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Abstract

:

The suspended particle size has great impacts on marine biology environments and biogeochemical processes, such as the settling rates of particles and sunlight transmission in marine water. However, the spatial–temporal variations in particle sizes in coastal waters are rarely reported due to the paucity of appropriate observations and the limitations of particle size retrieval methods, especially in areas with complex optical properties. This study proposed a remote sensing-based method for estimating the median particle size Dv50 (calculated with a size range of 2.05–297 μm) that correlates Dv50 with the inherent optical properties (IOPs) retrieved from in situ remote sensing reflectance above the water’s surface (Rrs(λ)) in the Pearl River estuary (PRE) in China. Rrs(λ) was resampled to simulate the Multispectral Instrument (MSI) onboard Sentinel-2A/B, and the wavebands in 490, 560, and 705 nm were utilized for the retrieval of the IOPs. The results of this method had a statistical performance of 0.86, 18.52, 21.28%, and −1.85 for the R2, RMSE, MAPE, and bias values, respectively, in validation, which indicated that Dv50 could be estimated by Rrs(λ) with the proposed four-step method. Then, the proposed method was applied to Sentinel-2 MSI imagery, and a clear difference in Dv50 distribution which was retrieved from a different time could be seen. The proposed method holds great potential for monitoring the suspended particle size of coastal waters.






Keywords:


median particle size; particle size distribution; inherent optical properties; ocean color remote sensing; Sentinel-2












1. Introduction


The suspended particle size in marine water has great impacts on marine biology environments and biogeochemistry processes (e.g., the settling velocity, resuspension, aggregates, and carbon cycle of particles [1]), and it has been proven to have a significant effect on the inherent optical properties (IOPs) of water so as to change the signals of ocean color remote sensing [2]. Hence, it is of great significance to obtain the characteristics of particle size. The median particle size (Dv50) [3,4,5], which is the diameter corresponding to the 50th percentile of the accumulated volume concentration, is frequently used to describe the particle size distribution (PSD) of marine systems [6]. The parameter Dv50 represents the proportional relationship between small particles and large particles in the particle size range; that is to say, a larger value of Dv50 indicates that larger particles are more dominant, and vice versa [2,5]. Therefore, the spatiotemporal dynamics of Dv50 can describe the characteristics of the particle size in marine water.



To determine the particle size, various particle sizing instruments, including particle imaging systems (FlowCAM) [7], electrical impedance particle sizers (Coulter Counter) [8], and laser diffractometers (LISST) [9], have been applied in both oceanic and inland water observation. Although many valuable observations have been carried out using these instruments worldwide, the spatial–temporal variations in Dv50 have seldom been investigated due to the limitation of traditional observation methods [10]. Ocean color remote sensing provides the possibility of monitoring the state of the ocean routinely and in a cost-effective manner at a large scale [11], which makes it possible to observe Dv50 more appropriately.



According to Mie theory [12], the particle size and particle composition make significant contributions to the scattering properties of particle assemblages that are suspended in marine water, and thus, some studies have suggested a relationship between scattering or backscattering and the particle size. Bowers et al. (2007) [3] developed an algorithm for particle size estimation by building a relationship with light scattering per unit concentration, and van der Lee et al. (2009) [4] applied this method to a much larger set of MODIS imagery to obtain the monthly average particle size in the southern Irish Sea. Qing et al. (2014) [13] utilized the ratio of green to red channels to build the empirical model for particle size estimation in the Bohai Sea in China. Sun et al. (2016) [5] evaluated the inadequacies of the above studies and proposed a hybrid method by combining analytical, semi-analytical, and empirical processes to estimate Dv50 from remote sensing reflectance (Rrs(λ)). These studies indicate that PSD can be estimated by a remote sensing method.



Ocean color satellite sensors such as SeaWiFS, MODIS, MERIS, and OLCI were designed specifically to observe the water’s bio-optical properties. However, the mixed pixel problems caused by low spatial resolutions of their imagery sometimes limit their application when observing coastal waters or areas close to islands, particularly in areas with high variability of suspended particles [14]. The multi-spectral instrument (MSI) sensor onboard the Sentinel-2 A/B satellite can obtain higher spatial resolution imagery (10 m at visible and near infrared bands), with a relatively short revisit interval (10 days for one satellite and 5 days for double satellites) compared with other sensors with high special resolutions, such as Landsat-8. Despite Sentinel-2 being designed for global land monitoring, some studies have demonstrated its potential for assessing coastal and inland water quality [14,15,16].



The Pearl River estuary (PRE) is a tropical estuary, and the hydrodynamic conditions in the PRE are complex due to many factors, such as river discharges, topography, tides, and monsoons [17]. It is heavily influenced by frequent anthropogenic activities, such as industrialization and urbanization. The suspended sediment concentration in the coastal water and its variation as impacted by anthropogenic activity have been analyzed by many studies. However, the spatial–temporal variation of the suspended particle size in this area has rarely been reported. This study aimed to develop a method for retrieving the suspended particle size in the water areas with complex optical properties based on ocean color remote sensing and furthermore to apply the proposed method to Sentinel-2 MSI data for obtaining the spatiotemporal variation of the suspended particle size in the PRE. The findings of this study may provide information for understanding the characteristics of the particle size distributions in optically complex coastal waters.




2. Materials and Methods


2.1. Study Area and Fieldwork


The complex hydrodynamics of the study site are determined by many physical factors that were mainly contributed by the Pearl River discharge, coastal current, and oceanic waters from the South China Sea [18]. In this study, a total of three trips were conducted (Figure 1). Two of them were around four islands in the central and western area of the PRE (Neilingding, Dachan, Xiaochan, and Mazhou) in spring (21 May and 22 May) and autumn (20 September) of 2019, and the other trip was to an observation section on 8 January 2020. A total of 39 observations were conducted at 25 sites (N1–N9, S1–S8, and P1–P8), including 39 inherent optical property data (i.e., absorption coefficient, attenuation coefficient and scattering coefficient), 39 PSD datasets, and only 16 apparent optical property data (i.e., Rrs(λ)) due to bad observation conditions (Table 1).




2.2. PSD Acquisition


In this study, a LISST-200X Type-C particle size analyzer (Sequoia Scientific, Inc., Bellevue, WA, USA) was used for PSD measurements. It is an upgraded version of the LISST-100X, which is a widely used instrument for in situ PSD measurements in marine waters [19,20,21]. The LISST-200X type-C has 36 size bins that cover a size range from 1 to 500 µm, and the size spectrum is logarithmically spaced [22]. For each bin, the upper size is 1.18 times the lower, and the width varies from 0.26 to 80 µm, with the exception of bin 1. The LISST uses particle diffraction, which is received by an optics receiving system formed by 36 concentric ring-shaped detectors, to perform a nonintrusive measurement of the volume concentration of suspended particles through a collimated laser beam (670 nm) [23,24,25].



Before the trip, the LISST was calibrated with Milli-Q water. The particle volume concentration (V(D) in µL/L) in the 36 size bins could be derived from the manufacturer-provided software LISST-SOP after in situ measurements. In addition, the total volume concentration (Vtot(D)) could be retrieved by a simple summation calculation of V(D) in all the size bins. There were two particle shape models for the V(D) data derived when using the LISST-SOP software, and we selected the irregularly shaped model, as it was more fitting than the spherical model when working with natural waters [22]. As a parameter for characterizing the particle size, the in situ Dv50 corresponded to the particle diameter when the cumulated V(D) reached 50% of the Vtot(D), which was calculated by summarizing the V(D) between the 4th and 33rd size bins (i.e., a size range from 2.05 to 297 μm), since the data in the biggest and smallest bins were not stable.




2.3. Optical Property Measurements


In the case of the apparent optical properties (AOPs), the remote sensing reflectance (Rrs(λ)) was measured using an ASD FieldSpec 4 spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) which covered a spectral range of 350–2500 nm with 1 nm intervals. The measurements were carried out following the NASA marine optical protocol [26]. We adopted the observing geometry of a zenith angle of 40° from the water’s surface and an azimuth angle of 135° from the direction of the sun irradiance to perform the measurements, thus avoiding the shadow of the ship and direct irradiance from the sun [27]. Aside from that, the foam patches and whitecaps were kept away from the field of view to avoid signal interference by them. The measured Rrs(λ) was calculated with Equation (1):


   R  r s    ( λ )  =    L w   ( λ )  − ρ  L  sky    ( λ )    π  L p   ( λ )  /  ρ p     



(1)




where Lw, Lsky, and Lp stand for the radiances measured from the water’s surface, sky, and a standard gray reference panel, respectively; ρp is the diffuse reflectance of the reference panel; and ρ is the dimensionless air–water reflectance, which is always a constant value (here, we adopted 0.025 as the value due to the wind speed being lower than 5 m/s) [28].



As for the IOPs, the absorption coefficient (a(λ) in m−1) and attenuation coefficient (c(λ) in m−1) were obtained by an AC-S spectral absorption and attenuation meter (WET Labs, USA). As the scattering coefficient of CDOM could be disregarded, the particle scattering (bp(λ) in m−1) was calculated through the relationship bp(λ) = c(λ) − a(λ) [29]. The AC-S instrument provides 84 channels within the range of about 400–730 nm with approximately 4-nm steps [30]. The backscattering coefficient of the suspended particles (bbp(λ) in m−1) was obtained using a BB9 (WET Labs, Philomath, OR, USA) with 9 bands (412, 440, 488, 532, 595, 695, and 715 nm for backscattering and 2 bands for CDOM and Chl-a fluorescence). For the postprocessing and correction of AC-S and BB9, the temperature and salinity data were measured synchronously with an SBE37 CTD (Sea-Bird Electronics, Bellevue, WA, USA). Before the trip, the AC-S, BB9, and CTD instruments would be sent to the manufacturer for periodic factory calibrations, and the instruments were rinsed with pure water immediately after each observation. To obtain accurate absorption and attenuation information, temperature and salinity corrections were performed on the raw data by following the ac Meter Protocol Document [30], and the effects of reflective tube scattering were corrected by following the method proposed by Sullivan et al. (2006) [31]. The raw BB9 data were corrected by following the BB9 User’s Guide [32].




2.4. Sentinel-2 A/B MSI Image


The level-1C (L1C) Sentinel-2 A/B MSI images were obtained from the European Space Agency’s (ESA) Copernicus Open Access Hub. Two cloudless images were selected from both the wet season (22 September 2019) and the dry season (30 January 2020) in this study. Unfortunately, there were no matchups with the sampling sites due to clouds. The L1C images were projected to Universal Transverse Mercator/World Geodetic System 84 (UTM/WGS84) and resampled to a 10-m spatial resolution. To retrieve the Rrs(λ) above the water’s surface, the Case 2 Regional Coast Colour processor (C2RCC) [33], which has been proven to perform well in atmosphere correction over coastal areas [34,35], was applied to carry out atmosphere correction. These processes were completed in the free Sentinel Application Platform (SNAP) version 8.0.0 with the C2RCC plug-in.




2.5. Dv50 Retrieval


A four-step method was proposed for Dv50 retrieval in this study (Figure 2), and the steps are as follows.



2.5.1. Step 1


The in situ Rrs(λ) was simulated to the Sentinel-2 MSI equivalent Rrs(λ) with the Sentinel-2 corresponding spectral response function (SRF) (Equation (2)), and the bbp(λ) retrieval algorithm was developed using the simulated Rrs(λ). For bbp(λ) retrieval, a quasi-analytical algorithm (QAA) based on radiative transfer theory was applied to invert Rrs(λ) to the water IOPs [36]. The updated versions (e.g., QAA-v5 and QAA-v6) were developed both for open oceanic and coastal waters [37]. In the QAA, the relationship between Rrs(λ) and the spectral backscattering and absorption coefficients can be written as the following equations (Equations (3)–(5)):


   R  r s  (  sentinel − 2  )     ( λ )  =     ∫   λ 1   λ 2    R  r s    ( λ )  SRF  ( λ )  d  ( λ )      ∫   λ 1   λ 2   SRF  ( λ )  d  ( λ )     



(2)






   r  r s    ( λ )  =    R  r s    ( λ )    ( 0.52 + 1.7 ×  R  r s    ( λ )     



(3)






  u  ( λ )  =    b b   ( λ )    a  ( λ )  +  b b   ( λ )     



(4)






   r  r s    ( λ )  =  g 0  × u  ( λ )  +  g 1  × u    ( λ )   2   



(5)




where Rrs(λ) is the spectral remote sensing reflectance just below the water surface; a(λ) and bb(λ) are the total absorption coefficient and total backscattering coefficient, respectively; and u(λ) is the ratio of the backscattering coefficient to the sum of the absorption coefficient and backscattering coefficient. The coefficients g0 (0.0895) and g1 (0.1247) were proposed for relatively turbid coastal waters through radiative transfer theory [36]. Several studies showed that if the NIR band was used, a(λ) could be replaced by the absorption coefficient of pure water aw(λ) due to the absorption of water being much larger than those for other substances [38,39]. We tested the applicability in this study, and our results show that absorbance above 95% was contributed by pure water. Hence, we took 705 nm of the Sentinel-2 bands as the reference band of bbp(λ) (Equation (6)):


   b  b p    (  705  )  =   u  (  705  )  ×  a w   (  705  )    1 − u  (  705  )    −  b  b w    (  705  )   



(6)




where the values of aw(705) and bbw(705) (backscattering coefficient of pure water) are known [40]. In this study, wavelengths of 490 and 560 nm were used in our empirical model to estimate the slope of particle backscattering coefficient Y (Equation (7)) rather than 443 nm, as it suffered from larger errors in atmospheric correction due to the high absorption of CDOM and suspended particles in a coastal environment. Finally, bbp(λ) can be calculated with the estimated bbp(705) and slope Y (Equation (8)):


  Y = 2.0  {  1 − 1.2 exp  [  − 0.9 ×    r  r s    (  490  )     r  r s    (  560  )     ]   }   



(7)






   b  b p    ( λ )  =  b  b p    (  705  )  ×    (    705  λ   )   Y   



(8)








2.5.2. Step 2


The backscattering ratio (bbp~(λ)) was used to obtain bp(λ) (Equation (9)). It should be noted that bbp~(λ) is usually not a constant value due to some physical properties (such as the component, size, and structure) of the suspended particles [41,42,43]. However, for some specific study areas, bbp~(λ) is regarded a constant or to be within certain limits [44,45]. In this study, we performed a least square fitting using in situ measured bbp(λ) and bp(λ) to obtain bbp~(λ) and to evaluate the applicability of bbp~(λ) as a constant in the present study area:


   b p  =    b  b p      b  b p     ~     



(9)








2.5.3. Step 3


In general, bp(λ) is affected by the total suspended matter (TSM), the scattering efficiency (Qbe), the apparent density (ρa), and the mean diameter weighted by the area (DA), and it is most affected by the TSM. Hence, the mass-specific scattering or backscattering (i.e., bp(λ) or bbp(λ) divided by the TSM) are usually used to estimate the particle size [11]. However, as we can see from Equation (10), the mass-specific scattering is affected not only by DA but also by the value ρa multiplied by DA. The volume-specific scattering coefficient (bp*(λ)), which was calculated by the ratio of bp(λ) to Vtot(D), was introduced in this study because the scattering per unit volume concentration was likely to scale with the particle diameter (Equation (11)). To calculate the value of bp*(λ), Vtot(D) should first be estimated according to Equation (11). The Vtot(D) prediction model was calibrated by bp(λ) and bbp(λ) separately, for bp(λ) and bbp(λ) were both considered to be dependent on the suspended particle concentration. The accuracy of the Vtot(D) prediction models calibrated by bp(λ) and bbp(λ) were compared, and we adopted the one with better performance:


   b p  =  3 2     Q  b e      ρ a   D A    TSM =  3 2     Q  b e      D A     V  tot    ( D )     



(10)






   b p    ∗  =    b p     V  tot    ( D )    =  3 2     Q  b e      D A       



(11)








2.5.4. Step 4


Dv50 was obtained from the Dv50 model developed using in situ calculated bp*(λ) and Dv50. In the past few years, several Dv50 models have been proposed for certain areas. For instance, an inverse proportion model and a negative power function model were developed for the Irish Sea and the nearshore waters of Imperial Beach, respectively [3,46]. Then, the negative power function model was optimized and applied in the Bohai Sea and Yellow Sea [5]. All of the above models were developed based on the relationship between Dv50 and the mass-specific bp(λ) or bbp(λ). We validated the previous models in our study area and proposed a negative exponential function model for Dv50 estimation. We compared these models calibrated by bp*(λ) and bbp*(λ) separately, and we adopted the one with the best performance.





2.6. Accuracy Assessment


To assess the consistency of the estimated in situ measured values, the root mean squared error (RMSE) (Equation (12)), mean absolute percentage error (MAPE) (Equation (13)), and bias (Equation (14)) were used in this study:


  RMSE =    1 N    ∑   i = 1  N     (   y i ′  −  y i   )   2     



(12)






  MAPE =  1 N    ∑   i = 1  N   |     y i ′  −  y i     y i     |   



(13)






  bias =  1 N    ∑   i = 1  N   (   y i ′  −  y i   )   



(14)




where yi′ is the predicted value, yi is the measured value, and N is the number of samples.





3. Results


3.1. Optical Properties and PSD


A summary of the measured data (including the optical properties and particle size parameters) is shown in Table 2. All of the parameters showed a wide range with a high C.V. value, which indicated the large variation of the optical properties and PSD in the study area. It needs to be mentioned that the wavelength of 532 nm was used both for bp(λ) and bbp(λ), because signal saturation appeared in the red and NIR bands for in situ BB9 backscattering measurement (especially at 695 and 715 nm). We also abandoned the blue bands for the reason that large errors would appear when calculating bbp(λ) at wavelengths far from the reference wavelength in the NIR region.




3.2. Dv50 Model Development


The validation of the QAA for bbp(532) retrieval is shown in Figure 3a. The QAA estimated and in situ measured bbp(532) values showed a good fit (R2 = 0.85, RMSE = 0.02), with MAPE = 17.2% and bias = −0.0021. As we can see, the scattered dots were mostly close to the 1:1 line. This finding indicates that the QAA method held good potential for bbp(λ) retrieval in our study area. The backscattering ratio bbp~(λ) was derived from the least square fitting using the in situ measured bbp(λ) and bp(λ), with a high R2 value of 0.94 and a low RMSE value of 0.012 (Figure 3b). The slope of the fitted equation was 0.0202, which was the ratio of bbp(λ) and bp(λ) and was equivalent to bbp~(λ) in this study.



As for Vtot(D) retrieval, we compared the results of the empirical models calibrated by bp(532) and bbp(532). The Vtot(D) retrieval model calibrated by bp(532) held a higher accuracy, with an R2 of 0.75 (Figure 4a), and the Vtot(D) retrieval model calibrated by bbp(532) showed a lower accuracy, with an R2 of 0.72 (Figure 4b). Moreover, signal saturation appeared in two sites for the bbp(532) data, which indicates that bbp(532) might not be available in high-turbidity water. Hence, bp(532) was used to calculate Vtot(D) in this study.



For Dv50 retrieval, 23 simultaneous bp*(λ), bbp*(λ), and Dv50 datasets were used in the calibration of the inverse proportion model (Figure 5a for bp*(λ) and Figure 5b for bbp*(λ)), negative power function model ((Figure 5c for bp*(λ) and Figure 5d for bbp*(λ))), and negative exponential function model (Figure 5e for bp*(λ) and Figure 5f for bbp*(λ)). The results for all models are shown in Table 3. Overall, a good fit (R2 = 0.85, RMSE = 33.5 μm) was found by the proposed model for the relationship between bp*(λ) and Dv50 (Figure 5e). The proposed model also showed the potential (R2 = 0.78, RMSE = 41.3 μm) in the relationship between bbp*(λ) and Dv50 (Figure 5f), while the other two models obtained poorer results for estimating Dv50. The findings indicated that the negative exponential model performed best in our study area.




3.3. Dv50 Model Validation and Application


In this study, 16 in situ measurements were used to validate the performance of the Dv50 retrieval models proposed by previous studies and developed in this study. The model validation results showed that the proposed method performed well, with an R2 of 0.86, RMSE of 18.52 μm, MAPE of 21.28%, and bias of −1.85 (Table 4). The scattered dots were mostly close to the 1:1 line, except for some dots with large Dv50 values (Figure 6) due to a shortage of training data for model calibration, especially in the case of the large Dv50 samples. The findings proved that Dv50 could be estimated using the remote sensing method.



The proposed Dv50 model was further applied to the remote-sensed ocean color data. After applying the proposed method to the Sentinel-2 MSI images, we obtained the Dv50 distribution at different times in our study area (Figure 7). The satellite-retrieved Dv50 values ranged from approximately 50 to 180 μm. It can be seen that there existed obvious differences in the Dv50 distribution in both time and space; Dv50 on 30 January 2020 was higher than that on 22 September 2019 in most areas, with the exception of the western area of the PRE, and Dv50 in the western area was lower than that in the eastern and southern area of the PRE on both days. The results indicate the potential for monitoring Dv50 on a large scale with Sentinel-2 MSI data.





4. Discussion


4.1. Robustness of the Dv50 Model


Accurate estimation of bbp(λ) is of fundamental importance for accurate Dv50 retrieval. Some inversion models, such as Generalized IOP (GIOP) [47], the Garver–Seigel–Maritorena (GSM) algorithm [48], and the QAA [36], provide fairly accurate estimations of bbp(λ) for the open ocean, but they are less accurate in highly turbid or eutrophic coastal water [15]. We adopted 705 nm as the reference band in the QAA method, and thus the contribution of the absorption of CDOM and suspended particles to the total absorption in the reference band could be neglected. Consequently, the total absorption could be represented by pure water. In fact, the total absorption sometimes cannot be represented by pure water in the NIR band, especially for water with a high concentration of TSM [34]. In that case, the band in which water absorption is more obvious should be considered, such as the bands in the mid-infrared region [38].



It is known from previous studies that the backscattering ratio bbp~(λ) is impacted by the bulk refractive index and the relative proportion between small- and large-sized particles, and theoretically, a higher proportion of small-sized particles indicates a higher bbp~(λ) value [29,42,49]. Thus, the bbp~(λ) value is not always constant between different waters. McKee and Cunningham (2006) [50] found that bbp~(λ) varied over an order of magnitude from 0.005 to 0.050 in the Irish Sea and its coastal area, and Petzold (2007) [51] found that bbp~(λ) was 0.019 for turbid waters in a San Diego harbor and 0.013 for the coastal waters. That aside, Loisel et al. (2007) [52] found that the value of bbp~(λ) was highly related to the refractive index of particles and that particle populations dominated by phytoplankton or inorganic particles were the trigger for higher or lower values of bbp~(λ), respectively. In the present study, bbp~(532) was regarded as a constant value, and the fitted bbp~(λ) of 0.0202 was in line with previous studies performed in different coastal and oceanic waters. However, the value of bbp~(λ) should be discussed accordingly over the long term and with a large number of observations to ensure the accuracy of the Dv50 model.



In general, bp(λ) and bbp(λ) are driven by the particle concentration to the first order, whereas the particle size, refractive index, internal structure, and shape are driven to the second order [11,52]. In light of this, the relationships between the particle volume concentration V(D) against bp(532), bbp(532), and cp(670) as measured by the LISST were observed (Figure 8). Consequently, the bp(532) and V(D) in the particle size range between 3.7 and 85.2 μm showed a great correlation, and similar results were also found for bbp(532) and cp(670). However, there turned out to be a poor correlation when focusing on smaller and larger particles. These results might be explained by small particles that were not well-proportioned (Figure 8b) and particles that deviated from the “Junge distribution” model [53] when the particle size was smaller than 3.7 μm, while larger particles contributed less to the scattering because larger particles generally corresponded to phytoplankton that had a low refractive index, and this finding is in agreement with a previous study [52]. On account of these uncertainties, the estimation of Vtot(D) (in a size range of 2.05–297 μm) from bp(λ) or bbp(λ) did not perform excellently. In addition, the relatively good correlation between Dv50 and bp*(λ) with a negative exponential model supports the use of remote sensing to describe the PSD in the coastal water of the PRE.




4.2. Applicability to Sentinel-2 MSI Data


Sentinel-2 MSI was designed initially for land feature monitoring, and a higher signal-to-noise ratio is required for information extraction from water. However, some studies found that it performed well in inland and coastal water areas for water components or optical properties research [15,35]. The Dv50 distribution obtained from Sentinel-2 MSI showed that the water areas surrounding islands are full of small-sized particles. This finding is in agreement with previous studies that proposed that sediment resuspension occurs under high winds or tides in coastal water with a shallow bathymetry [54] and that small-sized particles are usually dominated by inorganic particles [1,11]. In general, large particles are dominated by phytoplankton or algae [55]. Therefore, Dv50 may be used as an indicator for the variation of phytoplankton and inorganic particle distribution.





5. Conclusions


A four-step method was presented for suspended particle size estimation in the coastal water areas in the PRE through establishing the relationship between Dv50 and the IOPs, which could be retrieved from the Rrs(λ) of the water surface. As a consequence, the four-step method performed well for Dv50 estimation. However, there are still some limitations that should be considered in future work, such as the value of bbp~(λ) should be discussed according to long-term observations, and the Vtot(D) calculated by bp(λ) is size-dependent. Nevertheless, we found that the in situ hyperspectral data resampled by the Sentinel 2 MSI channels had great potential for monitoring Dv50 in the coastal area. The above results provide the possibility to monitor the suspended particle size of coastal complex waters using a remote sensing method.
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Abbreviations




	Variables or Abbreviations
	Description



	a
	Absorption coefficient



	aw
	Absorption coefficient of pure water



	bb
	Backscattering coefficient



	bbp
	Backscattering coefficient of the particle



	bbp~
	Backscattering ratio of the particle



	bbw
	Backscattering of pure water



	bbp*
	Volume-specific backscattering coefficient of the particle



	bp
	Scattering coefficient of the particle



	bp*
	Volume-specific scattering coefficient of the particle



	c
	Attenuation coefficient



	CDOM
	Colored dissolved organic matter



	Chl-a
	Chlorophyll-a



	DA
	Mean diameter weighted by the area



	Dv50
	Median particle diameter



	IOPs
	Inherent optical properties



	Lw
	Radiance of the water’s surface



	Lp
	Radiance of the reference panel



	Lsky
	Radiance of the sky



	N(D)
	Particle number concentration



	PRE
	Pearl River estuary



	PSD
	Particle size distribution



	Qbe
	Scattering efficiency



	Rrs
	Remote sensing reflectance just above the water’s surface



	rrs
	Remote sensing reflectance just beneath the water’s surface



	SRF
	Spectral response function



	TSM
	Total suspended mater



	u
	Ratio of backscattering and summation of absorption and backscattering



	V(D)
	Particle volume concentration



	Vtot(D)
	Total volume concentration of the particle



	Y
	Slope of the backscattering coefficient



	ξ
	PSD slope



	ρ
	Air–water reflectance



	ρa
	Apparent density



	ρp
	Diffuse reflectance of the reference panel







References


	



Xi, H.; Larouche, P.; Tang, S.; Michel, C. Characterization and variability of particle size distributions in Hudson Bay, Canada. J. Geophys. Res. Ocean. 2014, 119, 3392–3406. [Google Scholar] [CrossRef]

	



Qiu, Z.; Sun, D.; Hu, C.; Wang, S.; Zheng, L.; Huan, Y.; Peng, T. Variability of particle size distributions in the Bohai Sea and the Yellow Sea. Remote Sens. 2016, 8, 949. [Google Scholar] [CrossRef]

	



Bowers, D.G.; Binding, C.E.; Ellis, K.M. Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea. Estuar. Coast. Shelf Sci. 2007, 73, 457–466. [Google Scholar] [CrossRef]

	



Van der Lee, E.M.; Bowers, D.G.; Kyte, E. Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale. Cont. Shelf Res. 2009, 29, 1213–1225. [Google Scholar] [CrossRef]

	



Sun, D.; Qiu, Z.; Hu, C.; Wang, S.; Wang, L.; Zheng, L.; Peng, T.; He, Y. A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea. J. Geophys. Res. Ocean. 2016, 121, 6742–6761. [Google Scholar] [CrossRef]

	



Bader, H. The hyperbolic distribution of particle sizes. J. Geophys. Res. 1970, 75, 2822–2830. [Google Scholar] [CrossRef]

	



Reynolds, R.A.; Stramski, D.; Wright, V.M.; Wo’zniak, S.B. Measurements and characterization of particle size distributions in coastal waters. J. Geophys. Res. 2010, 115, C08024. [Google Scholar] [CrossRef]

	



Rodriguez-Trujillo, R.; Mills, C.A.; Samitier, J.; Gomila, G. Low cost micro-Coulter counter with hydrodynamic focusing. Microfluid. Nanofluid. 2007, 3, 171–176. [Google Scholar] [CrossRef]

	



Neukermans, G.; Loisel, H.; Mériaux, X.; Astoreca, R.; McKee, D. In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnol. Oceanogr. 2012, 57, 124–144. [Google Scholar] [CrossRef]

	



Kostadinov, T.S.; Siegel, D.A.; Maritorena, S. Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res. Ocean. 2009, 114, C09015. [Google Scholar] [CrossRef]

	



Wang, S.; Qiu, Z.; Sun, D.; Shen, X.; Zhang, H. Light beam attenuation and backscattering properties of particles in the Bohai Sea and Yellow Sea with relation to biogeochemical properties. J. Geophys. Res. Ocean. 2016, 121, 3955–3969. [Google Scholar] [CrossRef]

	



Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]

	



Qing, S.; Zhang, J.; Cui, T.; Bao, Y. Remote sensing retrieval of inorganic suspended particle size in the Bohai Sea. Cont. Shelf Res. 2014, 73, 64–71. [Google Scholar] [CrossRef]

	



Li, P.; Ke, Y.; Bai, J.; Zhang, S.; Chen, M.; Zhou, D. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data. Mar. Pollut. Bull. 2019, 149, 110518. [Google Scholar] [CrossRef] [PubMed]

	



Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]

	



Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N. Regional models for high-resolution retrieval of chlorophyll a and TSM concentrations in the Gorky Reservoir by Sentinel-2 imagery. Remote Sens. 2019, 11, 1215. [Google Scholar] [CrossRef]

	



Zhan, W.; Wu, J.; Wei, X.; Tang, S.; Zhan, H. Spatio–temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015. Cont. Shelf Res. 2019, 172, 22–32. [Google Scholar] [CrossRef]

	



Yin, K.; Lin, Z.; Ke, Z. Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters. Cont. Shelf Res. 2004, 24, 1935–1948. [Google Scholar] [CrossRef]

	



Buonassissi, C.J.; Dierssen, H.M. A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters. J. Geophys. Res. Ocean. 2010, 115, C10028. [Google Scholar] [CrossRef]

	



Huang, J.; Chen, X.; Jiang, T.; Yang, F.; Chen, L.; Yan, L. Variability of particle size distribution with respect to inherent optical properties in Poyang Lake, China. Appl. Opt. 2016, 55, 5821–5829. [Google Scholar] [CrossRef]

	



Lei, S.; Wu, D.; Li, Y.; Wang, Q.; Huang, C.; Liu, G.; Zheng, Z.; Du, C.; Mu, M.; Xu, J.; et al. Remote sensing monitoring of the suspended particle size in Hongze Lake based on GF-1 data. Int. J. Remote Sens. 2019, 40, 3179–3203. [Google Scholar] [CrossRef]

	



Sequoia Scientific. LISST-200X User’s Manual (Version 1.3B); Sequoia Scientific, Inc.: Bellevue, WA, USA, 2018. [Google Scholar]

	



Jiang, D.; Zhang, H.; Zou, T.; Li, Y.; Tang, C.; Li, R. Suspended particle size retrieval based on geostationary ocean color imager (GOCI) in the Bohai Sea. J. Coast. Res. 2016, 74, 117–125. [Google Scholar] [CrossRef]

	



Slade, W.H.; Boss, E. Spectral attenuation and backscattering as indicators of average particle size. Appl. Opt. 2015, 54, 7264–7277. [Google Scholar] [CrossRef]

	



Agrawal, Y.C.; Pottsmith, H.C. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 2000, 168, 89–114. [Google Scholar] [CrossRef]

	



Mueller, J.L.; Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 5, Volume VI: Special Topics in Ocean Optics Protocols, Part 2; Muller, J.L., Fargion, G.S., McClain, C.R., Eds.; NASA Goddard Space Flight Space Center: Greenbelt, MD, USA, 2004; pp. 1–63.

	



Wang, Z.; Kawamura, K.; Sakuno, Y.; Fan, X.; Gong, Z.; Lim, J. Retrieval of Chlorophyll-a and Total Suspended Solids Using Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression Based on Field Hyperspectral Measurements in Irrigation Ponds in Higashihiroshima, Japan. Remote Sens. 2017, 9, 264. [Google Scholar] [CrossRef]

	



Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]

	



Lin, J.; Cao, W.; Wang, G.; Zhou, W.; Sun, Z.; Zhao, W. Inversion of bio-optical properties in the coastal upwelling waters of the northern South China Sea. Cont. Shelf Res. 2014, 85, 73–84. [Google Scholar] [CrossRef]

	



WET Labs. AC Meter Protocol Document (Revision Q); WET Labs, Inc.: Philomath, OR, USA, 2011. [Google Scholar]

	



Sullivan, J.M.; Twardowski, M.S.; Zaneveld, J.R.V.; Moore, C.M.; Barnard, A.H.; Donaghay, P.L.; Rhoades, B. Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range. Appl. Opt. 2006, 45, 5294–5309. [Google Scholar] [CrossRef]

	



WET Labs. Scattering Meter ECO BB9 User’s Guide (Revision L); WET Labs, Inc.: Philomath, OR, USA, 2013. [Google Scholar]

	



Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the ESA Living Planet, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]

	



Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdú, A.; Delegido, J.; Tenjo, C.; Soria-Perpinyà, X.; Vicente, E.; Soria, J.; Moreno, J. Evaluation of atmospheric correction algorithms over Spanish inland waters for sentinel-2 multi spectral imagery data. Remote Sens. 2019, 11, 1469. [Google Scholar] [CrossRef]

	



Warren, M.A.; Simis, S.G.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]

	



Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]

	



Lee, Z.; Bertrand, L.; Jeremy, W.; Robert, A. An Update of the Quasi-Analytical Algorithm (QAA_v5). Technical Report, International Ocean Colour Coordinating Group (IOCCG). 2009. Available online: http://www.ioccg.org/groups/software.html (accessed on 2 December 2021).

	



Le, C.F.; Li, Y.M.; Zha, Y.; Sun, D.; Yin, B. Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2492–2500. [Google Scholar]

	



Li, S.; Song, K.; Mu, G.; Zhao, Y.; Ma, J.; Ren, J. Evaluation of the Quasi-Analytical Algorithm (QAA) for estimating total absorption coefficient of turbid inland Waters in Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4022–4036. [Google Scholar] [CrossRef]

	



Buiteveld, H.; Hakvoort, J.H.M.; Donze, M. Optical properties of pure water. In Proceedings of the Ocean Optics XII, Bergen, Norway, 13–15 June 1994; 2258, pp. 174–183. [Google Scholar]

	



Boss, E.; Twardowski, M.S.; Herring, S. Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution. Appl. Opt. 2001, 40, 4885–4893. [Google Scholar] [CrossRef]

	



Twardowski, M.S.; Boss, E.; Macdonald, J.B.; Pegau, W.S.; Barnard, A.H.; Zaneveld, J.R.V. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J. Geophys. Res. Ocean. 2001, 106, 14129–14142. [Google Scholar] [CrossRef]

	



Sun, D.; Su, X.; Wang, S.; Qiu, Z.; Ling, Z.; Mao, Z.; He, Y. Variability of particulate backscattering ratio and its relations to particle intrinsic features in the Bohai Sea, Yellow Sea, and East China Sea. Opt. Express 2019, 27, 3074–3090. [Google Scholar] [CrossRef]

	



Whitmire, A.L.; Boss, E.; Cowles, T.J.; Pegau, W.S. Spectral variability of the particulate backscattering ratio. Opt. Express 2007, 15, 7019–7031. [Google Scholar] [CrossRef]

	



Martinez-Vicente, V.; Land, P.E.; Tilstone, G.H.; Widdicombe, C.; Fishwick, J.R. Particulate scattering and backscattering related to water constituents and seasonal changes in the Western English Channel. J. Plankton Res. 2010, 32, 603–619. [Google Scholar] [CrossRef]

	



Woźniak, S.B.; Stramski, D.; Stramska, M.; Reynolds, R.A.; Wright, V.M.; Miksic, E.Y.; Cichocka, M.; Cieplak, A.M. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J. Geophys. Res. Ocean. 2010, 115, C08027. [Google Scholar] [CrossRef]

	



Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef] [PubMed]

	



Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a semianalytical ocean color model for global-scale applications. Appl. Opt. 2002, 41, 2705–2714. [Google Scholar] [CrossRef] [PubMed]

	



Ulloa, O.; Sathyendranath, S.; Platt, T. Effect of the particle-size distribution on the backscattering ratio in seawater. Appl. Opt. 1994, 33, 7070–7077. [Google Scholar] [CrossRef]

	



McKee, D.; Cunningham, A. Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents. Estuar. Coast. Shelf Sci. 2006, 68, 305–316. [Google Scholar] [CrossRef]

	



Petzold, T.J. Volume Scattering Functions for Selected Ocean Waters; Scripps Institution of Oceanography: La Jolla, CA, USA, 1972. [Google Scholar]

	



Loisel, H.; Mériaux, X.; Berthon, J.F.; Poteau, A. Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea. Limnol. Oceanogr. 2007, 52, 739–752. [Google Scholar] [CrossRef]

	



Junge, C.E. Air Chemistry and Radioactivity; Academic Press Inc.: New York, NY, USA, 1963; p. 382. [Google Scholar]

	



Cui, T.W.; Zhang, J.; Ma, Y.; Zhao, W.J.; Sun, L. The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing. Acta Oceanol. Sin. 2009, 31, 10–18. [Google Scholar]

	



Koestner, D.; Stramski, D.; Reynolds, R.A. Assessing the effects of particle size and composition on light scattering through measurements of size-fractionated seawater samples. Limnol. Oceanogr. 2020, 65, 173–190. [Google Scholar] [CrossRef]








[image: Remotesensing 13 05172 g001 550] 





Figure 1. Study area and sampling sites. 
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Figure 2. Dv50 retrieval schematic flow chart. 
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Figure 3. (a) Validation of QAA method for bbp(532) retrieval. (b) The relationship between bbp(532) and bp(532). 
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Figure 4. The Vtot(D) estimation from (a) bp(532) and (b) bbp(532). 
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Figure 5. The performance of Dv50 retrieval models with bp*(532) ((a) inverse proportion, (c) negative power function, and (e) negative exponential function) and bbp*(532) ((b) inverse proportion, (d) negative power function, and (f) negative exponential function). 
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Figure 6. Validation of the Dv50 retrieval models proposed by previous studies and developed in this study. 
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Figure 7. The Dv50 distribution retrieved by the proposed method on (a) 22 September 2019 and (b) 30 January 2020. 
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Figure 8. (a) Correlations between V(D) and bp(532), bbp(532), and cp(670) in all size ranges (the gray region shows the particle size range within the correlation coefficient r > 0.8 for bp(532)). (b) The “Junge distribution” for the particle number concentration (the blue line represents the fitted line of the median PSD slope (ξ = 3.55) of all the data). 
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Table 1. Observation stations with respect to three trips, including IOP, PSD, and AOP data.
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Data Type

	
2019

	
2020

	
Count




	
21 May, 22 May

	
20 September

	
8 January






	
IOPs

	
N1–N6, S1–S8

	
N1–N9, S1–S8

	
P1–P8

	
39




	
PSD

	
N1–N6, S1–S8

	
N1–N9, S1–S8

	
P1–P8

	
39




	
AOPs

	
No data

	
N1–N8, S1–S8

	
No data

	
16
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Table 2. Descriptive statistics for particulate backscattering bbp(λ), scattering bp(λ), volume-specific scattering bp*(λ), coefficients at 532 nm, total volume concentration Vtot(D), and median particle size Dv50. S.D. = standard deviation; C.V. = coefficient of variation; and N = number of observations.






Table 2. Descriptive statistics for particulate backscattering bbp(λ), scattering bp(λ), volume-specific scattering bp*(λ), coefficients at 532 nm, total volume concentration Vtot(D), and median particle size Dv50. S.D. = standard deviation; C.V. = coefficient of variation; and N = number of observations.





	Variable
	Units
	Min
	Max
	Mean
	S.D.
	C.V. (%)
	N





	bbp(532)
	m−1
	0.02
	0.22
	0.11
	0.1
	44.3
	39 *



	bp(532)
	m−1
	1.26
	14.34
	5.85
	2.8
	47.2
	39



	bp*(532)
	m2/mL
	0.04
	0.34
	0.18
	0.1
	40.7
	39



	Vtot(D)
	μL/L
	9.37
	144.76
	38.77
	26.8
	69.0
	39



	Dv50
	μm
	28.89
	263.02
	103.10
	74.6
	72.4
	39







* For bbp(532), 37 measurements were available from 39 measurements due to the saturation of the signal that appeared in 2 observations.
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Table 3. Comparison of Dv50 models reported by previous studies and that proposed in this study in calibration.
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Relation

	
Model

	
R2

	
RMSE (μm)

	
Reference






	
Dv50 vs. bp*

	
Inverse proportion

	
0.65

	
50.78

	
Bowers et al. (2007)




	
Negative power function

	
0.71

	
48.9

	
Woźniak et al. (2010)




	
Negative exponential function

	
0.85

	
33.5

	
This study




	
Dv50 vs. bbp*

	
Inverse proportion

	
0.64

	
51.6

	
Bowers et al. (2007)




	
Negative power function

	
0.67

	
50.7

	
Woźniak et al. (2010)




	
Negative exponential function

	
0.78

	
41.3

	
This study
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Table 4. Performance comparison of Dv50 models reported by previous studies and that proposed in this study in validation.
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	Model
	R2
	RMSE
	MAPE
	Bias





	Inverse proportion
	0.78
	30.28
	31.6%
	−6.01



	Negative power function
	0.79
	31.17
	32.36%
	8.74



	This study
	0.86
	18.52
	21.28%
	−1.85
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