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Abstract: Sea fog is a precarious weather disaster affecting transportation on the sea. The accuracy
of the threshold method for sea fog detection is limited by time and region. In comparison, the
deep learning method learns features of objects through different network layers and can therefore
accurately extract fog data and is less affected by temporal and spatial factors. This study proposes a
scSE-LinkNet model for daytime sea fog detection that leverages residual blocks to encoder feature
maps and attention module to learn the features of sea fog data by considering spectral and spatial
information of nodes. With the help of satellite radar data from Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP), a ground sample database was extracted from Moderate Resolution Imaging
Spectroradiometer (MODIS) L1B data. The scSE-LinkNet was trained on the training set, and
quantitative evaluation was performed on the test set. Results showed the probability of detection
(POD), false alarm rate (FAR), critical success index (CSI), and Heidke skill scores (HSS) were 0.924,
0.143, 0.800, and 0.864, respectively. Compared with other neural networks (FCN, U-Net, and
LinkNet), the CSI of scSE-LinkNet was improved, with a maximum increase of nearly 8%. Moreover,
the sea fog detection results were consistent with the measured data and CALIOP products.

Keywords: sea fog; MODIS; CALIOP; scSE-LinkNet

1. Introduction

Sea fog is a precarious weather phenomenon that appears when water vapor near the
surface is condensed to form suspended water droplets [1]. It can result in the horizontal
visibility of sea being less than 1 km and threatens the safety of navigation, aviation,
and transportation, which in turn can affect the economy and threaten lives. More than
50 foggy days occur annually over the coast of China, and more than 50% of accidents in the
Yellow Sea have happened when experiencing fog [2]. Consequently, effective monitoring
and identification of sea fog is crucial for safe navigation and aviation.

In the case of sea fog, human-recorded observations cover only a limited area over a
short period of time. Ground stations and buoy stations for sea fog are sparse, meaning
there are great limitations in observation frequency, time, and spatial coverage. Earth
observation (EO) satellites offer cost-effective and timely images covering large areas with
high temporal and spatial resolutions [3]. They have therefore become indispensable
technical means for real-time observation of the occurrence, development, and extinction
of sea fog. However, daytime sea fog detection is still a significant problem because of the
similarity in spectral characteristics of fog and other types of cloud (middle/high level
clouds, stratus clouds, and low clouds) [4].

The radiance threshold and brightness temperature differential method [5–13] is
most commonly used for daytime sea fog detection in national and international scales
worldwide. For example, Deng [14] used a multiband threshold method for MODIS data to
detect daytime sea fog in the South China Sea and validated it using sea fog observations
from the coastal regions. However, the use of a fixed threshold might be inaccurate and
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inflexible because of the seasonal variation of time. Dynamic thresholds can solve this
problem to some extent [15–17]. The threshold method is widely used as it is simple and
fast. However, the traditional threshold method generally has some problems, such as
inaccurate division of cloud and fog in the cloud–fog mixing area and rough extraction of
fog and stratus boundaries.

Based on the above problems, it is difficult to accurately distinguish sea fog and cloud
in the cloud–fog mixing area with optical satellites because the optical properties between
them are similar, especially for sea fog and low stratus. The main difference between sea
fog and stratus is whether the cloud base meets the sea surface. Therefore, the most direct
and reliable way to distinguish them is to obtain the height of the base of stratus and sea fog.
With the ability to observe the vertical structure of the atmosphere, satellite radar data from
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/CALIOP
can penetrate clouds and aerosols to obtain accurate sea fog. They can be gradually used
as auxiliary data combined with the threshold method. CALIOP data is also used to verify
sea fog detection results. Wu et al. used measurement data acquired by CALIOP to detect
sea fog [18]. Xiao et al. presented an algorithm for daytime sea fog detection over the
Greenland Sea based on MODIS and CALIOP data [19]. Wan et al. used CALIOP assisted
MODIS data to extract sea fog sample points and analyzed the sea fog spectral response
curve from MODIS data [20]. These studies combined CALIOP data with other methods
and used CALIOP data to verify sea fog detection results, thereby providing a method to
accurately obtain sea fog samples and further determine sea fog and stratus boundaries.

Additionally, a number of studies have taken a different approach for sea fog detection
using machine learning. This includes methods such as the expectation maximization
algorithm (EM) [21] and decision tree (DT) [22] to precisely differentiate between stratus
and sea fog. Although the introduction of machine learning further clarifies the stratus and
sea fog boundaries, the process is more cumbersome because of the transformation and
visualization of the detection results.

Recently, a few studies have used deep learning method for fog detection. For example,
Drönner et al. proposed a novel cloud classification method based on convolutional
neural network (CNN) called the cloud segmentation CNN (CS-CNN) [23]. Liu et al.
presented a daytime sea fog retrieval model that used fully convolutional networks (FCN)
for preprocessing and fully connected condition random field (CFD) for postprocessing [24].
Zhu et al. used the U-Net deep learning model to construct a sea fog detection model
for MODIS multispectral images [25]. Jeon et al. proposed an approaching method to
identify sea fog by applying a convolution neural network transfer learning (CNN-TL)
model [26]. Considering the above methods, sea fog detection can be carried out by
judging the category of each pixel in remote sensing images, which involves semantic
segmentation of the deep learning method. The multilayer network in the deep learning
method can mine data features as much as possible and directly obtain the detection results.
The detection accuracy of the deep learning method is significantly better compared to
the threshold method and machine learning method. However, due to the few training
samples and structural limitations of the neural network, there are still some problems,
such as insufficient training of the network and inaccurate division of stratus and sea fog
boundaries. There are two problems in the application of deep learning method for sea
fog detection: (1) The selection of deep learning samples is greatly affected by subjectivity,
especially in the mixed areas of sea fog and clouds. There is lack of real ground object
category information, which leads to inaccurate labeling of sea fog and clouds and in turn
affects the accuracy of subsequent model training. (2) The number of sea fog samples
is small, which leads to poor training effects in large-scale networks. The boundaries of
features extracted by conventional semantic segmentation networks are relatively rough.

In this study, we applied MODIS data together with CALIOP vertical feature mask
(VFM) products to make a ground truth label that would improve the accuracy of manual
sample selection. Then, a scSE-LinkNet deep learning model for daytime sea fog detection
was developed in which the LinkNet semantic segmentation backbone was combined with
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attention mechanism. The model used in this study obtained better detection result with
a small sample size dataset. Finally, according to international definitions, fog reduces
visibility below 1 km (0.62 miles) [27]. Therefore, we used visibility data which from
International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and meteorological
station data, and CALIOP VFM products for comparison and validation.

One of the primary contribution of this study is that it determines whether the com-
bined use of MODIS data and CALIOP VFM products improves the accuracy of ground
truth label, especially in mixed areas of sea fog and stratus. Another major contribution
is the development of a new model called scSE-LinkNet, which combines LinkNet with
attention mechanism for sea fog detection. The model can extract effective features from
channel and spatial training samples with only a small number of training samples to
accurately determine sea fog area.

2. Materials
2.1. Study Area

The study area included the Bohai Sea, the Yellow Sea, and their surrounding waters
in China. In Figure 1, the red square represents the study area, which ranges between
longitudes of 117◦E and 127◦E and latitudes of 30◦N and 42◦N. This area sees frequent
occurrence of advection fog in spring and summer because the warm moist air over the
gulf stream often blows over the colder waters of the sea surface in this region. Fog in the
Yellow Sea has a wide distribution range, low atmospheric visibility, and long duration.
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Figure 1. Geographical location of the study area.

2.2. Datasets

Different categories of data were employed in this study, each of which is briefly
described below. It should be noted that the fog monitoring report used Chinese Standard
Time (CST) time, while the other data used UTC time.
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2.2.1. Aqua/MODIS Data

MODIS is one of the Aqua polar orbiting satellite payloads. The spatial resolution
with MODIS LIB data is 1 km, with 36 spectral channels ranging from 0.4 to 14.4 µm.
We used MYD021KM from version 6.0 and the geolocation product MYD03 from 2016 to
2018, which was obtained from https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on
12 December 2021).

2.2.2. CALIPSO/CALIOP Data

CALIPSO/CALIOP and Aqua/MODIS were both members of the satellite A-Train
up to September 2018, with passing times only 1.5 min apart [18], which meant we could
obtain accurate type of ground pixels by superimposing two kinds of data. CALIOP
data can penetrate clouds and aerosols to obtain vertical profile structure information
of the atmosphere. CALIOP Level 2 VFM products describe the vertical structure of the
atmosphere, with vertical resolution of 30 m between −0.5 and 8.2 km and horizontal
resolution of 333 m, including subsurface, surface, aerosol, clouds, clear air, etc. CALIOP
VFM products were downloaded from https://subset.larc.nasa.gov/calipso (accessed on
12 December 2021) to obtain the sample points of sea fog and other sea object samples
(including cloud and sea surface samples) to assist manual interpretation of MODIS data.

2.2.3. Fog Monitoring Report

Fog monitoring reports are provided by China Ecological Remote Sensing Information
Service Network (CERSISN) based on the fog recognition results of FY series satellite
data. They are generally released at 7:30–9:30 (CST time) every morning and include the
location and range of fog, which provide a reference for the date of sea fog events. We
used fog reports from the time frame 2016 to 2018, and the data were obtained from
http://rsapp.nsmc.org.cn/uus/index.jsp/ (accessed on 30 October 2021).

2.2.4. ICOADS Data

ICOADS data is the world’s most extensive surface marine meteorological data collec-
tion and can be downloaded from https://icoads.noaa.gov/ (accessed on 12 December
2021). As it contains observations from many different locations, ICOADS underpins a
wide range of climate products, including the global surface temperature record, wind,
pressure, humidity, clouds, and estimates of air–sea exchange [28]. In addition, we used
the visibility data of ICOADS from 2016 to 2018 to validate the sea fog detection results.

2.2.5. Meteorological Station Data

Meteorological station data are provided by China Meteorological Administration
and includes visibility data, relative humidity data, dew point temperature data, wind
speed and wind direction data. The measured data from meteorological station are hourly
observations. We used data from 2016 to 2018. The detailed station information is shown
in Table 1.

Table 1. Meteorological station information along the study area.

Station Name Station Number Latitude and Longitude

Dandong 54497 (40.03◦N, 124.33◦E)
Dalian 54662 (38.91◦N, 121.64◦E)
Weihai 54776 (37.40◦N, 122.70◦E)
Yantai 54863 (36.78◦N, 121.18◦E)

Qingdao 54857 (36.07◦N, 120.33◦E)
Rizhao 54945 (35.47◦N, 119.56◦E)
Tanggu 54623 (39.05◦N, 117.72◦E)

https://ladsweb.modaps.eosdis.nasa.gov/
https://subset.larc.nasa.gov/calipso
http://rsapp.nsmc.org.cn/uus/index.jsp/
http://rsapp.nsmc.org.cn/uus/index.jsp/
https://icoads.noaa.gov/
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3. Method

Figure 2 demonstrates a flowchart of the proposed method for daytime sea fog de-
tection, including ground object sample production, model training, and validation. The
construction of the scSE-LinkNet deep learning model based on LinkNet and squeeze-and-
excitation networks (SENet) is the most important process in this study. The details of each
backbone are provided in the following sections.
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3.1. LinkNet Backbone

By performing multiple downsampling operations in the encoder of general encoder–
decoder networks, some spatial information may lost. It is difficult to recover the lost
information using only the downsampled output of the encoder. In this study, we used
LinkNet backbone as the basic structure to solve this problem. Compared with the normal
convolution, residual network (ResNet) solves the problem caused by the depth of the
network during training. LinkNet uses ResNet18 as its encoder, which is a fairly light
network. The input of each layer in the encoder is bypassed to the output of its correspond-
ing decoder in LinkNet, which is aimed at recovering lost spatial information that can
be used by upsampling operation in the decoder [29]. In addition, LinkNet uses channel
reduction scheme to reduce the decoder parameters as the decoder is sharing knowledge
learnt by the encoder at every layer. Details of the overall framework is shown in Figure 3.
LinkNet uses the residual module to replace the convolution module as its encoder and
uses ResNet18 pretraining parameters to optimize network. The decoder of LinkNet uses
deconvolution and 1 × 1 convolution kernel to reduce the number of decoder parameters.
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Figure 3. LinkNet architecture: (a) the whole structure of LinkNet, (b) encoder block of LinkNet, and
(c) decoder block of LinkNet. m represents input feature map; n represents output feature map.

3.2. SENet Backbone

The SENet can be regarded as one of the attention mechanisms. Convolutional neural
networks learn a new feature map from the input feature map through the convolution
kernel, which is used to fuse more features spatially or to extract multiscale spatial infor-
mation, such as the multibranch structure of the inception network [30]. For feature fusion
of the channel dimensions, the convolution operation defaults to fusion of all channels of
the input feature map. The innovation of the SENet is that it pays more attention to the
importance of different channels, which means the model can automatically learn to use
global information to selectively emphasize informative features and suppress less useful
ones. The squeeze-and-excitation (SE) module proposed by SENet is shown in Figure 4.
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Figure 4. SE module. Ftr(·, θ) represents any transformation of feature maps, Fsq(·) represents the
squeeze transformation, Fex(·, W) represents the excitation transformation, and Fscale(·, ·) represents
the scale transformation.

In Figure 4, Ftr(·, θ) is any transformation mapping the input x to the feature maps u.
In one method, the feature u first passes through a squeeze operation (Fsq(·)) and then
passes through an excitation operation (Fex(·, W)), which takes the form of a simple self-
gating mechanism. In another method, the feature u passes through a scale transformation
(Fscale(·, ·)). The weights of the two methods can generate the output of the SE block, which
can be fed directly into subsequent layers of the network [31].

As the main part of SENet, the SE module performs attention or gating operations on
the channel. This attention mechanism pays more attention to the channel with maximum
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information volume and suppresses the unimportant channel features. The SE module is a
universal structure that can be embedded in the existing network architecture.

3.3. scSE-LinkNet Backbone

scSE-LinkNet is a model obtained by applying the SE module to the LinkNet (Figure 5).
In this study, the scSE module was added to the LinkNet decoding structure by considering
the spectral and spatial information of the nodes to improve the model’s ability to extract
global information. Using ELU activation function instead of ReLU improves the robustness
of the noise and better solves the gradient dispersion problem in the training process. In
addition, the focal loss replaces the cross entropy loss, which improves the problem of
decreased training accuracy caused by sample imbalance in the training process.
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Figure 5. The structure of scSE-LinkNet.

The attention mechanism SE module focuses on the features in spatial and different
channels. In this study, we added scSE module in the LinkNet decoding part, including
cSE and sSE modules, which enhanced the meaningful features and suppressed useless
features in channel and spatial dimensions. The structure of the scSE module is shown in
Figure 6.
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This recalibration encourages the network to learn more meaningful feature maps,
which is relevant both spatially and channel-wise. In this study, we added the scSE block
to the decoder of LinkNet (Figure 7).
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The purple part of the network shown in Figure 7 is the cSE module, and the green
part of the network is the sSE module. The cSE module is similar to the channel attention
module in the BAM module, which only excites channel-wise. The calibrated information
of the channel features is obtained through the global pooling layer and two 1× 1× 1
convolution processes. The sSE module (Figure 7) is the realization of the spatial attention
mechanism, which uses 1 × 1 × 1 convolution to extract spatial information from the
feature map. The scSE module, which combines the output with cSE and sSE modules,
has concurrent spatial and channel SE blocks that recalibrate the feature maps separately
along channel and space [31]. This operation extracts more information both spatially and
channel-wise. The scSE module is added after the convolutional layer of each layer of the
decoder, and the output of the previous decoder layer is originally directly spliced with
the output of the corresponding encoder layer as the input of the next decoder layer. After
adding attention block, the input is processed by the scSE module and then enters into the
next decoder layer to express the spatial and channel attention.

4. Experiment
4.1. Data Processing

Combined with the sea fog monitor report from China’s meteorological observatory,
we selected 60 MODIS images from 2016 to 2018 when sea fog events occurred near the
Bohai Sea and Yellow Sea in China. Then, we used CALIOP VFM products to assist the
manual interpretation of MODIS images to build a ground sample database for training
the deep learning model. The ground sample set was produced from the time sequence of
sea fog event occurrence from 2016 to 2018, and the time noted below are UTC time.
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The main preprocessing steps of MODIS data include radiometric calibration, solar
zenith angle correction, brightness temperature calculation [32], geometric correction [33],
and land–ocean masking. According to previous research on the correlation analysis
results of MODIS channels on sea fog characteristics [34], we selected three bands to make
sea fog samples, namely a visible channel (band 1), a near infrared channel (band 17),
and a longwave infrared channel (band32) with central wavelengths of 0.645, 0.905, and
12.02 µm, respectively. In order to improve the accuracy of manual interpretation samples,
the CALIOP VFM product was used to assist in interpreting the features on the MODIS
images. The superposition result of MODIS data and CALIOP data is shown in Figure 8.
The CALIOP VFM product cannot directly judge whether there is sea fog. Referring to the
work by Zhao [35] and Liu [24], we considered cloud top height of less than 1 km, cloud
base close to the surface, or cloud area with no signal as the sea fog/low cloud.
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Figure 8. The superimposed result of MODIS and CALIOP data. (a) True color red–green–blue (RGB) images from 13 May
2017 at 05:00 UTC; the yellow line represents the CALIOP trajectory line, and the blue points represents sea fog points. (b)
CALIOP VFM data profile. The sample points in red squares in (a,b) are sea fog samples.

Referencing the region growing algorithm [36] and the Tobler’s First Law of Geogra-
phy that everything is related to everything else, but near things are more related to each
other, it is believed that the CALIOP trajectory single point pixel within a certain range,
such as 3× 3 pixels, is the same as the ground type where the CALIOP trajectory single
point pixel is masked. Finally, we obtained the true label of the ground samples with two
classes containing sea fog samples and other (middle/high cloud, stratus clouds, low cloud,
and sea surface) samples. The size of the MODIS images were different at different times.
Moreover, larger remote sensing images that need to be classified are directly input into
the network, which may cause memory overflow. To make the input image size uniform,
the original image and the corresponding label were randomly cropped to the same size of
256× 256 for subsequent model training with a total of 42,598,400 pixels, of which 6,553,140
pixels were sea fog pixels.

The MODIS band value used in this study included reflectance and brightness tem-
perature with different numerical ranges. To avoid reducing the training accuracy due to
excessive numerical differences, the sample data were standardized before inputting to the
network. The specific formula is as follows:

X∗ = (X− E(X))/
√

D(X), (1)
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where X∗ is the normalized result, X is the value before normalization, E(X) is the expecta-
tion of X, and D(X) is the variance of X. After normalization, the expected value of the
sample was 0 and the variance was 1.

4.2. Experimental Settings

In this study, the sample set was randomly divided into training set (520 images) and
test set (130 images) in the ratio of 8:2. The training set was used to train the scSE-LinkNet
model, and the test set was used to calculate various evaluation indicators and evaluate
the generalization ability of the model.

In the sea fog detection field, we have access to fewer ground truth labels of sea fog, so
the weights of the model cannot converge to the global optimum values, thus limiting the
model performance. Data augmentation can help us generate new samples to compensate
for the small training datasets [37]. Before model training, the samples in the training set
were randomly flipped and rotated at any angle of 0◦ to 180◦ before each iteration.

For model optimization, instead of ReLU, we used the ELU activation function pro-
posed by Clevert [38] as it has an exponential shape and provides a nonlinear modeling
capability for the network. The mathematical expression is as follows:

f (x) =
{

x, x > 0
α(exp(x)− 1), x ≤ 0

}
, (2)

f ′(x) =
{

1, x > 0
f (x) + α, x ≤ 0

}
, (3)

where x is an input feature, and α is an adjustable parameter that controls the value to
which an ELU saturates for negative net inputs [38].

There was a large difference in the number of samples of sea fog and other ground
objects, with the number of other ground objects being the largest and sea fog being the
smallest. Therefore, in this study, we used focal loss function [39] to replace the cross
entropy function, which can reduce the weight of the large number of samples in training
and improve the sea fog detection accuracy. The formula of the focal loss function is
as follows:

L f l =

{
−(1− p̂)γ log( p̂), i f y = 1
− p̂γ log(1− p̂), i f y = 0

}
, (4)

pt =

{
p̂, i f y = 1

1− p̂, otherwise

}
, (5)

where the focusing parameter γ smoothly adjusts the rate at which easy samples are
downweighted, p̂ is the model’s estimated probability for the label y = 1, pt reflects the
proximity between the true label and predicted category [39].

In this work, scSE-LinkNet was implemented using the open-source framework
PyTorch [40]. The specific information of network training is shown in Table 2.

Table 2. The specific information of network training.

Platform Version CPU GPU

Windows 10 Python 3.7
PyTorch 1.2.0

AMD Ryzen 5 3600
CPU (3.80 GHz)

NVIDIA 2060 SUPER
GPU (8 GB RAM)

Considering both resources and efficiency, Adam with a learning rate of 0.001 was
chosen as the optimization algorithm as it has strong robustness in the selection of super
parameters. The learning rate decay factor was 0.0001, and the learning rate adjustment
formula is as follows:

lrnew = lrold × 1/(1 + decay× N), (6)
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where N is the number of training epochs, decay is the learning rate decay, and lr is the
learning rate. While training the localization task, the training data batch size was set to 8,
and 150 epochs were trained on the network. When the accuracy no longer improved, the
training was stopped. The final model training accuracy was 96.9%.

4.3. Experimental Results
4.3.1. Performance Comparison of CNN Models

In order to show the experimental results of the scSE-LinkNet model, we used samples
from the test set to obtain the sea fog detection results, which were compared with the
results of conventional semantic segmentation network (FCN, U-Net, and LinkNet). The
sea fog detection results are shown in Figure 9.
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As shown in Figure 9a,b, compared with other models, the sea fog detection results of
scSE-LinkNet could identify the edge of sea fog more accurately and could better outline
the sea fog distribution area. However, there was some blurring of sea fog edge recognition
with the scSE-LinkNet model, as shown in Figure 9c–e, which may be related to the feature
of the sea fog sample itself. Overall, the sea fog detection result with scSE-LinkNet model
was the closest to the true label, while the result with U-Net was the worst.
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To further evaluate the difference in sea fog detection results, we quantitatively
evaluated different algorithms on the test set. With hits, false alarms, misses and correct
negatives indicated as H, F, M and C, the definitions of POD, FAR, CSI, and HSS are
as follows:

POD =
H

H + M
(7)

FAR =
F

H + F
(8)

CSI =
H

H + F + M
(9)

HSS =
2(H × C−M× F)

(H + M)× (M + C) + (H + F)× (F + C)
(10)

We used the training set (520 images) to train different models and used the test set
(130 images) to calculate the total number of fog and non-fog pixels according to the labels
of the samples. Taking 130 images of the experimental data, the POD, FAR, CSI, and HSS
of the sea fog detection results are shown in Table 3.

Table 3. The evaluation index of different algorithms.

CNN Models POD FAR CSI HSS

FCN 0.909 0.197 0.743 0.819
U-Net 0.880 0.202 0.719 0.799

LinkNet 0.916 0.171 0.771 0.841
scSE-LinkNet 0.924 0.143 0.800 0.864

From Table 3, it is clear that scSE-LinkNet had the highest POD and CSI, and its FAR
was the lowest. scSE-LinkNet had a good performance improvement compared to LinkNet
and U-Net, especially the CSI, which was improved by 8.1%. Compared with the FCN
method, scSE-LinkNet improved the POD and CSI by 1.50% and 5.7%, respectively. It
was clear that adding the scSE module to the decoder of the LinkNet resulted in better
performance. Therefore, it can be concluded that our proposed model achieved higher
accuracy in the test set.

The size of the sea fog detection images obtained through the network should be
the same as the input size of the training images. In this study, the input training sam-
ples were 256× 256, and the sea fog detection results predicted by the model were also
the same size. However, the original MODIS images were relatively large, generally
thousands× thousands pixels, which cannot directly be input into scSE-LinkNet for pre-
diction. Therefore, before using MODIS images for sea fog detection, we needed to crop
the image into a series of images with the size of 256× 256 and input them into the model
for prediction [41]. Then, we restored the prediction results to the original image size
according to the crop order to obtain the final sea fog detection results.

4.3.2. Validation with Measured Data

Considering scSE-LinkNet is among the semantic segmentation networks that use
two-dimensional images, it can be difficult to achieve quantitative verification. In this
study, we selected sea fog events in April 2018 to qualitatively validate the sea fog detection
results with different semantic segmentation model by ICOADS data and meteorological
station data. The distribution of the measured data from ICOADS and meteorological
station data are shown in Figure 10.
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Figure 10. Distribution of the measured data in April 2018. The yellow points are measured data
from meteorological station, and the purple points are measured data from ICOADS.

Figure 11 shows the sea fog detection results by different semantic segmentation
models, which were overlaid with measured data to achieve qualitative analysis of sea fog
detection results. The first column shows the number of sea fog cases on 1 April 2018 at
05:30 UTC, 2 April 2018 at 04:35 UTC, and 30 April 2018 at 05:00 UTC. The second column
shows the true color RGB images. The other columns show the detection results from FCN,
U-Net, LinkNet, and scSE-LinkNet. As shown in Figure 11a, the sea fog detection results
from different models were consistent with the measured data. The sea fog detection
results of the FCN model did not match one measured point, and the detection results from
the other models were consistent with the measured data in Figure 11b. As can be seen in
Figure 11c, the sea fog detection results obtained by all models were not consistent with the
measured data obtained by the Dalian station. It may be that there was mist at the Dalian
station that the constructed model could not identify.

4.3.3. Validation with CALIOP VFM Products

In this study, we used the CALIOP VFM product to further validate the scSE-LinkNet
algorithm of sea fog detection. We selected the sea fog event at 05:00 UTC on 8 April 2016
to validate the detection result (Figure 12b). At this time, the main part of the fog area was
in the middle of the Yellow Sea, north to the northeast coast of North Korea, and east to the
Korean Peninsula. The red line in Figure 12a is the trajectory of the CALIOP VFM product,
and the sea fog points are highlighted in blue.
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Figure 11. The sea fog detection results with different models. The white areas represents sea fog detection results, and the
blue points represent the measured data consistent with sea fog detection results during the time of sea fog occurrence. (a) 1
April 2018 at 05:30 UTC, (b) 2 April 2018 at 04:35 UTC, (c) 30 April 2018 at 05:00 UTC.

As mentioned in Section 4.1, we considered cloud top height of less than 1 km, cloud
base close to the surface, or cloud area with no signal as the sea fog/low cloud. Figure 12
shows the sea fog detection results and CALIOP VFM data profile at 05:00 UTC on 8 April
2016. The points in Figure 12a,b are labeled as A to B from south to north. Combined with
the VFM profile (Figure 12c), it can be seen that the cloud top height in region A (125.514◦N,
31.772◦E) to B (125.169◦N, 32.994◦E) was below 1 km, and the height of the cloud base
(purple parts) was similar to the surface (green parts), which is consistent with the criteria
for fog. The no-signal area in gray is regarded as thicker sea fog or low cloud, and radar
signal cannot penetrate them. The detection result of sea fog was consistent with the VFM
profile. Judging from the sea fog detection result from scSE-LinkNet, the main part of the
sea fog area was mostly the same as the true MODIS image. The sea fog pixels from A to B
were fully consistent with the CALIOP trajectory, indicating that the detection result was
credible to a certain extent.
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5. Discussion

The scSE-LinkNet deep learning model for daytime sea fog detection proposed in this
study combines scSE module with LinkNet to obtain better sea fog detection results. In the
experiment, the initial problem was the sample accuracy from manual interpretation. In
order to improve the accuracy of samples, we used fog monitoring reports to select the date
of sea fog events and then used CALIOP VFM products to assist manual interpretation,
which reduced the subjectivity of selecting samples. The second problem was choosing
a suitable network with fewer training samples. The channel reduction scheme and
ResNet18 pretraining parameters in scSE-LinkNet reduce the training parameters, and the
scSE module in the decoder layer can learn the spectral and spatial information of the nodes,
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which can improve the ability of the model to extract global information. Compared to
other semantic segmentation networks, our proposed model achieved the best performance
for both FAR and CSI (Table 3).

In order to prove that scSE-LinkNet has the advantage of using fewer training samples,
we designed a sensitive analysis. In this experiment, we set the minimum number of
training set to 220 images and increased them in intervals of 50 images until the maximum
number of images reached 520. Moreover, eight different training sets were used to train
scSE-LinkNet. The trained models were then tested on the test set (130 images) to calculate
the POD, FAR, and CSI evaluation metrics. The distribution of POD, FAR, and CSI are
shown in Figure 13.
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As shown in Figure 13, the value of POD and CSI tended to increase with the number
of samples in the training set, and the value of FAR tended to decrease. When the number of
samples was greater than 420, the CSI was stable above 0.7, with a high accuracy rate of sea
fog detection. This demonstrates that scSE-LinkNet can be used for sea fog detection with
fewer training samples and that a training set with a sample size above 420 can achieve
better detection results.

Because 2D images were used in our model, it was difficult to calculate the evaluation
index between the sea fog results and measured data. To further learn the difference
between the model detection result and the measured value, we used measured data from
ICOADS and meteorological station for qualitative verification. The sea fog detection
results were consistent with the measured data. Then, we used CALIOP VFM products to
validate a single sea fog event. The verification result was consistent with the VFM profile,
thereby illustrating the accuracy of the sea fog detection result from scSE-LinkNet.

However, it should be pointed out that the recognition result of the model trained by
deep learning is greatly affected by the number and accuracy of training samples. Although
we tried our best to minimize the impact of subjectivity on sample production, the manual
interpretation of samples would have affected the sea fog detection results. How to use
other data to further improve the accuracy of manual interpretation of sea fog samples is a
worthy research in the future.
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6. Conclusions

In this study, a scSE-LinkNet model that utilizes MODIS images and CALIOP VFM
data was used for daytime sea fog detection. First, the accuracy of manual interpretation
was improved using MODIS data assisted by CALIOP VFM data, which helped improve
the accuracy of model training. Then, the scSE-LinkNet model was designed, which added
attention mechanism to each layer of the LinkNet decoders by considering the spectral
and spatial information of the nodes. The use of spatial relationship knowledge boosted
the performance and robustness of the module. In addition, the ELU activation function
and focal loss function alleviated the phenomenon of sample imbalance and improved the
accuracy of the model.

The sea fog detection results of scSE-LinkNet were consistent with ICOADS data,
meteorological station data, and CALIOP VFM products. The POD, FAR, CSI, and HSS
of the model in the test set were 0.924, 0.143, 0.800, and 0.864, respectively. Compared
with other algorithms, the scSE-LinkNet model had the highest CSI and the lowest FAR,
indicating that the model used in this study is feasible for daytime sea fog detection.
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