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Abstract: In recent years, the delay in sowing has become a major obstacle to high wheat yield in
Jiangsu Province, one of the major wheat producing areas in China; hence, it is necessary to screen
wheat varieties are resilient for late sowing. This study aimed to provide an effective, fast, and
non-destructive monitoring method of soil plant analysis development (SPAD) values, which can
represent leaf chlorophyll contents, for late-sown winter wheat variety screening. This study acquired
multispectral images using an unmanned aerial vehicle (UAV) at the overwintering stage of winter
wheat growth, and further processed these images to extract reflectance of five single spectral bands
and calculated 26 spectral vegetation indices. Based on these 31 variables, this study combined three
variable selection methods (i.e., recursive feature elimination (RFE), random forest (RF), and Pearson
correlation coefficient (r)) with four machine learning algorithms (i.e., random forest regression (RFR),
linear kernel-based support vector regression (SVR), radial basis function (RBF) kernel-based SVR,
and sigmoid kernel-based SVR), resulted in seven SVR models (i.e., RFE-SVR_linear, RF-SVR_linear,
RF-SVR_RBF, RF-SVR_sigmoid, r-SVR_linear, r-SVR_RBF, and r-SVR_sigmoid) and three RFR models
(i.e., RFE-RFR, RF-RFR, and r-RFR). The performances of the 10 machine learning models were
evaluated and compared with each other according to the achieved coefficient of determination (R2),
residual prediction deviation (RPD), root mean square error (RMSE), and relative RMSE (RRMSE) in
SPAD estimation. Of the 10 models, the best one was the RF-SVR_sigmoid model, which was the
combination of the RF variable selection method and the sigmoid kernel-based SVR algorithm. It
achieved high accuracy in estimating SPAD values of the wheat canopy (R2 = 0.754, RPD = 2.017,
RMSE = 1.716 and RRMSE = 4.504%). The newly developed UAV- and machine learning-based model
provided a promising and real time method to monitor chlorophyll contents at the overwintering
stage, which can benefit late-sown winter wheat variety screening.

Keywords: SPAD estimation; UAV; multispectral data; machine learning; late-sown winter wheat
variety screening
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1. Introduction

Wheat is one of the three major food crops in China. Jiangsu Province, located in the
lower reaches of the Yangtze River, is one of the major wheat production areas in China.
In recent years, the delay in rice maturity in this region has led to a significant delay in
subsequent winter wheat sowing. For example, the percentages of late-sown (seven or
more days later than local normal seed sowing date) wheat area in Jiangsu Province were
48.6%, 51.2%, and 59.6% in 2015, 2016, and 2017, respectively [1]. The delay in sowing
has become a major obstacle to high wheat yield; therefore, it is necessary to screen wheat
varieties suitable for late sowing. For example, optimal wheat varieties should be able to
maintain a certain amount of growth even at the overwintering stage [2]. In addition, wheat
in the lower reach of the Yangtze River often suffers from low-temperature frost damage
at the overwintering stage, which severely affects wheat growth and development [3];
hence, good wheat varieties should have strong resistance to low temperatures. Therefore,
accurately monitoring wheat growth status at the overwintering stage is critical for late-
sown winter wheat variety screening.

As an important pigment for photosynthesis, chlorophyll has a critical impact on a
plant’s ability to exchange material and energy with the external environment. Chloro-
phyll content can indicate crop growth status, primary productivity, and nitrogen use effi-
ciency [4]. Exposure to various kinds of stresses may reduce crop chlorophyll content [5];
so, chlorophyll content can provide information on a wheat variety’s tolerance capability
to endure stresses due to late sowing, low temperature, insufficient nitrogen application
and so on.

The traditional methods for measuring chlorophyll content are usually time-consuming,
laborious, and destructive to crop leaves [4]. Although the Soil and Plant Analysis Devel-
opment (SPAD) method is non-destructive, it can work only at limited measuring points,
and cannot provide the spatially continuous distribution of SPAD [6].

Late-sown wheat variety screening requires a large number of experimental plots. Bet-
ter monitoring wheat growth status may benefit from rapid, accurate, and non-destructive
estimation of wheat chlorophyll content in each plot. Remote sensing provides a great
potential for chlorophyll estimation over large regions [7].

Spectral vegetation indices (VIs) have been widely used to estimate vegetation chloro-
phyll content from spectral data [8]. Good vegetation indices are able to maximize sensitiv-
ity to the vegetation characteristics, while reducing the spectral effects due to atmosphere,
soil background, topography, and sensor view angle [9,10].

The VI of modified chlorophyll absorption in reflectance index (MCARI) that was
proposed by Daughtry et al. [11] is based on the reflectance of green, red, and red edge
bands, and this VI is sensitive to leaf chlorophyll variations. Using the reflectance of green,
red edge, and near-infrared (NIR) bands, Cao et al. [12] modified MCARI to propose a new
VI of modified chlorophyll absorption reflectance index 1 (MCARI1). They indicated that
the MCARI1 displayed quite significant correlations with rice’s above-ground biomass and
plant nitrogen uptake at each growth stage of rice.

The Medium Resolution Imaging Spectrometer (MERIS) terrestrial chlorophyll index
(MTCI) that was designed by Dash and Curran [13] is suitable for the estimation of chloro-
phyll content from the MERIS data. MTCI has become a frequently used VI to monitor
spatial variability of crop chlorophyll [14].

A 2-band VI of green chlorophyll vegetation indices (GCVI) that was proposed by
Gitelson et al. [15], using green and NIR bands, had good correlations with chlorophyll
content in maize and soybean canopy. The developed models could provide accurate
estimation of canopy chlorophyll contents, although calibration coefficients were different
for maize and soybean.

The chlorophyll vegetation index (CVI) that was developed by Vincini et al. [16] uses
the reflectance of green, red, and NIR broad bands. Vincini et al. [16] indicated that CVI
was specifically sensitive to leaf chlorophyll content at the canopy scale of sugar beet.
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Since hyperspectral data are composed of a large number of continuous and narrow
bands, a number of spectral indices have been proposed to estimate the chlorophyll content
of vegetation [17]. Main et al. [18] developed two red edge derivative based indices
(i.e., red edge position via linear extrapolation index and the modified red edge inflection
point index), and found that the two indices were consistent and robust in chlorophyll
content estimation in three crop species and a variety of savanna tree species. Jin et al. [19]
developed a spectral index of double-peak canopy nitrogen index I (DCNI I), and they
indicated that DCNI I produced accurate estimation of chlorophyll content in cotton.
However, hyperspectral images are difficult to obtain. These hyperspectral VIs cannot be
calculated from broadband multispectral data that are more readily available.

The spectral indices that were proposed for SPAD estimation use different spectral
bands and have very different equations. Their performances vary among different studies,
and none of them performed the best in all studies. More importantly, while most previous
studies in remote sensing of SPAD only involved single variety or a very small number
of varieties of a crop, very little research focused on the relationships between SPAD and
spectral indices that were impacted by a large number of varieties. Accurate estimation of
SPAD of various varieties is critical for late-sown wheat variety screening.

Traditional algorithms such as simple or multiple linear regressions have often been
used in remote sensing for crop biophysical and biochemical variable retrieval. In recent
years, machine learning algorithms (MLAs) have been employed increasingly. Different
from traditional algorithms, MLAs are data-driven, and they are able to autonomously
cope with linear correlations as well as solve strong nonlinear problems possessed by
agricultural and remote sensing variables [20].

Among a number of powerful MLAs, support vector regression (SVR), random forest
regression (RFR), and Artificial Neural Network (ANN) are most frequently used for
agricultural remote sensing [21]. Yang et al. [22] estimated green leaf chlorophyll density of
rice from hyperspectral reflectance measured over two experimental rice fields containing
two cultivars treated with three levels of nitrogen application. They found that SVR, the
regression version of support vector machine (SVM), largely improved the estimation
accuracy in comparison with the stepwise multiple regression (SMR). They indicated that
SVR deals better than traditional regression algorithms with non-linear processes that exist
in the relation between green leaf chlorophyll density and spectral data.

Similarly, an SVR-based model developed using the canopy spectral reflectance of
maize, measured by a handheld spectrometer, was demonstrated to be able to estimate
the chlorophyll content of maize canopy in the field non-destructively and rapidly [23].
Cavallo et al. [24] used RFR to predict total chlorophyll content of fresh-cut rocket leaves
from spectral data measured using a spectrophotometer. The developed RFR model could
provide accurate estimation of total chlorophyll content.

Although ANN is also widely used to estimate agricultural variables, it is not as
practical as SVR and RFR because it requires complex and time consuming procedures
such as selecting the number and size of hidden layers, setting the learning rate, obtaining
a large training dataset, and dealing with the problem of overfitting [20].

Prior to modeling, it is important to determine which variables should be included in
the model, using a suitable variable selection method. A good variable selection method
can select the smallest number and most efficient subset of variables from the original
set, which can improve the estimation power of the model and speed up the model
execution time [25].

Random forest (RF) is not only a regression algorithm but also a frequently used
variable selection method. This is because the importance of each variable can be calculated
using RF and ranked during RF model development [26]. Recursive feature elimination
(RFE) is another widely used method for variable selection. The method uses a base model
to perform multiple rounds of training, during which the weakest features are eliminated
until a specified number of features is reached [27,28]. The base model could be SVM [27],
RF [29], or other regression models. Nevertheless, there have been few previous studies
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that used variable selection in remote sensing of vegetation chlorophyll contents, although
variable selection is critical. To fill this gap, the current study was designed to develop a
good combination of variable selection methods with machine learning algorithms that
can accurately estimate SPAD of wheat canopy at the overwintering stage, by comparative
analysis. This study was based on the unmanned aerial vehicle (UAV) technology because
the wheat variety screening experiments required high spatial resolution imagery.

2. Materials and Methods
2.1. Experimental Site and Experimental Design

The experiment was conducted at the Shatou Agricultural Experimental Farm located
in Yangzhou, Jiangsu, China (32◦18′39.96′′N, 119◦32′45.34′′E) during the 2020/2021 wheat
growing season (Figure 1). In total, 24 winter wheat varieties were sown under four rates
of nitrogen fertilization through top-dressing (i.e., N0: 0 kg ha−1, N210: 210 kg ha−1,
N270: 270 kg ha−1, and N330: 330 kg ha−1 pure nitrogen) on 15 November 2020, which
was 10 days later than the local normal date for seed sowing. There were 96 plots in this
experiment, and the size of each plot was 3 m long and 3 m wide. Each plot received the
same irrigation and field managements.

The 24 winter wheat varieties are listed in Table 1. They had different optimal
growth habits [30].

Figure 1. Map displays the location of the study area and spatial distribution of the 96 experimental plots. The RGB image
was acquired on 13 January 2021 at the wheat overwintering stage using the multispectral imaging system of the DJI
Phantom 4 Multispectral UAV.

Table 1. The 24 winter wheat varieties involved in this study.

Wheat Variety Optimal Growth Habit Wheat Variety Optimal Growth Habit

Yangmai 15 springness Ningmai 13 springness
Yangmai 20 springness Ningmai 26 springness
Yangmai 23 springness Ningmaizi 126 springness
Yangmai 25 springness Nongmai 88 springness
Yangmai 29 springness Guohong 6 springness
Yangfumai 4 springness Yanmai 1 springness
Zhenmai 9 springness Zhengmai 9023 weak springness

Zhenmai 10 springness Luomai 24 weak springness
Zhenmai 18 springness Yannong 19 semi-winterness
Zhenmai 13 springness Jimai 22 semi-winterness
Zhenmai 12 springness Xumai 33 semi-winterness
Zhenmai 168 springness Huaimai 33 semi-winterness
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2.2. Data Acquisition
2.2.1. UAV Imagery Acquisition

The imagery of all plots in the experimental site was collected by the Phantom 4 Mul-
tispectral UAV (SZ DJI Technology Co.; Shenzhen, China) under clear weather conditions
on 13 January 2021, at the overwintering stage of the winter wheat. The UAV was designed
for precision agriculture equipped with a real-time kinematic (RTK) module capable of
increasing the accuracy of Global Positioning System (GPS) location data.

Utilizing a gimbal with a 6-camera array, the UAV carried a RGB camera as well
as a five-single-sensor camera that captured 2MP images in blue (450 nm ± 16 nm),
green (560 nm ± 16 nm), red (650 nm ± 16 nm), red edge (730 nm ± 16 nm), and NIR
(840 nm ± 26 nm) spectral regions. This study only used the images acquired by the five
single sensors.

A gray gradient calibration panel, having 10 calibration plates with different gray gra-
dients, was placed on the ground while the UAV was flying, for reflectivity correction [31].
The reflectance of these plates were spectrally measured in situ using an Analytical Spectral
Device (ASD) FieldSpec® 3 Full-Range spectroradiometer (Analytical Spectral Devices, Inc.;
Boulder, CO, USA).

The flight routes were designed using the software of the ground station (DJI GS PRO).
Both the forward and side overlaps were set at 80%. The flight was conducted at 10:00 AM
local time. The flight speed was fixed at 3 m s−1, and the flight altitude above ground level
(AGL) was 15 m, which returned a spatial image resolution (i.e., ground sample distance)
of 0.59 cm.

2.2.2. SPAD Measurements

SPAD values of wheat leaves were measured in situ in each plot using a non-destructive
and portable SPAD-502plus handheld chlorophyll meter (Minolta Camera Co.; Osaka, Japan)
immediately after UAV overpass. Within each plot, 10 leaves of the top layer were randomly
selected. For each selected leaf, SPAD readings were recorded at one, three, and five sixths
of leaf length of the leaf, and then the average was calculated and used for this leaf. The
SPAD readings of the 10 selected leaves were then averaged to represent the plot.

2.3. Machine Learning Regression Algorithms Used

As mentioned above, RFR, SVR, and ANN are most frequently used for agricultural
remote sensing [21], but ANN is not as practical as RFR and SVR [20]. Hence, this study
employed RFR and SVR in wheat canopy SPAD estimation.

2.3.1. Random Forest Regression (RFR)

The random forest (RF) model is a classification or regression tree-based machine
learning method proposed by Breiman [32]. The RF model uses bootstrap resampling
methods to extract multiple bootstrap datasets from the original training dataset, develops
a decision tree for each bootstrap dataset, and then combines these multiple parallel
decision trees into a single RF model for prediction. The final prediction is obtained by
applying a majority voting decision mechanism to the output of all individual decision
trees. Stochasticity is introduced by the bootstrap strategy, which improves the resistance
of the RF to overfitting [33]. When RF is used for regression, it is referred to as random
forest regression (RFR). For RFR models, parameter tuning is required to optimize its two
main parameters, namely the number of trees to grow in the forest (ntree) and the number
of randomly selected predictor variables at each node (mtry) [34].

2.3.2. Support Vector Regression (SVR)

A support vector machine (SVM) or its regression version, support vector regression
(SVR), is a supervised machine learning algorithm, which is powerful and flexible for
classification and regression [35]. Using an optimal kernel, SVM maps the input data
into different classes in a hyperplane in multidimensional space in an iterative manner
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until it finds a maximum marginal hyperplane, in which the differences among classes are
maximized so as to minimize the error of classification [34].

Among the model parameters of SVR, gamma (kernel parameter) and C (penalty
coefficient) have great influences on the estimation results, so they should be optimized
through parameter tuning [17,27,36]. In addition, the kernels of linear, radial basis function
(RBF) and sigmoid are commonly used; they were applied and tested in this study.

2.4. Methodology
2.4.1. UAV Image Processing and Index Extraction

The acquired UAV images were imported into the DJI Terra software to generate
a digital surface model (DSM) and an orthomosaic image of the experimental plots in
GeoTIFF format with UTM projection. The DN values were extracted from the orthomosaic
image using the Environment for Visualizing Images (ENVI) software (ITT Exelis; Boulder,
CO, USA) for each calibration plate, and then regression relationships between the DN
values and their reflectance values were constructed for each of the five bands. Based
on these regression relationships, DNs were converted to reflectance using the simplified
empirical line approach proposed by Wang and Myint [37].

Then, the reflectance values at the blue, green, red, red edge, and NIR bands were
extracted for each pixel in the entire UAV image of the experimental site. These reflectance
values were used to further calculate 26 spectral indices. These spectral indices were often
used to estimate crop chlorophyll contents and monitor crop growth status in the literature.
In this study, a total of 31 variables, including 26 spectral indices and reflectance of five
single bands, were used to develop a machine learning-based model to estimate SPAD
values of wheat canopy. These 31 spectral variables and related computation formulas are
listed in Table 2.

Table 2. The 31 spectral variables used in this study for SPAD estimation.

Variable Equation Reference

blue blue -
green green -

red red -
red edge red edge -

NIR NIR -
Hue index (HI) (2 × R − G − B)/(G − B) [38]

Visible atmospherically resistant index (VARI) (G − R)/(G + R − B) [39]
Normalized pigment chlorophyll ratio index (NPCI) (R − B)/(R + B) [40]

Excess green (ExG) 2 × G − R − B [41]
Greenness index (GI) G/R [42]

Difference between green and blue (DifGB) G − B [43]
Red green ratio index (RGRI) R/G [43]

Redness index (RI) R2/(B × G3) [44]
Brightness index (BI) sqrt((R2 + G2)/2) [38]

Green normalized difference vegetation index (GNDVI) (NIR − G)/(NIR + G) [45]
Normalized difference vegetation index (NDVI) (NIR − R)/(NIR + R) [46]

Optimized soil adjusted vegetation index (OSAVI) 1.16 × (NIR − R)/(NIR + R + 0.16) [47]
Soil-adjusted vegetation index (SAVI) 1.5 × (NIR − R)/(NIR + R + 0.5) [48]

Green chlorophyll vegetation indices (GCVI) NIR/G − 1 [15]
Ratio vegetation index (RVI) NIR/R [49]

Green difference vegetation index (GDVI) NIR − G [50]
Difference vegetation index (DVI) NIR − R [51]

Chlorophyll vegetation index (CVI) NIR × R/G2 [16]
Transformed vegetation index (TVI) SQRT((NIR − R)/(NIR + R) + 0.5) [52]

Modified chlorophyll absorption reflectance index 1 (MCARI1) ((NIR-RE) − 0.2 × (NIR − G)) × (NIR/RE) [12]
Modified Chlorophyll Absorption in Reflectance Index (MCARI) ((RE-R) − 0.2 × (RE − G)) × RE/R [11]

MERIS terrestrial chlorophyll index (MTCI) (NIR − RE)/(RE + R) [13]
Noval chlorophyll absorption ratio index (NCARI) (RE − R) − 0.2 × (RE + R) [53]

Triangular chlorophyll index (TCI) 1.2 × (RE − G) − 1.5 × (R − G) × sqrt(RE/R) [7]
Transformed chlorophyll absorption in reflectance index (TCARI) 3 × ((RE-R) − 0.2 × (RE-G) × RE/R) [54]

Red edge chlorophyll index (CIRE) NIR/RE − 1 [15]

Note: In the equations, B, G, R, RE and NIR are the reflectance values at the blue (450 nm), green (560 nm), red (650 nm), red edge (730 nm),
and near-infrared (840 nm) spectral bands, respectively.



Remote Sens. 2021, 13, 5166 7 of 19

In general, the pixels with normalized difference vegetation index (NDVI) values of
0.2–0.3 were mixed pixels of non-vegetation and vegetation [55–57]. A careful visual check
of the image revealed that the NDVI value of 0.25 could better discriminate wheat from
soil, so the pixels with NDVI values lower than 0.25 were masked out in this study. Thus,
the 31 variables were extracted and averaged as the variable values of the plot, respectively.

2.4.2. Variable Selection

The variable selection method of recursive feature elimination (RFE) starts working by
searching a subset of variables from all variables in the training dataset, removes the least
important variables, and then uses the remaining variables to refit the base model [27,58].
This process is repeated until a specific number of variables are retained, and the order
in which variables are eliminated in this process is the ranking of the variables. This
study tested using RFR and linear kernel SVR as a base model to conduct the RFE method,
respectively. For RFE, its base model cannot be RBF kernel-based or sigmoid kernel-based
SVR models [59].

RF is a fast and efficient machine learning algorithm, even when dealing with noisy
variables [26]. RF is also a variable selection method [60]. It provides an easy way to assess
variable importance. As a decision tree-based machine learning algorithm, RF can output
a feature importance attribute; hence, all variables can be ranked in order of their own
importance values calculated in the process of RF modeling [26].

The Pearson correlation coefficient (r) indicates a linear correlation between a predictor
variable and a target variable, and its value ranges between −1 and 1. The predictor
variables with higher absolute value of r have stronger linear correlation with the target
variable, and hence they are selected prior to those predictor variables with lower absolute
value of r in the variable selection method of Pearson correlation coefficient (r).

This study employed RFE, RF, and r to select variables. They are also most commonly
used in previous studies [27].

2.4.3. Modeling, Cross Validation, and Performance Assessment

The 31 spectral variables (Table 2) were employed for feature selection after being
standardized using the standardized method of StandardScaler. The standardized method
was from a Python library named “sklearn.preprocessing” [61].

To obtain the most effective model for estimating the SPAD of wheat canopy through
comparative analysis, this study combined three variable selection methods with four
machine learning algorithms, resulting in 10 SPAD estimation models, which included
seven SVR models (i.e., RFE-SVR_linear, RF-SVR_linear, RF-SVR_RBF, RF-SVR_sigmoid,
r-SVR_linear, r-SVR_RBF, and r-SVR_sigmoid) and three RFR models (i.e., RFE-RFR,
RF-RFR, and r-RFR).

Parameter tuning plays an important role in achieving the best performance of ma-
chine learning-based models [35], and this study combined grid search techniques with
cross-validation to find the best parameter values. For each of the 10 models, the opti-
mal number of variables (n_features_to_select) was determined by searching values from
1 to 31 in an interval of 1 and selecting the number of variables that achieves the best
cross-validation accuracy.

To optimize the RFR models, the number of input variables was used as the mtry
value. Nine values (i.e., 50, 100, 200, 700, 1000, 1100, 1200, 1300, and 2000 trees) were used
as the ntree value, respectively, and the ntree value resulting in the best cross-validation
accuracy was selected as the optimal ntree.

To optimize the SVR models, the penalty C was evaluated using values from 1 to 500
with an interval of 1, and the parameter gamma was searched with values from 0.0001
to 0.01, with an interval of 0.0002. The C and gamma achieving the best cross-validation
accuracy were selected as the optimal parameter values.
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Figure 2 summarizes the methodology used. The entire process of variable selec-
tion, modeling, cross-validation, and performance evaluation was performed with a
desktop computer using a Python program written for this study based on the Scikit-
learn package [62], which is an open source Python module. The optimal values of the
above mentioned key parameters such as n_features_to_select, mtry, ntree, C, and gamma
were determined simultaneously according to the SPAD estimation accuracy, using cross-
validation and the grid search strategy. Correspondingly, the SPAD estimation model with
the highest estimation accuracy was considered as the optimum SPAD estimation model of
wheat canopy.

Figure 2. Methodology workflow.

Among various cross-validation techniques, this study selected the leave-one-out
cross-validation (LOOCV). The LOOCV [35] selects one sample each time for validation
and uses all the other samples to develop a model, and then uses the selected one sample
to calculate the estimation errors until all samples are involved in the cross validation.
The LOOCV can assess the generalization capability of the models [35] and eliminate
overfitting [63], and it was used to evaluate the model reliability and stability.

The accuracy of models was evaluated by achieved R2, RMSE, and relative RMSE
(RRMSE) in SPAD estimation. The LOOCV results of R2, RMSE, and RRMSE were calcu-
lated following Wang and Lu [64].
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In general, a higher R2 value and lower RMSE and RRMSE values indicate better
model performance [65]. In addition, this study also calculated the ratio of percentage de-
viation (RPD) to assess the predictive capability of models. RPD is the ratio of the standard
deviation of the measured values to the RMSE of the cross-validation [66]. According to Vis-
carra Rossel et al. [67], RPD < 1.4 indicates very poor or poor estimations, 1.4 ≤ RPD < 1.8
indicates fair estimations, 1.8 ≤ RPD < 2.0 indicates good estimations, 2.0 ≤ RPD < 2.5
indicates very good estimations, and RPD ≥ 2.5 indicates excellent estimations.

3. Results
3.1. Descriptive Statistics of Measured Wheat Canopy SPAD Values

Table 3 displays the variation of SPAD values of wheat canopy, which were in situ
measured from all the 96 plots in the late-sown wheat variety screening experiment. SPAD
values ranged from 30.89 to 44.82. The mean SPAD was 38.09 with a standard deviation
of 3.46.

Table 3. Descriptive statistics of measured wheat canopy SPAD values (unit: unitless).

Plots Mean Minimum Maximum Standard Deviation

N0 plots 33.800 30.885 37.140 1.768
N210 plots 38.310 32.445 44.605 2.505
N270 plots 39.727 36.120 44.385 2.347
N330 plots 40.542 36.415 44.820 2.421
All plots 38.095 30.885 44.820 3.461

Note: N0 plots, N210 plots, N270 plots, and N330 plots are the plots under four rates of nitrogen fertilization
(i.e., 0, 210, 270, and 330 kg ha−1 pure nitrogen), respectively.

The 96 plots were divided to four groups (i.e., N0 plots, N210 plots, N270 plots, and
N330 plots) according to their rates of nitrogen fertilization (i.e., 0, 210, 270, and 330 kg ha−1

pure nitrogen), respectively. Table 3 demonstrates that the mean SPAD values increased
significantly from 33.80 to 38.31 from N0 plots to N210 plots, and then increased slightly to
39.73 of N270 plots and to 40.54 of N330 plots. In addition, the standard deviation of N0
plots was also smaller than those of N210 plots, N270 plots, and N330 plots.

3.2. Spectral Characteristics of Wheat Canopy SPAD Values

The correlation coefficients between 31 UAV-derived variables and SPAD values of
wheat canopy were calculated (Figure 3). The five single bands were not well correlated
with the SPAD. The absolute r value of the near-infrared band was only 0.404, and the
absolute r values of the other four were below 0.270.

For variables that included only the visible bands, their absolute r values were not
higher than 0.431. For variables that included the near-infrared band but not the red edge
band, their absolute r values were between 0.404 and 0.595. For variables that included the
red edge band, their absolute r values were between 0.268 and 0.772.

Of the 31 variables, only three had absolute r values higher than 0.700 (Red edge
chlorophyll index (CIRE): 0.772, MERIS terrestrial chlorophyll index (MTCI): 0.748, and
Modified chlorophyll absorption reflectance index 1 (MCARI1): 0.728). They are all veg-
etation indices related to chlorophyll. In contrast, all the other 28 variables had absolute
r values below 0.600.

To compare spectral curves for varying SPAD values, this study averaged the SPAD
and spectral reflectance values for the four groups (i.e., N0 plots, N210 plots, N270 plots,
and N330 plots). As illustrated in Figure 4, the spectral reflectance of the four groups had
similar variations with increasing wavelength, although they had different mean SPAD
values. Moreover, in general, reflectance increases with increasing SPAD, especially in the
red edge and near-infrared regions.
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Figure 3. Absolute values of correlation coefficients (r) between the variables (Table 2) and SPAD
values of wheat canopy. The orange colour represents the variables that included only the visible
spectral bands, the green colour represents the variables that included the near-infrared spectral
band but not the red edge spectral band, and the blue colour represents the variables that included
the red edge spectral band.

Figure 4. Comparison of spectral curves for varying SPAD values. The SPAD and spectral reflectance
values are averaged for the plots under four different rates of nitrogen fertilization (i.e., N0: 0 kg ha−1,
N210: 210 kg ha−1, N270: 270 kg ha−1, and N330: 330 kg ha−1 pure nitrogen), respectively. In general,
reflectance increases with increasing SPAD, especially in the red edge and near-infrared regions.

3.3. SPAD Inversion Models

For each model, the best model parameters were retrieved using the grid search tech-
nique, according to the resultant lowest RMSE by the LOOCV. These optimal parameters
are listed in Table 4.
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Table 4. Optimal parameters selected for each model to estimate wheat canopy SPAD, based on the
lowest root mean square error (RMSE).

Model Optimal Number of Variables Mtry Ntree C Gamma

RFE-RFR 6 6 200 - -
RFE-SVR_linear 7 - - 213 -

RF-RFR 10 10 1100 - -
RF-SVR_linear 24 - - 10 -

RF-SVR_rbf 26 - - 45 0.0015
RF-SVR_sigmoid 27 - - 51 0.0061

r-RFR 11 11 1000 - -
r-SVR_linear 30 - - 8 -

r-SVR_rbf 23 - - 251 0.0005
r-SVR_sigmoid 31 - - 64 0.0043

The selected optimal variables of each model are listed in Table 5. The optimal
variables were quite different among the 10 models. MCARI1 was the only variable that
was commonly selected by all 10 models. The three RFR models had three common selected
variables (i.e., MCARI1, MTCI, and CIRE). The seven SVR models had five common selected
variables (i.e., MCARI1, VARI, GI, RGRI, and MCARI).
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Table 5. Selected optimal variables in each model. “
√

” refers to the selected variables.

Variable RFE-RFR RFE-SVR_Linear RF-RFR RF-SVR_Linear RF-SVR_Rbf RF-SVR_Sigmoid r-RFR r-SVR_Linear r-SVR_Rbf r-SVR_Sigmoid

blue
√ √ √ √ √

green
√ √ √ √ √ √

red
√ √ √ √ √

red edge
√ √ √ √ √

NIR
√ √ √ √ √

HI
√ √ √ √ √ √

VARI
√ √ √ √ √ √ √

NPCI
√ √ √ √ √ √ √

ExG
√ √ √ √ √ √

GI
√ √ √ √ √ √ √

DifGB
√ √ √ √ √ √

RGRI
√ √ √ √ √ √ √

RI
√ √ √ √ √ √ √ √

BI
√ √ √ √ √

GNDVI
√ √ √ √ √ √ √

NDVI
√ √ √ √

OSAVI
√ √ √ √

SAVI
√ √ √ √

GCVI
√ √ √ √ √ √ √

RVI
√ √ √ √ √

GDVI
√ √ √ √ √ √ √ √

DVI
√ √ √ √ √

CVI
√ √ √ √ √ √ √ √

TVI
√ √ √ √

MCARI1
√ √ √ √ √ √ √ √ √ √

MCARI
√ √ √ √ √ √ √

MTCI
√ √ √ √ √ √ √ √ √

NCARI
√ √ √ √ √ √

TCI
√ √ √ √ √ √

TCARI
√ √ √ √ √ √ √

CIRE
√ √ √ √ √ √ √ √ √
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3.4. Performance of SPAD Inversion Models

Table 6 displays the accuracies of the 10 models for estimating the SPAD. RF-SVR_sigmoid
achieved the highest estimation accuracy (Optimal number of variables = 27, R2 = 0.754,
RPD = 2.017, RMSE = 1.716, and RRMSE = 4.504%), followed by r-SVR_sigmoid (Optimal
number of variables = 31, R2 = 0.743, RPD = 1.973, RMSE = 1.754, and RRMSE = 4.605%),
and RFE-SVR_linear (Optimal number of variables = 7, R2 = 0.730, RPD = 1.926, RMSE = 1.797,
and RRMSE = 4.718%).

Table 6. Optimal number of variables and estimation accuracies of the developed 10 SPAD estimation
models from the LOOCV.

Model Optimal Number of Variables R2 RPD RMSE RRMSE
(%)

RFE-RFR 6 0.640 1.666 2.077 5.452
RFE-SVR_linear 7 0.730 1.926 1.797 4.718

RF-RFR 10 0.634 1.653 2.094 5.497
RF-SVR_linear 24 0.716 1.876 1.845 4.843

RF-SVR_rbf 26 0.713 1.867 1.853 4.865
RF-SVR_sigmoid 27 0.754 2.017 1.716 4.504

r-RFR 11 0.631 1.646 2.103 5.519
r-SVR_linear 30 0.710 1.857 1.864 4.893

r-SVR_rbf 23 0.711 1.860 1.861 4.885
r-SVR_sigmoid 31 0.743 1.973 1.754 4.605

To further analyze the modeling accuracy, Figure 5 presents the scatterplots of the
measured SPAD against the estimated SPAD by the LOOCV, when the three models that
achieved the best estimation performance were applied. For all three models, the data
points are well distributed along the 1:1 relationship, demonstrating good agreements
between the measured and estimated SPAD values.

This study compared the accuracies of the selected best model, RF-SVR_sigmoid, in
estimating wheat canopy SPAD for plots under four different rates of nitrogen fertilization
(Table 7). RMSE ranged from 1.500 (N0 plots) to 2.017 (N210 plots), and RRMSE ranged
from 4.054% (N270 plots) to 5.265% (N210 plots).

Table 7. Comparison of SPAD estimation accuracy between plots under four different rates of
nitrogen fertilization. The selected best model, RF-SVR_sigmoid, was used to estimate SPAD by
the LOOCV.

Plots Number of Plots Mean Measured SPAD RMSE RRMSE (%)

N0 plots 24 33.800 1.500 4.439
N210 plots 24 38.310 2.017 5.265
N270 plots 24 39.727 1.611 4.054
N330 plots 24 40.542 1.692 4.173

Note: N0 plots, N210 plots, N270 plots, and N330 plots are the plots under four rates of nitrogen fertilization
(i.e., 0, 210, 270, and 330 kg ha−1 pure nitrogen), respectively.

This study also compared the SPAD estimation accuracies of the RF-SVR_sigmoid
model for wheat varieties that have three different optimal growth habits (Table 8). RMSE
ranged from 1.486 to 2.088, and RRMSE ranged from 3.866% to 5.176%, with the low-
est in the N270 plots and the highest in the N210 plots. The semi-winterness varieties
had the lowest RMSE and RRMSE, followed by the springiness varieties and the weak
springiness varieties.
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Table 8. Comparison of SPAD estimation accuracy between wheat varieties that have three different optimal growth habits.
The selected best model, RF-SVR_sigmoid, was used to estimate SPAD by the LOOCV.

Wheat Varieties Number of Plots Mean Measured SPAD RMSE RRMSE (%)

springness varieties 72 37.770 1.718 4.547
weak springness varieties 8 40.331 2.088 5.176
semi-winterness varieties 16 38.440 1.486 3.866

Figure 5. Scatterplots between the measured SPAD and the estimated SPAD values estimated by the
LOOCV, when the three models that achieved the best estimation performance were applied. The
diagonal lines illustrate the 1:1 relation. (a) RFE-SVR_linear; (b) RF-SVR_sigmoid; (c) r-SVR_sigmoid.

4. Discussion
4.1. Optimal SPAD Estimation Model for Late-Sown Winter Wheat Variety Screening

This study involved up to 24 wheat varieties, four rates of nitrogen fertilization, and
96 plots in a variety screening experiment, which resulted in a very complex relationship
between wheat canopy SPAD values and spectral variables. Therefore, this study inves-
tigated the feasibility of using machine learning-based models rather than conventional
ones to estimate SPAD of wheat canopy from UAV data at the overwintering stage. Seven
SVR models and three RFR models were developed, cross-validated, and compared. Of
these 10 models, the RF-SVR_sigmoid model, which was constructed by combining the RF
variable selection method and the sigmoid kernel-based SVR algorithm, was identified as
the best model. It achieved the highest accuracy in estimating SPAD values by the LOOCV
(R2 = 0.754, RPD = 2.017, RMSE = 1.716, and RRMSE = 4.504%). According to Viscarra
Rossel et al. [67], the model of RF-SVR_sigmoid (RPD = 2.017) achieved very good SPAD
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estimation of wheat canopy. In contrast, r-SVR_sigmoid (RPD = 1.973) and RFE-SVR_linear
(RPD = 1.926) only produced good estimation, but their RPD values were very close to 2.

Despite the fact that the study involved up to 24 different wheat varieties, the newly
developed RF-SVR_sigmoid model was able to achieve high accuracy in SPAD estima-
tion. Moreover, the model worked well for both plots under different rates of nitrogen
fertilization and plots with springness, weak springness, and semi-winterness varieties.
It is particularly important for wheat variety screening that the developed model can be
used for all the wheat varieties involved, considering that the best varieties are usually
screened from a large number of varieties. In contrast, most previous studies of SPAD
remote sensing involved only a single variety or a very small number of varieties, which is
not suitable for variety screening [68–70].

4.2. Model Performance Comparison

A comparison of the seven SVR models (i.e., RFE-SVR_linear, RF-SVR_linear, RF-
SVR_RBF, RF-SVR_sigmoid, r-SVR_linear, r-SVR_RBF, and r-SVR_sigmoid) with the three
RFR models (i.e., RFE-RFR, RF-RFR, and r-RFR) finds that even the worst SVR model (i.e.,
r-SVR_linear) could produce better SPAD estimates (R2 = 0.710, RPD = 1.857, RMSE = 1.864,
and RRMSE = 4.893%) than the best RFR model (i.e., RFE-RFR) (R2 = 0.640, RPD = 1.666,
RMSE = 2.077, and RRMSE = 5.452%). In addition, the improvement in estimation accuracy
was even greater when the best SVR model (i.e., the RF-SVR_sigmoid model) (R2 = 0.754,
RPD = 2.017, RMSE = 1.716, and RRMSE = 4.504%) was compared with the best RFR model
of RFE-RFR.

Given the encouraging performances of the SVR, however, it is too early to say that
the SVR model always outperforms the RFR model in estimating vegetation chlorophyll
content. For the estimation of other agricultural variables, some studies had reported that
the RFR model outperformed the SVR model. For example, Osco et al. [71] noted that,
using UAV multispectral images, the RFR model was able to predict leaf nitrogen content
(LNC) of maize more accurately than the SVR model. Similarly, Zha et al. [65] reported
that the RFR algorithm performed better than the SVR and ANN models in estimating the
nitrogen nutrient index (NNI) of rice from drone data.

Yang et al. [22] indicated that appropriate kernels could better avoid overfitting. The
RBF kernel was considered to be the most frequently used kernel function [72]. Some
previous studies (e.g., Ahmad et al. [73]; Chen and Hay [74]) reported that the RBF kernel
performed better relative to linear and sigmoid kernels. However, this study found that
among the seven SVR models, the two sigmoid kernel-based SVR models performed the
best, followed by the RFE-SVR_linear model, while the two RBF kernel-based SVR models
produced lower accuracy. Hence, the sigmoid kernel seemed more appropriate for SVR in
terms of SPAD estimation.

In addition, although the RFE-SVR_linear model was not as good as the two SVR
models with sigmoid kernel, its SPAD estimation was also good. Moreover, the linear
kernel–based SVR model runs much faster than the RBF kernel-based SVR model [75].

4.3. Influence of Different Variable Selection Methods on Model Estimation Performance

Little previous research has investigated employing variable selection in machine
learning-based remote sensing of vegetation chlorophyll contents. This research found that
the optimal combination of variable selection methods and machine learning algorithms
could produce more accurate SPAD estimation of wheat canopy. Among various com-
binations of three variable selection methods and four machine learning algorithms, the
combination of RF and SVR_sigmoid demonstrates the best capability of SPAD estimation.

In this study, the RFR and SVR_linear models using the RFE variable selection method
provided overall higher R2 and more robust results than the RFR and SVR_linear models
using RF or r variable selection methods. In addition, the number of optimal variables
selected using RFE was much smaller than those selected using RF or r. Results from
this study disagree with the superiority of RF over RFE as a variable selection method, as
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reported by Chen et al. [27]. More research should be conducted to further evaluate these
variable selection methods in agricultural remote sensing.

Using RF to select the optimal variables resulted in more accurate SPAD estimates
compared with using the r variable selection method (Table 6). However, the differences
caused by using different variable selection methods are not as large as those caused by
using different machine learning algorithms.

Three models produced the lowest RMSE and RRMSE (i.e., RFE-SVR_linear, RF-
SVR_sigmoid, and r-SVR_sigmoid), as displayed in Table 6. They had seven common
optimal variables (i.e., green, VARI, GI, RGRI, RI, MCARI1, and MCARI) (Table 5). This
indicates that the seven variables are particularly important for accurate estimation of
wheat canopy SPAD. The seven variables were selected from the 31 variables (Table 2),
that included 10 variables (i.e., NPCI, GCVI, CVI, MCARI1, MCARI, MTCI, NCARI, TCI,
TCARI, and CIRE) proposed and widely used for monitoring chlorophyll or SPAD in
previous studies [16,40,54]. It is a bit surprising that, among the 10 variables, only two (i.e.,
MCARI1 and MCARI) are commonly selected by the three best SPAD estimation models in
this study.

4.4. Limitations and Future Research

Although this preliminary study proposed a promising method for SPAD monitoring,
there were still some limitations. This study found that the NDVI value of 0.25 could
discriminate wheat from soil. When the new method is applied on other dates or on other
farms, the threshold should be determined through a very careful visual check of the
entire image.

Besides chlorophyll content, canopy reflectance is also sensitive to other influencing
factors, such as canopy structure and leaf area index [9,15]. The error in the SPAD estima-
tion of the RF-SVR_sigmoid model could be partially attributed to the omission of these
influencing factors. Considering these influencing factors may further improve the SPAD
estimation accuracies in future research.

This study applied 96 plots, and future research will employ a larger data base. In
addition, this study involved 18 springness wheat varieties, and in contrast it involved
only two weak springness varieties and four semi-winterness varieties. Hence, the wheat
variety shares should be balanced in future research.

This study used only data from one growing season (i.e., the overwintering growth
stage). Future research should collect data at more growth stages. In addition, this study
involved only a single year, but variety screening often needs multiple-year experiments.
Hence, the conclusions drawn in this study should be further evaluated in future studies
with data from multiple growth stages and more years on various experimental farms.

5. Conclusions

This study demonstrates that the combination of different variable selection meth-
ods with different machine learning algorithms can impact the estimation accuracy quite
significantly. The optimal combination of variable selection methods and machine learn-
ing algorithms could produce more accurate SPAD estimation. The newly developed
RF-SVR_sigmoid model, which is the combination of the RF variable selection method and
the sigmoid kernel-based SVR algorithm, can accurately estimate SPAD of wheat canopy
at the overwintering stage. The results of LOOCV prove that the estimation is very good,
and the newly developed model can be used for all 24 wheat varieties involved.

The spectral data used in this study were acquired using a multispectral UAV. This
study demonstrates the potential of UAV remote sensing for late-sown winter wheat variety
screening. Use of UAVs is more efficient, time-saving, and convenient than traditional in
situ measurements of SPAD. In comparison to satellite remote sensing, use of low-altitude
UAVs is more flexible, and it provides imagery with much higher spatial resolutions, which
is necessary considering the size of plots in variety screening experiments. The widespread
use of UAV technology nowadays allows a fast and accurate monitoring of wheat canopy
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SPAD at the overwintering stage using the newly developed RF-SVR_sigmoid model, and
this is critical for late-sown winter wheat variety screening.
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