model for
the coniferous forest, broadleaf forest, and mixed forest reached more than 0.75. Optical
images are usually limited by spectral reflectance saturation, resulting in the over- and
underestimation of the forest biomass. Ou et al. [23] incorporated forest age as a dummy
variable into the forest biomass inversion model, which improved the estimation accuracy
of the AGB of a dense pine forest in Yunnan, southwest China. In Ou’s paper, the model
with the age dummy variable greatly reduced the overestimation of plots with an AGB
value less than 70 Mg/ha and the underestimation of plots with an AGB value greater than
180 Mg/ha.

Optical remote sensing is affected by weather, clouds, and fog, especially in moun-
tainous areas with more clouds and fog. Spectral data are inevitably oversaturated due
to sensors, illumination, and other reasons. Scholars began to explore the estimation of
forest biomass in large areas based on the Polarimetric SAR and Lidar satellites [24–28].
Yan et al. [29] established biomass models of different forest types (coniferous, mixed, and
broad-leaved forests) using NFCI, Landsat 8 OLI, and ALOS PALSAR-2 data in Beijing.
The estimated value of the RF model is better than that of the multiple linear regression
model (MLR), showing a higher R2 (>0.6) and a lower root mean square error (RMSE;
<13.5 Mg/ha). Chen et al. [30] used Sentinel-1, Sentinal-2, and Digital Elevation Model
(DEM) data to establish five evaluation algorithms: Stepwise regression (SWR), machine
learning (ML), artificial neural network (ANN), regression support vector machine (SVM),
and random forest (RF). It was found that the RF model performed best. Vaglio et al. [31]
used ALOS PALSAR-2 and Landsat 8 OLI images to retrieve the forest biomass in two
mixed forest areas, confirmed the complementarity of optical and SAR data, and found
that satellite data with low cost and wide coverage can be as effective as Lidar, especially
in areas with high carbon density. Chen et al. [32] used the multispectral band, vegetation
index of Sentinal-2, texture features, and backscattering coefficient of Sentinel-1 to develop
biomass prediction models by the geographically weighted regression (GWR) and machine
learning (ML) algorithms. It was found that ML has better estimation accuracy than the
linear model using 56 measured AGB samples from Changbai Mountain Center in China.
Li et al. [33] used Landsat 8 OLI, Sentinel-1A images, and the NFCI data to estimate the
biomass of subtropical forests in Hunan Province, China. They proved that the XGBoost
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model can reduce the problem of overestimation and underestimation. Ho et al. [34]
estimated the forest biomass of Madagascar using the radar satellite ALOS PALSAR-2
and the optical Landsat-derived tree cover and found that the radar signal was highly
correlated with the biomass (R2 = 0.71) and that the root mean square error was 30% from
2007 to 2010.

To sum up, the existing research has the following three problems: (1) Forest AGB
estimation research areas are basically of the small- and medium-sized scale at the county
and municipal levels. Due to the incompleteness of ground data surveys, there is little
estimation of forest AGB in provincial areas or at larger areas [35–37]. (2) Since its light
saturation, overestimation or underestimation is inevitable with forest AGB using optical
remote sensing [37–39]. (3) In previous studies, conventional linear models or traditional
machine algorithms [40–42], such as RF, SVM, ANN, or KNN, are mostly used for forest
biomass estimation, while deep learning algorithms such as the deep belief network (DBN)
are rarely used in forest biomass estimation [43–45]. The DBN is a deep learning model that
belongs to end-to-end learning. The DBN algorithm includes several RBMs (unsupervised
learning), and a BP network is added to the last layer to realize supervised learning. The key
point of the DBN deep learning algorithm is the weight iterative correction between visible
(V) and hidden (H), which reconstructs the input data so that these data can gradually
show (filter or summarize) the feature set expressing the input data.

Karst is a special and precious landform. The karst area represented by Guizhou is
a typical representative of the global karst landform, which is of typical significance for
the study of the forest ecosystem of the global special karst landform [46,47]. In this study,
Guizhou, also a typical karst area in China, was taken as the research area, the Landsat
8 OLI and Sentinel-1A images were collected to construct a multiple linear regression (LR)
model, an RF model, and a DBN model for different forest types. Then, by introducing the
FCD, the K-DBN model for biomass inversion was constructed to improve the estimation
accuracy of forest biomass in the karst area. This helped to improve the estimation accuracy
of forest AGB in karst areas, to provide an approach for the accurate estimation of forest
carbon sinks in karst areas [44,48].

2. Data and Material
2.1. Research Area

Guizhou Province is bounded by latitude 24◦37′–29◦13′N, longitude 103◦36′–109◦35′E.
It is approximately 595 km long from east to west and 509 km from north to south, with a
total area of 176,200 km2 [49]. The terrain in Guizhou is high in the west and low in the
east, and it tilts from the middle to the north, east, and south, with an average altitude of
approximately 1100 m [50]. The landforms of the whole province are divided into four
basic types: mountain, plateau, hill, and basin, with the most mountains, followed by hills,
of which 92.5% are hills and mountains [51]. It was shown in Figure 1.

The plateau, monsoon, and diverse climate in Guizhou are conducive to the formation
and development of various forest types [52]. The province is rich in forest vegetation types,
including subtropical evergreen broadleaf forest, near tropical valley seasonal rain forest,
tropical evergreen broadleaf forest, cold temperate subalpine coniferous forest, and warm
coniferous forest [53]. In addition, most areas are dominated by all kinds of secondary and
artificial vegetation, as well as cultivated land, shrub, plateau meadow, etc. Guizhou has
widespread ecological problems such as soil erosion and rocky desertification [54,55].
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Figure 1. The research area and sample plot distribution in 2015 ((a): research area, (b): forest type, (c): forest AGB).

2.2. Data
2.2.1. The Ground Survey Data

The ground survey data in this study came from the fixed sample plot data of NFCI
in Guizhou in 2015. A kilometer grid was used to arrange the location of plots, and the
square sample plots were evenly distributed. The sample plot size was 0.067 ha and the
sample plot spacing was 4 × 8 km. There is a linear relationship between the forest volume
in the stand and the aboveground forest biomass [56,57]. The details can be obtained from
the literature [58], the formula is:

B = a×V + b (1)

where B is forest biomass (Mg/ha), V is the forest stock (m3/ha), and a and b are coefficients.
According to the dominant tree species recorded in NFCI, the sample plots were divided
into three forest types: broadleaf forest (BLF), coniferous forest (CFF), and mixed forest
(MXF), as shown in Appendix A. The number of sample plots of each forest type were
740, 948, and 212, respectively. The AGB statistics of different forest type sample plots are
shown in Table 1.



Remote Sens. 2021, 13, 5030 5 of 28

Table 1. AGB statistics of sample plots.

Forest
Type Number

Min.
(Mg/ha)

Max.
(Mg/ha)

Mean
(Mg/ha)

Std
(Mg/ha)

Number of Different AGB Range

<30 Mg/ha 30–80
Mg/ha

>100
Mg/ha

BLF 740 0.566 251.730 56.406 44.043 226 346 168
CFF 948 1.447 184.231 54.188 31.622 246 498 204
MXF 212 6.389 203.470 58.534 38.072 54 107 51
All 1900 0.566 251.730 55.537 37.661 526 951 423

2.2.2. Image Data

Since the forest is the growing season and luxuriant from June to September, the forest
biomass reflected by the image is relatively stable; while in winter, the leaves fall off, and the
forest biomass obtained by image inversion is unstable. We selected 50 image reflectance
products in the summer of 2015 (June–September) (the tracking number covering Guizhou
was 125–129/40–43) by Google Earth Engine, and preprocessed them, such as using NDVI
maximum synthesis, splicing, and clipping. At the same time, we also finished operations
such as spatial resolution resampling and coordinate system conversion. The SAR image
datasets of Sentinel-1A were also from the Google Earth Engine (GEE) platform [59,60].
The size of the measured sample plots on the ground of NFCI data was 25.82 m × 25.82 m.
In order to ensure a consistent resolution, the Landsat 8 OLI and Sentinel-1A image data
were resampled to the same size of sample plot in this study.

In addition, the land cover classification map from the European Space Agency website
(http://maps.elie.ucl.ac.be/CCI/viewer/index.php/ accessed on 20 September 2021) was
obtained, as shown in Figure 2. According to the needs of this study, the CCI land cover
data were resampled into a resolution consistent with the ground survey sample. The
landform data comes from Karst Data Center (http://www.karstdata.cn/ accessed on 20
September 2021).

We verify the consistency between CCI land cover classification and forest types
in NFCI, the results shown in Table 2. The overall accuracy is 0.894. It showed that
the accuracy of CCI land classification results can be used as auxiliary data support for
this study.

Table 2. The Land classification accuracy.

Forest Type BLF CFF MXF Other Producer
Accuracy

BLF 662 58 11 9 0.895
CFF 62 852 18 16 0.899
MXF 8 15 185 4 0.873

User Accuracy 0.904 0.921 0.864

http://maps.elie.ucl.ac.be/CCI/viewer/index.php/
http://www.karstdata.cn/
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Figure 2. Research dataset ((a) from European Space Agency; (b) from Karst Data Center; (c) and (d) from Google Earth
Engine).

3. Technical Approach
3.1. Research Workflow

The research technology workflow mainly included three layers, as shown in Figure 3.
The first layer was data preparation and preprocessing, including Landsat 8 OLI, Sentinel-
1A, and NFCI data. The second layer was factor extraction. We extracted the feature
factors of the above-mentioned images, such as spectral data, texture features, and SAR
backscattering coefficients. The third layer was the design of a DBN model, its accuracy
was compared to that of LR and RF models. This study also optimized the DBN model and
designed the K-DBN model, as shown in Section 4.2. Finally, spatial mapping of AGB in
the whole study area was carried out.
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Figure 3. The technical workflow.

3.2. Feature Extraction

We extracted 230 feature factors, including 30 vegetation indices, 6 Landsat 8 OLI
original bands and 144 texture feature factors, and 2 SAR backscattering coefficients and
48 their texture features. They were shown in Table 3 and the details were shown in
Appendix B.

Table 3. Feature factors.

Variable Type Variation Number Variable Name

Reflectance 6 Band 2,3,4,5,6,7

Vegetation Index 30
ARVI CVI DVI EVI GARI GDVI GNDVI GRVI GSAVI IPVI LAI MSRI
MSAVI2 NDVI NLI OSAVI RDVI RVI SAVI SLAVI SR TCA TCD TCDI

TGI VARI TCW TCG TCB TDVI

Texture feature 144 GLCM

Sentinel-1A
2 VV VH

48 GLCM

The vegetation index is mainly an index reflecting the difference between vegetation
reflection in visible and near-infrared bands and the soil background. It can effectively
integrate relevant spectral signals, enhance vegetation information, and reduce the impact
of non-vegetation information. The texture has a good interpretation of spatial structure
for the estimation ability of forest AGB. In this study, the gray-level co-occurrence matrix
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(GLCM) method was used to extract texture features with the moving window size by
3 × 3, 5 × 5, and 7 × 7 [14].

3.3. FCD Calculation

The FCD is closely related to the growth and health of trees. Many indicators, such as
crown competition factor, forest density index, and canopy density, can be used to describe
forest density [22]. The FCD is the ratio of the total projected area of the tree crown on the
ground under direct sunlight to the total area of this forest type. It is an important factor
reflecting the forest stand structure, and it has a significant impact on forest growth, stem
shape, and biomass [61]. The FCD model is mainly proposed based on the biophysical
characteristics of the forest. The forest canopy density was introduced as a dummy variable
to construct the K parallel DBN to improve the accuracy of biomass estimation. The K
value is determined by the K-means algorithm in Section 4.2. According to the calculation
formula in the literature [61], after normalization of the Landsat 8 OLI bands these indices
has been calculated using the equation:

if : NIR− Red < 0, AVI = 0 (2)

else : AVI = ((NIR + 1)(256− Red)× NIR− Red)1/3 (3)

SI = (256− Blue)× (256− Green)× (256− Red ) (4)

BI =
(NIR + Red)− (NIR− Blue)
(NIR + Red) + (NIR + Blue)

× 100 + 100 (5)

FCD = (VD× SSI)1/2 − 1 (6)

where AVI is the advanced vegetation index, BI is the bare soil index, and SI is the shadow
index [62]. Among them, VD is the first principal component of the principal component
analysis of AVI and BI, and SSI is the linear transformation of SI. It showed that advanced
vegetation index (AVI) was positively correlated with the forest AGB [62], and reacted
sensitively to the vegetation quantity compared with NDVI; Therefore, the value is higher
in forests and grassland with higher FCD values, and lower in forests and grassland
with lower FCD values. BI is a function of the amount of bare soil, which increases with
the decrease in forest density and the increase in surface exposure [62]. The FCD value
was high, the SI value of forests was large, and the SI value of grassland and bare land
was small.

3.4. The Linear Regression (LR) and Random Forest (RF) Model

The linear regression (LR) and random forest (RF) model, two conventional machine
learning algorithms, which are often used in biomass estimation [63,64]. In the study of
AGB estimation, the dependent variables are often affected by several important factors. At
this time, two or more influencing factors are needed as independent variables to explain
the change of dependent variables. When there is a linear relationship between multiple
independent variables and dependent variables, the regression analysis is multiple linear
regression. The RF model consists of several decision trees. Decision trees are fully grown,
and unpruned classification and regression trees are generated by the classification and
regression tree (CART) algorithm. The simple majority voting method is used to make the
output of the random forest for classification and prediction. The results of all the base
regressors used are averaged as the output of the random forest for the regression problem.

3.5. DBN Model Construction
3.5.1. DBN Structure

The restricted Boltzmann machine (RBM) is a kind of neural perceptron, composed
of a visible layer (the input layer) and a hidden layer, which propagates in two-way links
between the two layers [65,66]. The hidden layer is the feature extraction layer we generally
refer to. There is a two-way full connection between the neurons of the visible layer and
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the hidden layer. The back propagation (BP) is the most basic neural network [67]. Its
output results adopt forward propagation, and the error adopts back propagation. The
network structure of classical DBN is a deep neural network composed of a visible layer,
several RBMs, and a BP, that is, several RBMs are “connected in series” to form a DBN,
in which the hidden layer of the previous RBM is the explicit layer of the next RBM, and
the output of the previous RBM is the input of the next RBM. In the training process, the
RBM of the current layer can only be trained after fully training the RBM of the previous
layer until the last layer. The layers are connected to one another, but the cells in the layer
are not connected to one another. The cells in each hidden layer are trained to express
advanced features. The DBN represents the most original input data with different concept
granularities at each layer, that is, different levels of feature description. The structure
is shown in Figure 4. Xi is characteristic factor set of samples, Yi is measured value of
samples, Wi is weight coefficient.

Figure 4. Structure of a DBN mode.

3.5.2. DBN AGB Mapping Workflow

The DBN AGB mapping workflow is shown in Figure 5. The independent variable set
X, including the spectral index, texture feature, and SAR backscattering coefficients, with a
total of 230 feature factors, were input into the DBN model. Then, in the model training,
we designed several RBMs for unsupervised training. The output of the former RBM was
used as the input of the latter RBM. At the same time, taking the marked sample as the
target value, we modified it with BP feedback parameters to model the AGB estimation.
Here, we compared the MSE with the ground truth and the prediction results. If the MSE
did not decrease for three consecutive times, we considered that the model training was
relatively stable and available, then it was further judged by 10-fold cross-validation. When
the training accuracy was insufficient, it returned to the input of the DBN model, and the
above steps were further repeated until the training accuracy met the conditions. Finally,
spatial mapping of overall forest biomass was carried out.
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3.5.3. K-DBN Model Construction

High-value underestimation and low-value overestimation are common problems in
AGB estimation models. In generally low-value overvaluation usually occurs in sparse
forests with small AGB values, while high-value under estimation usually occurs in rela-
tively dense forests with high AGB values [68]. This study considered introducing FCD
to improve the DBN model to alleviate the problems of high-value underestimation and
low-value overestimation. Firstly, the FCD value of each sample plot was calculated as
a dummy variable. Secondly, the FCD was segmented by the K-means method, and K
parallel DBN models were constructed to estimate the AGB of different FCD segments.
Finally, the estimated results were combined to obtain the final result. This study defined
this method as the K-DBN method, and the workflow is shown in Figure 6.
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Figure 6. The workflow of the K-DBN model.

4. Results and Analysis
4.1. Performance of AGB Estimation Model
4.1.1. DBN Model Building

In this study, The DBN was used to construct an AGB estimation model. As a deep
learning model, the DBN model inputs all feature factors, omits the step of feature factor
selection, and only considers the setting of the model parameters, which directly affect the
performance of the model. These parameters include the number of hidden layers, the
number of knots, and the number of iterations. In this study, we analyzed and compared
the DBN model parameters; the results are shown in Table 4. The parameter settings with
the best performance were determined.

Table 4. Effect of parameter setting on the DBN model’s performance.

Parameters
R2

BLF CFF MXF

Number of hidden
layers (set

iterations 50)

1 (50) 0.5784 0.5064 0.5618
2 (50-50) 0.5960 0.5240 0.5696

3 (50-50-50) 0.6002 0.5326 0.5768
4 (50-50-50-50) 0.5945 0.5255 0.5677

5 (50-50-50-50-50) 0.5531 0.4991 0.5565

Number of hidden
knots (set

iterations 50)

90-90-90 0.5798 0.5193 0.5582
80-80-80 0.6032 0.5361 0.5558
70-70-70 0.6141 0.5471 0.5632
60-60-60 0.6082 0.5443 0.5666
50-50-50 0.6002 0.5326 0.5768
40-40-40 0.5958 0.5317 0.5642
30-30-30 0.5822 0.5287 0.5518
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Table 4. Cont.

Parameters
R2

BLF CFF MXF

Number of iterations

20 0.5993 0.5228 0.5543
50 0.6141 0.5471 0.5768

100 0.6279 0.5592 0.5913
200 0.6401 0.5728 0.5887
400 0.6357 0.5685 0.5824
600 0.6326 0.5657 0.5762
800 0.6390 0.5533 0.5705

4.1.2. Model Accuracy Comparison

In this paper, The BLF, CFF, and MXF were separately set up to build the model.
The AGB estimation model is constructed based on DBN and compared with LR and RF.
Through 10-fold cross-validation, the prediction results of all models are shown in Figure 7.

Figure 7. Cont.
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Figure 7. The performance of all models((a):LR BLF, (b):LR CFF, (c):LR MXF, (d):LR Combine
BLF/CFF/MXF, (e): RF BLF, (f): RF CFF, (g): RF MXF, (h): RF Combine BLF/CFF/MXF, (i): DBN
BLF, (j): DBN CFF, (k): DBN MXF, (l): DBN Combine BLF/CFF/MXF).

The degree of interpretation of the LR model for the AGB estimation of various forest
types was less than 45%. The overall R2 was 0.402 and the RMSE was 29.118 Mg/ha, among
which, the BLF R2 and RMSE were the best, 0.418 and 33.588 Mg/ha respectively, while
the CFF and MXF R2 values were 0.401 and 0.322, respectively, and the RMSE values were
24.470 and 31.358 Mg/ha, respectively.

The results of the RF model were better than those of the LR model, and the accuracy
of the various forest types was higher than that of the corresponding LR model. The R2

and RMSE values were 0.514 and 26.250 Mg/ha, respectively, among which, the BLF had
the highest accuracy, with R2 and RMSE values of 0.539 and 29.914 Mg/ha, followed by
0.501 and 22.329 Mg/ha for the CFF, and 0.433 and 28.680 Mg/ha for the MXF.

The DBN model had the best performance, whose determination coefficient (R2) was
higher than LR and RF. The R2 increased to 0.611 and the RMSE decreased to 23.478
Mg/ha. The R2 of the BLF was the highest, reaching 0.640, with an RMSE of 26.428 Mg/ha;
meanwhile, the R2 of the MXF and CFF was 0.591 and 0.573, with an RMSE of 24.352 and
20.663 Mg/ha, respectively.

In any forest type, the DBN model performs better than the RF and LR models.
However, the problems of low-value overestimation occurred at the sample points of less
than 30 Mg/ha, and high-value underestimate occurred at the sample points of more than
80 Mg/ha. In this study, forest canopy density was introduced as a dummy variable to
improve the DBN model in order to improve the accuracy of biomass estimation.

4.2. K-Value Setting of the K-DBN Model

The setting of the K-value classifies the FCD, but there is no clear classification standard
of the forest canopy density in forest management. In this study, the K-means method was
used to cluster FCD to determine the best K-value. In this specific study, K was taken as 2~6
to test the accuracy of the model. The results showed that for the broadleaf forest, when k is
3~6, the model R2 is basically equal. For other forests, when k is 3, the model performs best.
Considering the model accuracy and the DBN algorithm execution efficiency, the number
of 3 was taken in this study, that is, the samples were divided into three levels according
to FCD: thin, medium, and thick. The FCD classification statistical results of the different
forest types are shown in Figure 8 and Table 5. There are obvious differences in the mean
AGB of the different forest types corresponding to the three grades of FCD. The mean AGB
of the thin sample plot was approximately 30 Mg/ha, that of the medium sample plot
was approximately 50 Mg/ha, and that of the thick sample plot was close to 100 Mg/ha.
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It can also be seen from Figure 9 that there is a significant positive correlation between
forest AGB and FCD. Generally speaking, forest biomass with a large canopy density is
larger, and forest biomass with a small canopy density is smaller. Therefore, the K-DBN
model constructed after adding FCD classification can further improve the accuracy of the
estimation model.

Figure 8. K-means clustering results of FCD.

Figure 9. The biomass statistics of each level FCD.
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Table 5. The biomass statistics of the FCD samples in 2015.

Forest
Type FCD level

Number of
Samples

Max. Min. Mean Std
(Mg/ha)

BLF
thin 245 121.744 0.566 26.610 18.948

medium 322 122.889 16.670 47.440 20.764
thick 173 251.730 53.656 115.292 46.216

CFF
thin 256 82.476 1.447 23.688 15.132

medium 498 123.612 13.119 53.522 20.123
thick 194 184.231 52.973 96.142 23.576

MXF
thin 45 105.421 6.389 29.517 17.907

medium 118 148.592 14.075 50.379 25.053
thick 49 203.470 48.199 104.822 37.273

4.3. K-DBN Model Performance

According to the result of the K-means cluster analysis of FCD, the original samples
were segmented first, and the K-DBN model was constructed to improve the AGB esti-
mation accuracy. The results are shown in Figure 10. After the forest type classification,
the accuracy was 0.848 and 14.681 Mg/ha, among which the highest accuracy R2 of the
BLF model was 0.858, followed by the CFF with 0.844 and the MXF with 0.814, with RMSE
values of 16.608, 12.499, and 16.439 Mg/ha, respectively. Compared to the traditional
DBN model, the estimation accuracy of K-DBN improved, and AGB has been estimated
more accurately. For the DBN model, the R2 is 0.611, RMSE is 23.478 Mg/ha. For the
K-DBN model, the R2 is 0.848, RMSE is 14.681 Mg/ha, R2 increased by 0.2377 and RMSE
decreased by 8.79 Mg/ha. It can be seen from Figure 10 that the K-DBN model solved the
problems of high-value undervaluation and low-value overvaluation to a certain extent.
From the perspective of vegetation growth, building forest biomass estimation models
by forest types and canopy density can more accurately distinguish the differences in
forest stand structure and coverage therefore can ensure the estimation accuracy of the
classification model.

Figure 10. Cont.
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Figure 10. K-DBN model performance ((a): BLF, (b): CFF, (c): MXF, (d): Combine BLF/CFF/MXF).

The LR, RF, DBN, and K-DBN models used in this paper were compared and ana-
lyzed, as shown in Figure 11. The K-DBN had the best performance followed by DBN, RF,
and LR.

Figure 11. The performance comparison of various models ((a): R2, (b): RMSE, (c): RMSE%, (d): Standard deviation).

It can be seen that, compared with LR, RF, and DBN, K-DBN can more accurately
predict the AGB. In combination with Figure 9, the AGB distribution of the measured
samples presented a small to large trend. Figure 12 showed the results of prediction at
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different FCD levels by the K-DBN model (D1 to D3), which of distribution was the closest
to that in Figure 9. So compared with LR, RF, and DBN models, the K-DBN model can
more accurately predict the AGB.

Figure 12. The AGB prediction results of each model at different FCD levels.

In the two biomass ranges of <30Mg/ha and >80Mg/ha, the problems of low-value
overestimation and high-value underestimation are obvious [21]. In order to accurately
analyze the performance of each model in low-value overestimation and high-value un-
derestimation, the prediction RMSE of the 526 low-value sample plots (AGB < 30) and
423 high-value sample plots (AGB > 80 Mg/ha) were analyzed, and the results are shown
in Figure 13.

Figure 13. RMSE of different AGB range with various models.
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When the AGB is 30–80 Mg/ha, there is little difference in the accuracy of various
biomass estimation models. However, when the AGB is less than 30 Mg/ha or more
than 80 Mg/ha, the K-DBN algorithm can improve the model accuracy effectively. In the
low-value range (AGB < 30 Mg/ha), the RMSE of the K-DBN algorithm is 9.182 Mg/ha,
which is 16.635 Mg/ha, 11.908 Mg/ha, and 7.966 Mg/ha lower than LR, RF, and DBN
respectively. In the high-value range (AGB > 80 Mg/ha), the RMSE of the K-DBN algorithm
is 23.685 Mg/ha, which is 25.370 Mg/ha, 16.141 Mg/ha, and 13.641 Mg/ha lower than LR,
RF, and DBN respectively. According to the above analysis, the K-DBN algorithm signifi-
cantly alleviates the problems of high-value underestimation and low-value overestimation,
therefore can further improve the accuracy of AGB estimation.

4.4. The AGB Spatial Mapping

The K-DBN model was used to map the forest AGB in the study area in 2015, as
shown in Figure 14. In 2015, the predicted maximum value of forest biomass in the study
area was 199.812 Mg/ha, the minimum value was 3.301 Mg/ha, the average value was
54.946 Mg/ha, and the standard deviation was 36.053 Mg/ha. Those forests with high
biomass were mainly distributed in the northern and southeastern parts of Guizhou,
especially in Zunyi, Tongren, and Qiandongnan. The forest biomass in Bijie, Liupanshui,
and other places with serious rocky desertification was low.

Figure 14. Forest aboveground biomass distribution map in Guizhou in 2015.

5. Discussion
5.1. DBN Model Mechanism

In this study, the AGB estimation model is constructed based on a deep learning
algorithm DBN, and its accuracy is significantly higher than that of the traditional LR
and RF models. There are two reasons for the improvement of model accuracy. (1) DBN
algorithm has a more powerful data processing ability. By fusing multi-source remote
sensing data for AGB estimation, more feature factors are constructed, which inherently
results in big data. Compared with traditional AGB estimation methods, such as LR and
RF, feature factors need to be selected. DBN algorithm is more suitable for processing
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big data and can involve more feature factors in model operation. The DBN overcomes
the shortcomings of the BP network which is easy to fall into local optimization and long
training time due to random initialization of weight parameters. (2) The advantage of
the DBN algorithm is “deep”. It reconstructs the feature factors by constructing multiple
independent hidden layers (RBM), excavates the internal mechanism, better represents
the complex nonlinear relationship between the feature factor set and the forest biomass,
and makes the model have better interpretation ability after multiple feedback iterative
modifications. Deep learning algorithms such as DBN are rarely used for forest biomass
estimation, but they are indeed a good machine learning method [44]. The deep learning al-
gorithm shows its advantages over the traditional algorithm. It is consistent with literature
research. Wang et al. [69] used LR, GRNN (radial basis function network), BPNN (back
propagation neural network), and DBN models to estimate the snow thickness of Alaska,
and R2 is 0.48, 0.72, 0.80, and 0.85 respectively, and The DBN model performed the best.
Bai et al. [70] used the DBN model to carry out analog detection of gas turbines, and R2

was 0.11 higher than that of the LR model. Duan et al. [71] estimated rice biomass using the
DBN model, and compared it with the LR model, R2 increased by 0.12. However, it should
be noted that we only apply one type of deep learning model to model AGB. Other deep
learning models (such as CNN and RNN) further consider the spatial structure relationship
between feature factors, and whether they can better estimate AGB is worthy of further
research [72]. Deep learning is a promising modeling method for AGB estimation, but
there is still room for improvement.

5.2. K-DBN Alleviate the Overestimation and Underestimation

The phenomena of low-value overestimation and high-value underestimate are in-
evitable problems in AGB estimation using remote sensing data. This is because there is
image pixel saturation, especially in the field of optical remote sensing. So such problems
were also inevitable. When the forest density is high to a certain extent and the forest has a
complex structure [73], the remote sensing image is no longer sensitive to the change of the
forest AGB, and the image information no longer changes with the increase of the forest
AGB, resulting in the saturation of the image information and the underestimation of the
high value of the forest AGB. In this paper, the traditional DBN algorithm is improved
and preceded by a clustering process, that is, the sample points are merged into different
clusters so that the biomass in different value ranges of high, medium, and low, has a
boundary [74], which avoids the high bias of low values and the low bias of high values.
The FCD has a strong correlation with forest biomass, especially in the high-value range
and low-value range, so it is a good clustering factor. In this paper, the K-DBN model is
constructed by adding FCD, and the accuracy of the model is greatly improved. Li et al. [21]
proved that canopy density is a good segmentation factor, which can improve the estima-
tion accuracy of the model. It is consistent with this paper. This effective method of K-mean
clustering before regression can improve the accuracy of the model. It is proved by the
literature research [75,76]. This study solved the problems of low-value overestimation and
high-value underestimation in the low-value range of 10–30 Mg/ha and the high-value
range of 80–150 Mg/ha, but there were still problems in biomass less than 10 Mg/ha and
more than 150 Mg/ha. In future research, we will try to find a new method to express
more differences in the forest vertical mechanism. We can consider hyperspectral images
and LiDAR data to obtain forest DBH and tree height parameters, combine both features
of the vertical and horizontal structure, or integrate environmental and climatic factors to
improve the estimation accuracy of forest biomass.

6. Conclusions

In this study, Landsat 8 OLI and Sentinel-1A image datasets were used to estimate
the AGB in Guizhou, China, a typical karst area, using the deep learning algorithm (DBN),
which improved the estimation accuracy for forest AGB and provided data support for the
study of forest productivity, carbon sink calculation, and rocky desertification control. The
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NFCI data were used as ground samples, vegetation index, and texture feature factors were
extracted. The determination coefficient R2 of DBN is 0.602, which is 0.208, 0.101 higher
than that of the traditional linear model and RF model. In order to solve the common
problems of low-value overestimation and high-value underestimate in the AGB estimation
model, this study introduced FCD and used K-means to cluster the FCD into three grades,
namely, thin, medium, and thick, to design a K-DBN model. The results showed that
the estimation accuracy of the forest AGB of the K-DBN model was further improved,
and R2 reached 0.848. The K-DBN model was used to map the AGB in the study area in
2015, which can provide data support for the study of ecological environment, carbon sink
calculation, and rocky desertification control.
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Appendix A

Table A1. The classification basis of forest types.

Forest Type Division Criteria Dominant Tree SPECIES group

BLF

Broad-leaved pure forest (single
broad-leaved tree stock ≥65%) and

broad-leaved mixed forest (total
broad-leaved tree stock ≥65%)

Birch, sweetgum, eucalyptus,
Robinia pseudoacacia, locust, alamo,
Paulownia, camphor tree, Camphora
officinarum, other broad-leaved trees

CCF

Coniferous pure forest (single
coniferous tree stock ≥65%) and

coniferous mixed forest (total
coniferous tree stock ≥65%)

Pinus armandi, cedarwood, Keteleeria
fortunei, Pinus yunnanensis,

Cryptomeria fortunei, masson pine,
metasequoia, and other pine trees

MXF

Coniferous and broad-leaved mixed
forest (the total volume of

coniferous or broad-leaved trees
accounts for 35~65%)

Coniferous and broad-leaved trees
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Appendix B

Table A2. List of variables.

Variable Type Variation
Number Variable Name Spectral Bands and

Vegetation Indices Formula

Reflectance 6 Bands Red, Green, Blue, NIR,
SWIR1, and SWIR2

Vegetation Index 30

ARVI Atmospherically Resistant
Vegetation Index (NIR− 1.7× Red + 0.7× Blue)/(NIR + 1.7× Red− 0.7× Blue) Huete, et al. [77]

CVI Chlorophyll II Vegetation
Index (NIR× Red)/Green2 Vincini, et al. [78]

DVI Difference Vegetation Index NIR− Red Tucker, et al. [79]

EVI Enhanced Vegetation Index 2.5(NIR− Red)/(IR + 6× Red− 7.5× Blue + 1) Huete, et al. [80]

GARI Green Atmospherically
Resistant Index

NIR−[Green−γ(Blue−Red)]
NIR+[Green−γ(Blue−Red)]

Gitrlson, et al. [81]

GDVI Green Difference Vegetation
Index

(
NIR2 − Red2

)
/
(

NIR2 + Red2
)

Wu, et al. [82]

GNDVI Green Normalized Difference
Vegetation Index ( NIR−Green)/(NIR + Green) Gitelson, et al. [83]

GRVI Green Ration Vegetation
Index NIR/Green− 1-1 Sripada, et al. [84]

GSAVI Green Soil Adjusted
Vegetation Index 1.5× (NIR− Green)/(NIR + Green + 0.5) Sripada, et al. [85]

IPVI Infrared Percentage
Vegetation Index NIR/(NIR+Red) Crippen, et al. [86]

LAI Leaf Area Index 3.618× EVI − 0.118 Boegh, et al. [87]

MSRI Modified Simple Ration
Index (NIR/Red− 1)/

√
(NIR/Red) + 1 Chen, et al. [88]

MSAVI2 Modified Soil Adjusted
Vegetation Index 2

(
2× NIR + 1−

√
(2× NIR + 1)2 − 8× (NIR− Red)

)
/2 Qi, et al. [89]
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Table A2. Cont.

Variable Type Variation
Number Variable Name Spectral Bands and

Vegetation Indices Formula

NDVI Normalized Difference
Vegetation Index ( NIR− Red )/(( NIR + Red )) Huete, et al. [80]

NLI Non-Linear Vegetation Index
(

NIR2 − Red
)

/
(

NIR2 + Red
)

Geol, et al. [90]

OSAVI Optimized l Adjusted
Vegetation Index (NIR− Red)/(NIR + Red + 0.16) Rondeaux, et al. [91]

RDVI Renormalized Difference
Vegetation Index (NIR− Red)/

√
(NIR + Red) Roujean, et al. [92]

RVI Ratio Vegetation Index Red/NIR Towers, et al. [93]

SAVI Soil Adjusted Vegetation
Index 1.5× (NIR− Red)/(NIR + RED + 0.5)

Jordan, et al. [94], Huete,
et al. [95]

SLAVI Specific Leaf Area Vegetation
Index NIR/(Red + SWIR) Huete, et al. [95]

SR Simple Ratio Index SR NIR/Red Birth, et al. [96], Colombo,
et al. [97]

TCA Tasseled Cap Angle arctan (TCG/TCB) Powell, et al. [98]

TCD Tasseled Cap Distance (TCB× TCB− TCG× TCG)− 2 Duane, et al. [99]

TCDI Tasseled Cap Disturbance
Index (TCB− (TCG + TCW)) Healey, et al. [100]

TGI Triangular Greenness Index ((Red− Blue)(Red− Green)− (Red− Green)(Red− Blue))/2 Hunt, et al. [101,102]

VARI Visible Atmospherically
Resistant Index (Green− Red)/(Green + Red− Blue) Gitelson, et al. [103]

TCW Tasseled Cap Wetness 0.1446TM1 + 0.1761TM2 + 0.3322TM3 + 0.3396TM4 − 0.6210TM5
− 0.4186TM7 Price, et al. [104]

TCG Tasseled Cap Greenness 0.2728TM1 − 0.2174TM2 − 0.5508TM3 + 0.7221TM4 + 0.0733TM5
− 0.1648TM7 Rogan, et al. [105]

TCB Tasseled Cap Brightness 0.2909TM1 + 0.2493TM2 + 0.4806TM3 + 0.5568TM4 + 0.4438TM5 +
0.1706TM7

Luneetta, et al. [106],
Price, et al. [104]
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Table A2. Cont.

Variable Type Variation
Number Variable Name Spectral Bands and

Vegetation Indices Formula

TDVI Transformed Difference
Vegetation Index 1.5× (NIR− Red)/

√
NIR2 + Red + 0.5 Bannari, et al. [107]

Texture feature 144 GLCM
Gray-level co-occurrence

matrix (CON, DIS, AVG, IDM,
ENT, ASM, VAR, and COR)

(Contrast, dissimilarity, sum average, inverse difference moment,
entropy, angle second moment, variance, and correlation) (window

sizes of 3 × 3, 5 × 5, and 7 × 7 pixels)

Sentinel-1A

2 Bands VV and VH

48 GLCM
Gray-level co-occurrence

matrix (CON, DIS, AVG, IDM,
ENT, ASM, VAR, and COR)

(Contrast, dissimilarity, sum average, inverse difference moment,
entropy, angle second moment, variance, and correlation)
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