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Abstract: The suspended particle size has great impacts on marine biology environments and
biogeochemical processes, such as the settling rates of particles and sunlight transmission in marine
water. However, the spatial–temporal variations in particle sizes in coastal waters are rarely reported
due to the paucity of appropriate observations and the limitations of particle size retrieval methods,
especially in areas with complex optical properties. This study proposed a remote sensing-based
method for estimating the median particle size Dv

50 (calculated with a size range of 2.05–297 µm)
that correlates Dv

50 with the inherent optical properties (IOPs) retrieved from in situ remote sensing
reflectance above the water’s surface (Rrs(λ)) in the Pearl River estuary (PRE) in China. Rrs(λ)
was resampled to simulate the Multispectral Instrument (MSI) onboard Sentinel-2A/B, and the
wavebands in 490, 560, and 705 nm were utilized for the retrieval of the IOPs. The results of this
method had a statistical performance of 0.86, 18.52, 21.28%, and −1.85 for the R2, RMSE, MAPE,
and bias values, respectively, in validation, which indicated that Dv

50 could be estimated by Rrs(λ)
with the proposed four-step method. Then, the proposed method was applied to Sentinel-2 MSI
imagery, and a clear difference in Dv

50 distribution which was retrieved from a different time could
be seen. The proposed method holds great potential for monitoring the suspended particle size of
coastal waters.

Keywords: median particle size; particle size distribution; inherent optical properties; ocean color
remote sensing; Sentinel-2

1. Introduction

The suspended particle size in marine water has great impacts on marine biology
environments and biogeochemistry processes (e.g., the settling velocity, resuspension,
aggregates, and carbon cycle of particles [1]), and it has been proven to have a significant
effect on the inherent optical properties (IOPs) of water so as to change the signals of ocean
color remote sensing [2]. Hence, it is of great significance to obtain the characteristics of
particle size. The median particle size (Dv

50) [3–5], which is the diameter corresponding to
the 50th percentile of the accumulated volume concentration, is frequently used to describe
the particle size distribution (PSD) of marine systems [6]. The parameter Dv

50 represents
the proportional relationship between small particles and large particles in the particle size
range; that is to say, a larger value of Dv

50 indicates that larger particles are more dominant,
and vice versa [2,5]. Therefore, the spatiotemporal dynamics of Dv

50 can describe the
characteristics of the particle size in marine water.

To determine the particle size, various particle sizing instruments, including particle
imaging systems (FlowCAM) [7], electrical impedance particle sizers (Coulter Counter) [8],
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and laser diffractometers (LISST) [9], have been applied in both oceanic and inland water
observation. Although many valuable observations have been carried out using these
instruments worldwide, the spatial–temporal variations in Dv

50 have seldom been in-
vestigated due to the limitation of traditional observation methods [10]. Ocean color
remote sensing provides the possibility of monitoring the state of the ocean routinely and
in a cost-effective manner at a large scale [11], which makes it possible to observe Dv

50

more appropriately.
According to Mie theory [12], the particle size and particle composition make signifi-

cant contributions to the scattering properties of particle assemblages that are suspended
in marine water, and thus, some studies have suggested a relationship between scattering
or backscattering and the particle size. Bowers et al. (2007) [3] developed an algorithm
for particle size estimation by building a relationship with light scattering per unit con-
centration, and van der Lee et al. (2009) [4] applied this method to a much larger set of
MODIS imagery to obtain the monthly average particle size in the southern Irish Sea. Qing
et al. (2014) [13] utilized the ratio of green to red channels to build the empirical model
for particle size estimation in the Bohai Sea in China. Sun et al. (2016) [5] evaluated the
inadequacies of the above studies and proposed a hybrid method by combining analytical,
semi-analytical, and empirical processes to estimate Dv

50 from remote sensing reflectance
(Rrs(λ)). These studies indicate that PSD can be estimated by a remote sensing method.

Ocean color satellite sensors such as SeaWiFS, MODIS, MERIS, and OLCI were de-
signed specifically to observe the water’s bio-optical properties. However, the mixed
pixel problems caused by low spatial resolutions of their imagery sometimes limit their
application when observing coastal waters or areas close to islands, particularly in areas
with high variability of suspended particles [14]. The multi-spectral instrument (MSI)
sensor onboard the Sentinel-2 A/B satellite can obtain higher spatial resolution imagery
(10 m at visible and near infrared bands), with a relatively short revisit interval (10 days
for one satellite and 5 days for double satellites) compared with other sensors with high
special resolutions, such as Landsat-8. Despite Sentinel-2 being designed for global land
monitoring, some studies have demonstrated its potential for assessing coastal and inland
water quality [14–16].

The Pearl River estuary (PRE) is a tropical estuary, and the hydrodynamic conditions
in the PRE are complex due to many factors, such as river discharges, topography, tides,
and monsoons [17]. It is heavily influenced by frequent anthropogenic activities, such as
industrialization and urbanization. The suspended sediment concentration in the coastal
water and its variation as impacted by anthropogenic activity have been analyzed by many
studies. However, the spatial–temporal variation of the suspended particle size in this
area has rarely been reported. This study aimed to develop a method for retrieving the
suspended particle size in the water areas with complex optical properties based on ocean
color remote sensing and furthermore to apply the proposed method to Sentinel-2 MSI
data for obtaining the spatiotemporal variation of the suspended particle size in the PRE.
The findings of this study may provide information for understanding the characteristics
of the particle size distributions in optically complex coastal waters.

2. Materials and Methods
2.1. Study Area and Fieldwork

The complex hydrodynamics of the study site are determined by many physical fac-
tors that were mainly contributed by the Pearl River discharge, coastal current, and oceanic
waters from the South China Sea [18]. In this study, a total of three trips were conducted
(Figure 1). Two of them were around four islands in the central and western area of the PRE
(Neilingding, Dachan, Xiaochan, and Mazhou) in spring (21 May and 22 May) and autumn
(20 September) of 2019, and the other trip was to an observation section on 8 January 2020.
A total of 39 observations were conducted at 25 sites (N1–N9, S1–S8, and P1–P8), includ-
ing 39 inherent optical property data (i.e., absorption coefficient, attenuation coefficient
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and scattering coefficient), 39 PSD datasets, and only 16 apparent optical property data
(i.e., Rrs(λ)) due to bad observation conditions (Table 1).
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Table 1. Observation stations with respect to three trips, including IOP, PSD, and AOP data.

Data Type
2019 2020

Count
21 May, 22 May 20 September 8 January

IOPs N1–N6, S1–S8 N1–N9, S1–S8 P1–P8 39
PSD N1–N6, S1–S8 N1–N9, S1–S8 P1–P8 39

AOPs No data N1–N8, S1–S8 No data 16

2.2. PSD Acquisition

In this study, a LISST-200X Type-C particle size analyzer (Sequoia Scientific, Inc.,
Bellevue, WA, USA) was used for PSD measurements. It is an upgraded version of the
LISST-100X, which is a widely used instrument for in situ PSD measurements in marine
waters [19–21]. The LISST-200X type-C has 36 size bins that cover a size range from 1 to
500 µm, and the size spectrum is logarithmically spaced [22]. For each bin, the upper size
is 1.18 times the lower, and the width varies from 0.26 to 80 µm, with the exception of bin 1.
The LISST uses particle diffraction, which is received by an optics receiving system formed
by 36 concentric ring-shaped detectors, to perform a nonintrusive measurement of the volume
concentration of suspended particles through a collimated laser beam (670 nm) [23–25].

Before the trip, the LISST was calibrated with Milli-Q water. The particle volume
concentration (V(D) in µL/L) in the 36 size bins could be derived from the manufacturer-
provided software LISST-SOP after in situ measurements. In addition, the total volume
concentration (Vtot(D)) could be retrieved by a simple summation calculation of V(D) in all
the size bins. There were two particle shape models for the V(D) data derived when using
the LISST-SOP software, and we selected the irregularly shaped model, as it was more
fitting than the spherical model when working with natural waters [22]. As a parameter for
characterizing the particle size, the in situ Dv

50 corresponded to the particle diameter when
the cumulated V(D) reached 50% of the Vtot(D), which was calculated by summarizing the
V(D) between the 4th and 33rd size bins (i.e., a size range from 2.05 to 297 µm), since the
data in the biggest and smallest bins were not stable.
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2.3. Optical Property Measurements

In the case of the apparent optical properties (AOPs), the remote sensing reflectance
(Rrs(λ)) was measured using an ASD FieldSpec 4 spectroradiometer (Analytical Spectral
Devices, Boulder, CO, USA) which covered a spectral range of 350–2500 nm with 1 nm
intervals. The measurements were carried out following the NASA marine optical pro-
tocol [26]. We adopted the observing geometry of a zenith angle of 40◦ from the water’s
surface and an azimuth angle of 135◦ from the direction of the sun irradiance to perform
the measurements, thus avoiding the shadow of the ship and direct irradiance from the
sun [27]. Aside from that, the foam patches and whitecaps were kept away from the field
of view to avoid signal interference by them. The measured Rrs(λ) was calculated with
Equation (1):

Rrs(λ) =
Lw(λ)− ρLsky(λ)

πLp(λ)/ρp
(1)

where Lw, Lsky, and Lp stand for the radiances measured from the water’s surface, sky, and
a standard gray reference panel, respectively; ρp is the diffuse reflectance of the reference
panel; and ρ is the dimensionless air–water reflectance, which is always a constant value
(here, we adopted 0.025 as the value due to the wind speed being lower than 5 m/s) [28].

As for the IOPs, the absorption coefficient (a(λ) in m−1) and attenuation coefficient
(c(λ) in m−1) were obtained by an AC-S spectral absorption and attenuation meter (WET
Labs, USA). As the scattering coefficient of CDOM could be disregarded, the particle
scattering (bp(λ) in m−1) was calculated through the relationship bp(λ) = c(λ) − a(λ) [29].
The AC-S instrument provides 84 channels within the range of about 400–730 nm with
approximately 4-nm steps [30]. The backscattering coefficient of the suspended particles
(bbp(λ) in m−1) was obtained using a BB9 (WET Labs, Philomath, OR, USA) with 9 bands
(412, 440, 488, 532, 595, 695, and 715 nm for backscattering and 2 bands for CDOM and Chl-a
fluorescence). For the postprocessing and correction of AC-S and BB9, the temperature
and salinity data were measured synchronously with an SBE37 CTD (Sea-Bird Electronics,
Bellevue, WA, USA). Before the trip, the AC-S, BB9, and CTD instruments would be sent
to the manufacturer for periodic factory calibrations, and the instruments were rinsed
with pure water immediately after each observation. To obtain accurate absorption and
attenuation information, temperature and salinity corrections were performed on the raw
data by following the ac Meter Protocol Document [30], and the effects of reflective tube
scattering were corrected by following the method proposed by Sullivan et al. (2006) [31].
The raw BB9 data were corrected by following the BB9 User’s Guide [32].

2.4. Sentinel-2 A/B MSI Image

The level-1C (L1C) Sentinel-2 A/B MSI images were obtained from the European
Space Agency’s (ESA) Copernicus Open Access Hub. Two cloudless images were selected
from both the wet season (22 September 2019) and the dry season (30 January 2020) in this
study. Unfortunately, there were no matchups with the sampling sites due to clouds. The
L1C images were projected to Universal Transverse Mercator/World Geodetic System 84
(UTM/WGS84) and resampled to a 10-m spatial resolution. To retrieve the Rrs(λ) above the
water’s surface, the Case 2 Regional Coast Colour processor (C2RCC) [33], which has been
proven to perform well in atmosphere correction over coastal areas [34,35], was applied
to carry out atmosphere correction. These processes were completed in the free Sentinel
Application Platform (SNAP) version 8.0.0 with the C2RCC plug-in.

2.5. Dv
50 Retrieval

A four-step method was proposed for Dv
50 retrieval in this study (Figure 2), and the

steps are as follows.
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50 retrieval schematic flow chart.

2.5.1. Step 1

The in situ Rrs(λ) was simulated to the Sentinel-2 MSI equivalent Rrs(λ) with the
Sentinel-2 corresponding spectral response function (SRF) (Equation (2)), and the bbp(λ)
retrieval algorithm was developed using the simulated Rrs(λ). For bbp(λ) retrieval, a quasi-
analytical algorithm (QAA) based on radiative transfer theory was applied to invert Rrs(λ)
to the water IOPs [36]. The updated versions (e.g., QAA-v5 and QAA-v6) were developed
both for open oceanic and coastal waters [37]. In the QAA, the relationship between Rrs(λ)
and the spectral backscattering and absorption coefficients can be written as the following
equations (Equations (3)–(5)):

Rrs(sentinel−2)(λ) =

∫ λ2
λ1 Rrs(λ)SRF(λ)d(λ)∫ λ2

λ1 SRF(λ)d(λ)
(2)

rrs(λ) =
Rrs(λ)

(0.52 + 1.7× Rrs(λ)
(3)

u(λ) =
bb(λ)

a(λ) + bb(λ)
(4)

rrs(λ) = g0 × u(λ) + g1 × u(λ)2 (5)

where Rrs(λ) is the spectral remote sensing reflectance just below the water surface; a(λ) and
bb(λ) are the total absorption coefficient and total backscattering coefficient, respectively;
and u(λ) is the ratio of the backscattering coefficient to the sum of the absorption coefficient
and backscattering coefficient. The coefficients g0 (0.0895) and g1 (0.1247) were proposed
for relatively turbid coastal waters through radiative transfer theory [36]. Several studies
showed that if the NIR band was used, a(λ) could be replaced by the absorption coefficient
of pure water aw(λ) due to the absorption of water being much larger than those for other
substances [38,39]. We tested the applicability in this study, and our results show that
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absorbance above 95% was contributed by pure water. Hence, we took 705 nm of the
Sentinel-2 bands as the reference band of bbp(λ) (Equation (6)):

bbp(705) =
u(705)× aw(705)

1− u(705)
− bbw(705) (6)

where the values of aw(705) and bbw(705) (backscattering coefficient of pure water) are
known [40]. In this study, wavelengths of 490 and 560 nm were used in our empirical
model to estimate the slope of particle backscattering coefficient Y (Equation (7)) rather
than 443 nm, as it suffered from larger errors in atmospheric correction due to the high
absorption of CDOM and suspended particles in a coastal environment. Finally, bbp(λ) can
be calculated with the estimated bbp(705) and slope Y (Equation (8)):

Y = 2.0
{

1− 1.2 exp
[
−0.9× rrs(490)

rrs(560)

]}
(7)

bbp(λ) = bbp(705)×
(

705
λ

)Y
(8)

2.5.2. Step 2

The backscattering ratio (bbp
~(λ)) was used to obtain bp(λ) (Equation (9)). It should be

noted that bbp
~(λ) is usually not a constant value due to some physical properties (such as

the component, size, and structure) of the suspended particles [41–43]. However, for some
specific study areas, bbp

~(λ) is regarded a constant or to be within certain limits [44,45].
In this study, we performed a least square fitting using in situ measured bbp(λ) and bp(λ)
to obtain bbp

~(λ) and to evaluate the applicability of bbp
~(λ) as a constant in the present

study area:

bp =
bbp

bbp
∼ (9)

2.5.3. Step 3

In general, bp(λ) is affected by the total suspended matter (TSM), the scattering effi-
ciency (Qbe), the apparent density (ρa), and the mean diameter weighted by the area (DA),
and it is most affected by the TSM. Hence, the mass-specific scattering or backscattering
(i.e., bp(λ) or bbp(λ) divided by the TSM) are usually used to estimate the particle size [11].
However, as we can see from Equation (10), the mass-specific scattering is affected not
only by DA but also by the value ρa multiplied by DA. The volume-specific scattering
coefficient (bp*(λ)), which was calculated by the ratio of bp(λ) to Vtot(D), was introduced in
this study because the scattering per unit volume concentration was likely to scale with the
particle diameter (Equation (11)). To calculate the value of bp*(λ), Vtot(D) should first be
estimated according to Equation (11). The Vtot(D) prediction model was calibrated by bp(λ)
and bbp(λ) separately, for bp(λ) and bbp(λ) were both considered to be dependent on the
suspended particle concentration. The accuracy of the Vtot(D) prediction models calibrated
by bp(λ) and bbp(λ) were compared, and we adopted the one with better performance:

bp =
3
2

Qbe
ρaDA

TSM =
3
2

Qbe
DA

Vtot(D) (10)

bp
∗ =

bp

Vtot(D)
=

3
2

Qbe
DA

(11)

2.5.4. Step 4

Dv
50 was obtained from the Dv

50 model developed using in situ calculated bp*(λ) and
Dv

50. In the past few years, several Dv
50 models have been proposed for certain areas.

For instance, an inverse proportion model and a negative power function model were
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developed for the Irish Sea and the nearshore waters of Imperial Beach, respectively [3,46].
Then, the negative power function model was optimized and applied in the Bohai Sea
and Yellow Sea [5]. All of the above models were developed based on the relationship
between Dv

50 and the mass-specific bp(λ) or bbp(λ). We validated the previous models in
our study area and proposed a negative exponential function model for Dv

50 estimation.
We compared these models calibrated by bp*(λ) and bbp*(λ) separately, and we adopted
the one with the best performance.

2.6. Accuracy Assessment

To assess the consistency of the estimated in situ measured values, the root mean squared
error (RMSE) (Equation (12)), mean absolute percentage error (MAPE) (Equation (13)), and
bias (Equation (14)) were used in this study:

RMSE =

√√√√ 1
N

N

∑
i=1

(
y′i − yi

)2 (12)

MAPE =
1
N

N

∑
i=1

∣∣∣∣y′i − yi
yi

∣∣∣∣ (13)

bias =
1
N

N

∑
i=1

(
y′i − yi

)
(14)

where yi
′ is the predicted value, yi is the measured value, and N is the number of samples.

3. Results
3.1. Optical Properties and PSD

A summary of the measured data (including the optical properties and particle size
parameters) is shown in Table 2. All of the parameters showed a wide range with a high
C.V. value, which indicated the large variation of the optical properties and PSD in the
study area. It needs to be mentioned that the wavelength of 532 nm was used both for bp(λ)
and bbp(λ), because signal saturation appeared in the red and NIR bands for in situ BB9
backscattering measurement (especially at 695 and 715 nm). We also abandoned the blue
bands for the reason that large errors would appear when calculating bbp(λ) at wavelengths
far from the reference wavelength in the NIR region.

Table 2. Descriptive statistics for particulate backscattering bbp(λ), scattering bp(λ), volume-specific
scattering bp*(λ), coefficients at 532 nm, total volume concentration Vtot(D), and median particle size
Dv

50. S.D. = standard deviation; C.V. = coefficient of variation; and N = number of observations.

Variable Units Min Max Mean S.D. C.V. (%) N

bbp(532) m−1 0.02 0.22 0.11 0.1 44.3 39 *
bp(532) m−1 1.26 14.34 5.85 2.8 47.2 39
bp*(532) m2/mL 0.04 0.34 0.18 0.1 40.7 39
Vtot(D) µL/L 9.37 144.76 38.77 26.8 69.0 39

Dv
50 µm 28.89 263.02 103.10 74.6 72.4 39

* For bbp(532), 37 measurements were available from 39 measurements due to the saturation of the signal that
appeared in 2 observations.

3.2. Dv
50 Model Development

The validation of the QAA for bbp(532) retrieval is shown in Figure 3a. The QAA
estimated and in situ measured bbp(532) values showed a good fit (R2 = 0.85, RMSE = 0.02),
with MAPE = 17.2% and bias = −0.0021. As we can see, the scattered dots were mostly
close to the 1:1 line. This finding indicates that the QAA method held good potential for
bbp(λ) retrieval in our study area. The backscattering ratio bbp

~(λ) was derived from the
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least square fitting using the in situ measured bbp(λ) and bp(λ), with a high R2 value of 0.94
and a low RMSE value of 0.012 (Figure 3b). The slope of the fitted equation was 0.0202,
which was the ratio of bbp(λ) and bp(λ) and was equivalent to bbp

~(λ) in this study.
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As for Vtot(D) retrieval, we compared the results of the empirical models calibrated
by bp(532) and bbp(532). The Vtot(D) retrieval model calibrated by bp(532) held a higher
accuracy, with an R2 of 0.75 (Figure 4a), and the Vtot(D) retrieval model calibrated by
bbp(532) showed a lower accuracy, with an R2 of 0.72 (Figure 4b). Moreover, signal sat-
uration appeared in two sites for the bbp(532) data, which indicates that bbp(532) might
not be available in high-turbidity water. Hence, bp(532) was used to calculate Vtot(D) in
this study.
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For Dv
50 retrieval, 23 simultaneous bp*(λ), bbp*(λ), and Dv

50 datasets were used in the
calibration of the inverse proportion model (Figure 5a for bp*(λ) and Figure 5b for bbp*(λ)),
negative power function model ((Figure 5c for bp*(λ) and Figure 5d for bbp*(λ))), and nega-
tive exponential function model (Figure 5e for bp*(λ) and Figure 5f for bbp*(λ)). The results
for all models are shown in Table 3. Overall, a good fit (R2 = 0.85, RMSE = 33.5 µm) was
found by the proposed model for the relationship between bp*(λ) and Dv

50 (Figure 5e). The
proposed model also showed the potential (R2 = 0.78, RMSE = 41.3 µm) in the relationship
between bbp*(λ) and Dv

50 (Figure 5f), while the other two models obtained poorer results
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for estimating Dv
50. The findings indicated that the negative exponential model performed

best in our study area.
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Table 3. Comparison of Dv50 models reported by previous studies and that proposed in this study
in calibration.

Relation Model R2 RMSE (µm) Reference

Dv
50 vs. bp*

Inverse proportion 0.65 50.78 Bowers et al. (2007)
Negative power function 0.71 48.9 Woźniak et al. (2010)

Negative exponential function 0.85 33.5 This study

Dv
50 vs. bbp*

Inverse proportion 0.64 51.6 Bowers et al. (2007)
Negative power function 0.67 50.7 Woźniak et al. (2010)

Negative exponential function 0.78 41.3 This study

3.3. Dv
50 Model Validation and Application

In this study, 16 in situ measurements were used to validate the performance of the
Dv

50 retrieval models proposed by previous studies and developed in this study. The
model validation results showed that the proposed method performed well, with an R2 of
0.86, RMSE of 18.52 µm, MAPE of 21.28%, and bias of −1.85 (Table 4). The scattered dots
were mostly close to the 1:1 line, except for some dots with large Dv

50 values (Figure 6)
due to a shortage of training data for model calibration, especially in the case of the
large Dv

50 samples. The findings proved that Dv
50 could be estimated using the remote

sensing method.

Table 4. Performance comparison of Dv50 models reported by previous studies and that proposed in
this study in validation.

Model R2 RMSE MAPE Bias

Inverse
proportion 0.78 30.28 31.6% −6.01

Negative power
function 0.79 31.17 32.36% 8.74

This study 0.86 18.52 21.28% −1.85
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50 retrieval models proposed by previous studies and developed in

this study.

The proposed Dv
50 model was further applied to the remote-sensed ocean color data.

After applying the proposed method to the Sentinel-2 MSI images, we obtained the Dv
50

distribution at different times in our study area (Figure 7). The satellite-retrieved Dv
50

values ranged from approximately 50 to 180 µm. It can be seen that there existed obvious
differences in the Dv

50 distribution in both time and space; Dv
50 on 30 January 2020 was
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higher than that on 22 September 2019 in most areas, with the exception of the western area
of the PRE, and Dv

50 in the western area was lower than that in the eastern and southern
area of the PRE on both days. The results indicate the potential for monitoring Dv

50 on a
large scale with Sentinel-2 MSI data.
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4. Discussion

4.1. Robustness of the Dv
50 Model

Accurate estimation of bbp(λ) is of fundamental importance for accurate Dv
50 re-

trieval. Some inversion models, such as Generalized IOP (GIOP) [47], the Garver–Seigel–
Maritorena (GSM) algorithm [48], and the QAA [36], provide fairly accurate estimations of
bbp(λ) for the open ocean, but they are less accurate in highly turbid or eutrophic coastal
water [15]. We adopted 705 nm as the reference band in the QAA method, and thus the
contribution of the absorption of CDOM and suspended particles to the total absorption
in the reference band could be neglected. Consequently, the total absorption could be
represented by pure water. In fact, the total absorption sometimes cannot be represented
by pure water in the NIR band, especially for water with a high concentration of TSM [34].
In that case, the band in which water absorption is more obvious should be considered,
such as the bands in the mid-infrared region [38].

It is known from previous studies that the backscattering ratio bbp
~(λ) is impacted

by the bulk refractive index and the relative proportion between small- and large-sized
particles, and theoretically, a higher proportion of small-sized particles indicates a higher
bbp

~(λ) value [29,42,49]. Thus, the bbp
~(λ) value is not always constant between different

waters. McKee and Cunningham (2006) [50] found that bbp
~(λ) varied over an order of

magnitude from 0.005 to 0.050 in the Irish Sea and its coastal area, and Petzold (2007) [51]
found that bbp

~(λ) was 0.019 for turbid waters in a San Diego harbor and 0.013 for the
coastal waters. That aside, Loisel et al. (2007) [52] found that the value of bbp

~(λ) was
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highly related to the refractive index of particles and that particle populations dominated
by phytoplankton or inorganic particles were the trigger for higher or lower values of
bbp

~(λ), respectively. In the present study, bbp
~(532) was regarded as a constant value,

and the fitted bbp
~(λ) of 0.0202 was in line with previous studies performed in different

coastal and oceanic waters. However, the value of bbp
~(λ) should be discussed accordingly

over the long term and with a large number of observations to ensure the accuracy of the
Dv

50 model.
In general, bp(λ) and bbp(λ) are driven by the particle concentration to the first order,

whereas the particle size, refractive index, internal structure, and shape are driven to
the second order [11,52]. In light of this, the relationships between the particle volume
concentration V(D) against bp(532), bbp(532), and cp(670) as measured by the LISST were
observed (Figure 8). Consequently, the bp(532) and V(D) in the particle size range between
3.7 and 85.2 µm showed a great correlation, and similar results were also found for bbp(532)
and cp(670). However, there turned out to be a poor correlation when focusing on smaller
and larger particles. These results might be explained by small particles that were not
well-proportioned (Figure 8b) and particles that deviated from the “Junge distribution”
model [53] when the particle size was smaller than 3.7 µm, while larger particles contributed
less to the scattering because larger particles generally corresponded to phytoplankton that
had a low refractive index, and this finding is in agreement with a previous study [52]. On
account of these uncertainties, the estimation of Vtot(D) (in a size range of 2.05–297 µm)
from bp(λ) or bbp(λ) did not perform excellently. In addition, the relatively good correlation
between Dv

50 and bp*(λ) with a negative exponential model supports the use of remote
sensing to describe the PSD in the coastal water of the PRE.
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“Junge distribution” for the particle number concentration (the blue line represents the fitted line of
the median PSD slope (ξ = 3.55) of all the data).

4.2. Applicability to Sentinel-2 MSI Data

Sentinel-2 MSI was designed initially for land feature monitoring, and a higher signal-
to-noise ratio is required for information extraction from water. However, some studies
found that it performed well in inland and coastal water areas for water components or
optical properties research [15,35]. The Dv

50 distribution obtained from Sentinel-2 MSI
showed that the water areas surrounding islands are full of small-sized particles. This
finding is in agreement with previous studies that proposed that sediment resuspension
occurs under high winds or tides in coastal water with a shallow bathymetry [54] and that
small-sized particles are usually dominated by inorganic particles [1,11]. In general, large
particles are dominated by phytoplankton or algae [55]. Therefore, Dv

50 may be used as an
indicator for the variation of phytoplankton and inorganic particle distribution.
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5. Conclusions

A four-step method was presented for suspended particle size estimation in the coastal
water areas in the PRE through establishing the relationship between Dv

50 and the IOPs,
which could be retrieved from the Rrs(λ) of the water surface. As a consequence, the four-
step method performed well for Dv

50 estimation. However, there are still some limitations
that should be considered in future work, such as the value of bbp

~(λ) should be discussed
according to long-term observations, and the Vtot(D) calculated by bp(λ) is size-dependent.
Nevertheless, we found that the in situ hyperspectral data resampled by the Sentinel 2 MSI
channels had great potential for monitoring Dv

50 in the coastal area. The above results
provide the possibility to monitor the suspended particle size of coastal complex waters
using a remote sensing method.
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Abbreviations

Variables or Abbreviations Description
a Absorption coefficient
aw Absorption coefficient of pure water
bb Backscattering coefficient
bbp Backscattering coefficient of the particle
bbp

~ Backscattering ratio of the particle
bbw Backscattering of pure water
bbp* Volume-specific backscattering coefficient of the particle
bp Scattering coefficient of the particle
bp* Volume-specific scattering coefficient of the particle
c Attenuation coefficient
CDOM Colored dissolved organic matter
Chl-a Chlorophyll-a
DA Mean diameter weighted by the area
Dv

50 Median particle diameter
IOPs Inherent optical properties
Lw Radiance of the water’s surface
Lp Radiance of the reference panel
Lsky Radiance of the sky
N(D) Particle number concentration
PRE Pearl River estuary
PSD Particle size distribution
Qbe Scattering efficiency
Rrs Remote sensing reflectance just above the water’s surface



Remote Sens. 2021, 13, 5172 14 of 16

Variables or Abbreviations Description
rrs Remote sensing reflectance just beneath the water’s surface
SRF Spectral response function
TSM Total suspended mater
u Ratio of backscattering and summation of absorption and backscattering
V(D) Particle volume concentration
Vtot(D) Total volume concentration of the particle
Y Slope of the backscattering coefficient
ξ PSD slope
ρ Air–water reflectance
ρa Apparent density
ρp Diffuse reflectance of the reference panel
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