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Abstract: Uncrewed aerial systems (UAS) provide an effective method to examine geomorphic
and vegetation change in restored coastal dune ecosystems. Coupling structure-from-motion (SfM)
photogrammetry with RGB orthomosaic imagery allows researchers to characterize spatial-temporal
geomorphic responses associated with differences in vegetation cover. Such approaches provide
quantitative data on landscape morphodynamics and sediment erosion and deposition responses
that allow scientists and land managers to assess the efficacy of dynamic restoration efforts and, in
turn, make informed decisions for future restoration projects. Two different restored coastal foredune
sites in Humboldt County, California were monitored between 2016–20 with UAS (quadcopter
and fixed-wing), kite aerial photogrammetry (KAP), and terrestrial laser scanning (TLS) platforms.
We compared our KAP- and UAS-SfM elevation models to concurrently collected TLS bare earth
models for five of our fifteen collections. The goal of this study was to inform on the potential of a
multi-platform aerial approach for calculating geomorphic differences (i.e., topographic differencing),
in order to quantify sediment erosion and deposition, and vegetation change over a coastal dune
ecosystem. While UAS-SfM datasets were relatively well fit to their TLS counterparts (2.1–12.2%
area of difference), the KAP-SfM surfaces exhibited higher deviations (23.6–27.6%) and suffered
from systematic collection inconsistencies related to methods and susceptibility to external factors
(e.g., the influence of wind speed and direction on variable altitude, image overlap, and coverage
extent). Finally, we provide commentary on the logistical considerations regarding KAP and UAS
data collection and the construction of uncertainty budgets for geomorphic change detection (GCD),
while providing suggestions for standardizing methods for uncertainty budgeting. While we propose
an approach that incorporates multiple levels of collection- and processing-based uncertainty, we
also recognize that uncertainty is often project-specific and outline the development of potential
standards for incorporating uncertainty budgets in SfM projects.

Keywords: aeolian geomorphology; coastal geomorphology; foredune restoration; geomorphic
change detection (GCD); kite aerial photogrammetry (KAP); structure-from-motion (SfM); terrestrial
laser scanning (TLS); topographic differencing; uncrewed aerial systems (UAS)

1. Introduction

Uncrewed aerial systems (UAS) and structure-from-motion (SfM) photogrammetry
have become an integral tool for geomorphologists to observe and quantify landscape
change with spatial, spectral, and temporal resolutions previously unattainable [1–6].
Coastal geomorphic research continues to benefit from advances in close-range remote
sensing platforms to rapidly acquire data for geomorphic, natural hazard, and vegetation
assessments [7–11]. The coastal margin represents one of the most dynamic landscapes
on Earth resulting from the complex interactions between oceanographic and terrestrial
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processes and, in some areas, added complications from human development and infras-
tructure. Sandy coastlines comprise 31% of the world’s ice-free shorelines and are at
greater risk from increased erosive processes associated with rising relative sea level [12].
Currently, 2.4 billion people live within 100 km of a coast [13] and an estimated 146 million
people along the coast are within one meter of the mean high tide [14]. Coastal foredunes
can provide a natural buffer against the associated pressures of rising sea levels [15,16], but
are regularly impacted by anthropogenic pressures, including: housing and infrastructure
development, recreation, industrial/commercial use, waste disposal, agriculture, aquacul-
ture, fisheries, forestry, and military activities [17–19]. Accurate and regular monitoring
of these natural dune barriers is crucial for providing coastal communities and resource
managers with data necessary to make decisions for the maintenance and restoration of
foredune systems and related ecosystem services.

1.1. Coastal Foredunes

Foredunes are biogeomorphic features formed by the interaction of aeolian (wind-
blown) sand transport over beaches and sedimentation within vegetation in the backshore
(see Hesp [20] and Walker et al. [21] for thorough reviews). We use the term “biogeomor-
phic” to describe the relationship between the foredune and the vegetation that builds and
shapes the dune. Foredunes are found in variety of coastal settings and exhibit seasonal
morphodynamic trends that relate to patterns of wind and wave action and vegetation phe-
nology [20,22–24]. Along the Pacific coast of California, these cycles typically manifest as
erosion-driven systems in the late fall-early spring, when vegetation is dormant and storm
regimes are prevalent. Through late spring and early fall, beach-dune systems are typically
driven by deposition, when the wave regime is calmer, storm conditions less frequent,
and vegetation is actively growing [25–28]. Vegetation diversity, form, and phenology can
also control sediment delivery to, sedimentation on, and secondary air flow patterns over
foredunes that, in turn, can alter dune development, drive recovery from erosion events,
and impact longer term dune stability [20,21,29,30].

1.2. UAS and Coastal Geomorphology

UAS platforms and SfM methodology have experienced widespread and rapid ad-
vancement in the last decade [5,31]. The use of UAS-SfM datasets for geomorphic monitor-
ing requires accurate reconstruction of the “bare earth” surface. One way to validate SfM
products is to compare them to a higher resolution, more robust counterpart, such as aerial
or terrestrial LiDAR. Mancini et al. [8] compared the surface created by a UAS platform to
that derived from TLS on the North Adriatic coast of Italy and calculated RMS values to
determine zones of higher deviation. Guisado-Pintado et al. [32] compared concurrently
collected TLS and UAS datasets on the northern coast of Ireland by varying cell size and
subsetting data by distinct geomorphic zones. Both approaches found that factors such as
point density, vegetation density, surface moisture, and topographic complexity impacted
the product of each method and the ability to compare one surface to the other, but that they
provided comparable results. Similarly, Duffy et al. [33] compared data collected by kite
aerial photogrammetry (KAP)-SfM to UAS-SfM and found that the KAP data performed
well and precision estimates between the two datasets featured sub-centimeter precision.
They also found that KAP-SfM data could successfully be used for topographic change
analysis and incorporated uncertainty estimates with significant (95%) change calculations
to remove nonsignificant change values.

The use of UAS platforms for foredune monitoring often incorporates land cover
classification, geomorphic evolution, and vegetation monitoring techniques. Sturdivant
et al. [10] found that UAS-SfM methods offered an effective means to extract landforms
and classify land cover that exceeded the capabilities of pre-existing aerial LiDAR datasets
and satellite imagery. Madurapperuma et al. [34,35] characterized habitat and vegetation
variability and highlighted factors impacting the movement of dunes near the study area in
Humboldt Bay, CA, USA. Van Puijenbroek et al. [36] and Nolet et al. [37] studied the role of
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vegetation on foredune evolution in the Netherlands using a combination of orthomosaic
imagery, SfM-derived elevation models, and changes in normalized difference vegetation
index (NDVI) outputs. Their work provided insight on seasonal volumetric changes and
the relationship between seasonal burial rates and vegetation growth response, while
providing commentary on coastal dune development. Approaches that quantify sediment
budget changes in beach-dune systems and related seasonal morphodynamics provide
not only insight on natural rates and patterns of geomorphic change that govern foredune
evolution, but can also be used to assess the impacts and efficacy of human interventions,
such as dynamic ecosystem restoration [38–40]. In this context, UAS platforms have
emerged as a successful means for measuring and monitoring foredune ecosystem changes
and related human–environmental interactions [41–43].

The purpose of this paper is to highlight the capabilities and methodology involved
when using a multi-platform aerial approach to monitor significant biological and geomor-
phic changes across coastal foredunes. We employ a suite of aerial platforms to:

1. Investigate the relationship between coastal foredune morphodynamics and foredune
restoration.

2. Quantify spatial-temporal differences in sediment erosion and deposition patterns, as
they pertain to changes in vegetation cover, between 2016-20.

3. Compare KAP- and UAS-SfM products against concurrently collected, higher resolu-
tion TLS reference surfaces to assess factors driving inter-platform differences.

Our analyses utilize the GCD toolset [44–46] in ArcMap 10.7.1 to quantify volumetric
change cumulatively, between surveys, and discretely, within each vegetation plot, as
well as to quantify differences between concurrently collected datasets. We also provide
discussion on the logistical considerations and concerns when utilizing multiple platforms
and for using UAS for coastal geomorphic research. Our goal is to improve considerations
for coastal geomorphic assessments with UAS, while furthering discussions focused on
the impact of vegetation on foredune morphodynamics and the impact that different
platforms can impart within such comparisons. Finally, we discuss the role of uncertainty
in topographic differencing and how different forms of uncertainty should be considered
to inform on realistic geomorphic change.

2. Study Area
2.1. Eureka Littoral Cell

The Eureka Littoral Cell (ELC) is a 60-km stretch of coast in northern California
that lies between Trinidad Head in the north and False Cape in the south, near Ferndale
(Figure 1) [47]. The ELC is located to the north of the Mendocino Triple Junction where
the Pacific, Gorda, and Juan de Fuca plates meet [48] and the Cascadia Subduction Zone
converges with the San Andreas Fault (see Figure 1 in Patton et al. [48] for detailed tectonic
map). This unique, complex geologic setting influences relative sea level trends in the
region that, coupled with current rates of eustatic sea level rise, result in roughly 2.53–5.84
mm yr−1 of relative sea-level rise [28,48,49]. The Eel and Mad Rivers are the dominant
sources of sediment to the ELC, although sediment budgets and littoral drift dynamics are
poorly understood within the study area [47,50]. Littoral drift is believed to be dominated
by northerly driven storm waves and currents in the winter and southern wind wave-
driven transport during the summer [28]. Wind and wave directions vary seasonally,
with formative transport winds and dominant waves coming from the north-northwest
between May–October and southeasterly winds with west-northwesterly waves between
November–April [27,28] (Figure 2). The barrier and dune systems along the ELC also play
an important ecological role, hosting a variety of migratory and native birds, mammals,
and fish species including the endangered Western snowy plover, tundra swans, bald
eagles, Aleutian geese, river otters, and steelhead trout [51,52]. Finally, the beaches and
dunes of the ELC provide an array of ecosystem services that include erosion and flood
control, habitat for endangered and endemic species, outdoor education and recreation,
aquaculture, and sites of cultural importance.
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Figure 1. Study area map showing the Eureka Littoral Cell, Lanphere Dunes, and Eel River Estuary Preserve (EREP) study
sites. The beach and Pacific Ocean are to the west and the foredune is in the center in both callout maps. The two study sites
represent typical dune morphology on the South and North Spits of Humboldt Bay. Southern spit dunes are characterized
by narrower, reflective beaches without transgressive dune complexes landward. Northern spit dunes are characterized by
wider beaches with larger active transgressive dune fields and vegetated relict dunes.
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Figure 2. Annual wind rose and annual wave rose generated from 24-hour observation for North Spit, CA and Eureka, CA,
respectively. Wind rose data was sourced from NOAA Station HBYC1 (9418767) at North Spit, CA, (40.767 N, 124.217 W).
Wave rose data was sourced from NBDC Station 46022 17NM WSW of Eureka, CA (40.703 N, 124.554 W). Wind and wave
data were processed using the RStudio package ‘openair’ [53,54].

2.2. Lanphere Dunes

The Lanphere Dunes are located within the Humboldt Bay National Wildlife Refuge
and are managed by the United States Fish and Wildlife Service (Figure 3). The Lanphere
Dunes feature a continuous, 7–10 m high foredune ridge and an extensive transgressive
dune complex that extends up to ∼600 m inland. This site has been the focus of decades
of ecosystem restoration work and efforts to remove Ammophila arenaria (European beach
grass), an invasive plant species, which began in the 1980s [55]. Lanphere is also considered
among the first documented efforts to prioritize ‘dynamic restoration’ practices, where
invasive species are removed and natural vegetation is replanted on the foredune as a
means of restoring natural biological and geomorphic (aeolian) processes [25]. A. arenaria
was originally planted in 1901 to help stabilize the foredune and protect sites of local
economic importance but rapidly spread along much of the ELC shoreline [56]. Removal
of A. arenaria at the study site has involved manual pulling, drying, and burning of the
biomass. Native species have been replanted across the site including Elymus mollis (dune
grass or sea lyme grass) and the dune mat herbaceous alliance (including Abronia latifolia
and Ambrosia chamissonis) (Figure 3). Replanting was completed between winter and spring
of 2016-17 with three different revegetation strategies used: (1) mature E. mollis planted
with 1 m spacing, (2) mature dune mat randomly distributed across the foredune, and (3) a
mixed plot of E. mollis and dune mat. A plot of A. arenaria and a plot of naturally occurring
native vegetation were maintained as control plots. E. mollis and dune mat were chosen
as species that occupy different ecological niches during foredune evolution. E. mollis is a
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taller (<1 m) grass, considered to be a leading-edge dune builder that colonizes bare sand
[57]. The dune mat species represent low-lying, prostrate herbs and subshrubs.

Figure 3. Map of orthomosaics from the first and last collection at the Lanphere Dunes. The beach and Pacific Ocean are
to the west and the foredune is in the center of both callout maps. Plots are labeled as native control (CON), A. arenaria
(AMM), E. mollis (EM), dune mat (DM), and mixed dune mat-E. mollis (DM-EM) and represent restoration treatment plots
established prior to the January 2017 campaign. The arrows in the October 2020 orthomosaic provide the vantage point,
looking NNE, for the three photos to the right. The April 2016 (photo credit: A. Rader) and October 2020 (photo credit: Z.
Hilgendorf) photos were taken during data collection. The May 2017 (photo credit: A. Rader) photo was taken shortly after
native replanting. Transects A–A’ and A1–A1’ are discussed in Figure 7.

2.3. Eel River Estuarine Preserve Dunes

The Eel River Estuary Preserve (EREP) is a 5 km2 nature preserve located west of
Ferndale, CA. The preserve extends along 5.5 km of coastline, with 4.8 km of foredune,
between the mouth of the Eel River to the north and Centerville Beach to the south.
Tidal sloughs, wetlands, and agricultural fields represent the remaining preserve area. A.
arenaria is prevalent on the EREP foredunes and has resulted in a taller, more peaked, and
narrower dune form compared to natively vegetated dunes, leaving them susceptible to
scarping during erosive events [20,27,28,58]. The beach is narrow (typically < 50 m), steep,
and experiences a high-energy wave regime with 20% of winter wave heights exceeding
4.0 m [59,60]. A major wave breaching event occurred during the summer of 2004 which
resulted in landward deposition of sand into the backdune wetland forming an overwash
fan [61–63] (Figure 4). The foredune was mechanically rebuilt with heavy machinery during
the summer of 2018. Plans to replant the foredune with native vegetation have not been
completed, however, some dune mat species were planted in the summer of 2019 [64]. As
a result, much of the foredune remained unvegetated by October 2020. Restoration goals at
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the EREP site focused on the reconstruction of a foredune to reinstate a continuous foredune
ridge and protect landward agricultural and ecosystem interests from flooding [64].

Figure 4. First and last aerial collections at the EREP study area, located in the northern portion of the preserve. The beach
and Pacific Ocean are to the west and the foredune is in the center of both callout maps. The May 2018 campaign captured a
baseline of the site prior to rebuilding of the foredune. At this point in time, the dune had been breached for a number of
years and an overwash fan extends ∼100 m inland. The October 2020 campaign shows the post-rebuilding state, two years
after restoration. Both oblique images were taken with a DJI Phantom 4 Pro and the vantage point is shown by the arrows
in the bottom-left of the October 2020 orthomosaic. Transect B–B’ is discussed in Figure 7.

3. Materials and Methods
3.1. KAP and UAS Campaign Specifications

Three different uncrewed platforms were used to conduct aerial surveys (Figure 5).
KAP data were only collected at the Lanphere study site, but were collected on six different
occasions between 2016–17 (Table 1). Acquisition methods were consistent across all six
collections. Ten ground control points (GCP) were placed throughout the site (five on
the beach and five on the foredune) and their locations were recorded using a Trimble
R10 RTK-GNSS to ensure accuracy. A 12MP/4k GoPro Hero 4 camera was attached to
a Delta Kite (https://store.publiclab.org/) with a 3D-printed gimbal to try to maintain
nadir viewing angles (Figure 5A). Kite campaigns were flown with the camera set to video
mode to ensure sufficient coverage of the study area. The kite was walked in a U-shaped
path, first north across the beach over the extent of the study site and then back across the
seaward toe of the foredune. Still images were then extracted from the videos at 60-frame
(1 s) steps in Agisoft Metashape.

https://store.publiclab.org/
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Figure 5. Examples of all uncrewed aerial systems in the field (A) Kite (B) DJI Phantom 4 Pro, (C) WingtraOne, and (D) an
example GCP deployment and geotagging.

Similar to the KAP methods, GCPs were deployed for the DJI Phantom 4 Pro quad-
copter UAS surveys. GCPs were randomly distributed in high and low points across the
study area to reduce the possibility of doming issues [65] and account for the complexity
of the terrain [4]. The GCP locations were also recorded using a Trimble R10 RTK-GNSS.
We used the Pix4Dcapture application to pre-program our acquisition campaign, which
was a double-grid pattern at an altitude of 60 m, with 70% front and side camera overlap,
following suggested standards [4]. GCP positions were corrected and refined using the
National Oceanic and Atmospheric Administration’s (NOAA) online positioning user
service (OPUS) solution (https://geodesy.noaa.gov/OPUS/).

https://geodesy.noaa.gov/OPUS/
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Table 1. Collection specifications for all flights at the Lanphere and EREP study sites. DJI Phantom 4 Pro (DJI P4P) has been abbreviated. An asterisk (*) next to a date signifies a
concurrently collected TLS campaign. GCPs were used for the 20 May 2019 EREP campaign because of an error with the onboard PPK system. September 2019 average wind speeds were
informed by an anemometer at the time of collection, because the NBDC Station (46022) was not in operation for a six-month period in 2019.

Collection Date
(M/D/Y) Platform Model Camera Alt. (m) GSD

(cm/pix)
Images
Used

Geocorrection
Method Avg. Wind (m/s) Total Uncertainty (m)

La
np

he
re

4/30/2016 *

Kite N/A GoPro Hero4
(12MP/4K)

32.1 1.79 1804

GCPs (n = 10)

3.8 0.072
7/5/2016 76.9 8.06 926 5.8

9/28/2016 * 44.1 2.59 3313 6.4
1/6/2017 24.9 2.75 1028 5.6 0.021

3/22/2017 43.9 4.3 1082 6.0 0.021
10/3/2017 * 41.2 2.05 1215 9.3

10/6/2018 * Quadcopter DJI P4P 20 MP 68.7 1.73 545 GCPs (n = 14) 3.2 0.029

5/19/2019 *
Fixed-Wing WingtraOne Sony RX1RII

(42 MP)

108 1.37 1010
PPK

5.6 0.027
9/16/2019 * 101 1.28 1394 ∼1.5 0.031
10/8/2020 * 97.9 1.25 1387 3.1 0.020

ER
EP

5/23/2018 Quadcopter DJI P4P 20MP 65.7 1.67 266 GCPs (n = 11) 2.1 0.032
10/8/2018 52.5 1.37 418 GCPs (n = 11) 6.0 0.031

5/20/2019
Fixed-Wing WingtraOne Sony RX1RII

(42 MP)

104 1.32 526 GCPs (n = 12) 4.8 0.033
9/17/2019 108 1.37 386 PPK ∼4.5 0.037
10/9/2020 103 1.32 407 2.4 0.032



Remote Sens. 2021, 13, 354 10 of 34

The second UAS was a WingtraOne fixed-wing vertical take-off and landing platform.
Compared to the Phantom 4 Pro, the WingtraOne can be flown at higher altitudes, achieve
a finer ground sampling distance (GSD), has longer flight times (∼40 min), and is equipped
with post-processing kinematic (PPK) correction capabilities. A Trimble R10 base station
was run in static collection mode immediately prior to and until the end of each flight,
fully encompassing the flight duration. At the start of processing, base station files were
corrected with a NOAA-OPUS solution that is written to the image data for use in SfM
reconstruction in Agisoft Metashape (V1.6.3.10732). Campaigns were flown at ∼100 m
and achieved GSD values between 0.0127–0.0135 m. The WingtraOne collected photos in a
nadir camera angle with a Sony RX1RII 42 MP full-frame camera. A major advantage of
utilizing a full-frame camera is a reduction in radial pixel distortion that is often typical
with conventional domed (or fish-eye) camera lenses [66].

3.2. Post-Processing and Intercampaign Alignment

Post-processing protocol remained consistent across each campaign, with the only
deviation being the still image extraction from the 4k video footage required for the KAP
datasets. Projects were processed in Agisoft Metashape and aligned using high parameters
with a key point limit of 40,000 and a tie point limit of 4000. Once aligned, the point
cloud was filtered using the Gradual Selection tool, taking 10–15% of the total points from
reprojection error, reconstruction uncertainty and projection accuracy during each iteration
of the tool, until there is less than a 10% change in marker accuracy values after point
removal. A dense cloud was generated using the high setting and mild depth filtering, and
with a calculation of point confidence. Point confidence is a metric of how many depth
maps were used to generate a given point in the dense cloud [67]. After the dense cloud
was processed, all points below a confidence threshold of 10 were removed from the point
cloud. Confidence filtering followed suggested methods in Agisoft Support forums for
improving dense cloud products and methods by Bayley and Mogg [68].

Most of the UAS and KAP datasets at the Lanphere study site were aligned to TLS bare
earth point clouds to ensure the datasets were accurately positioned in space (Table 1). TLS
data were collected using Riegl VZ-1000 (April 2016–September 2016) and VZ-400i (October
2017–October 2020) scanners and integrated with a Trimble R10 RTK-GNSS for precision
alignment. Campaigns were processed in Riegl RiSCAN Pro to align scans, filter excess
points, remove vegetation, and align campaigns to each other. KAP- and UAS-SfM point
clouds were then imported into RiSCAN Pro, manually cleaned and filtered to remove
spurious points and vegetation, and aligned using the multi-station adjustment tool, which
searches for similarity between extracted planes in the point clouds. Point clouds for TLS,
UAS, and KAP data were then exported for further processing in ESRI ArcMap 10.7.1.
Point clouds were converted to rasters with 0.1 m cells using inverse distance weighted
interpolation (to assign cell values) and linear interpolation (to fill data voids). Rasters were
processed using a consistent, rounded (whole number) extent to ensure concurrency during
change detection processing. Ensuring concurrency during this step avoids cell offsets that
would result in systematic volumetric errors (e.g., “slivers” between non-aligned cells).

3.3. Budgeting for Uncertainty

Uncertainty is important to consider when utilizing close range-remote sensing data
for geomorphic assessments. Here, we use the term “uncertainty” to refer to an undefinable
level of possibly undetectable change, whereas “error” would refer to the difference be-
tween a dataset and a higher accuracy reference dataset [69]. Calculating uncertainty can be
a subjective task with little in the way of “standard operating procedures,” making the de-
velopment of an error budget an ambiguous task. We took precautions to include multiple
sources of uncertainty to identify possibly insignificant volumetric change (Table 1). We also
performed a comparison between our KAP- and UAS-SfM-derived surfaces and TLS DEMs
that were concurrently collected, similar to the approach of Guisado-Pintado et al. [32].
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This comparison helps to highlight areas of concern or higher uncertainty against an
arguably more accurate dataset.

Uncertainty can arise from multiple contributing factors or sources. For example,
Hon [70] and Sherman [71] discuss four types of error that complicate accurate results
and inflate uncertainty. These include Type 1 (background theory), Type 2 (equipment),
Type 3 (observational reports) and Type 4 (theoretical conclusions) errors. The driving
uncertainty for using UAS platforms to detect and quantify geomorphic change would
typically be Type 2 error, related to assumptions regarding equipment precision, and
Type 3 error, related to the differences between a measured and true values. For instance,
uncertainty budgets could include error resulting from the accuracy of the equipment,
the root mean square errors (RMSE) generated by the alignment of SfM point clouds to
reference point clouds, and the positional and vertical accuracy of GCPs. In this way,
uncertainty budgets distill down into two primary forms of uncertainty that influence the
accuracy of geomorphic change detection: (1) ”Collection uncertainty” that results from
the acquisition of data and from equipment in the field, and (2) ”Processing uncertainty”
that results from processing, alignment, and refinement of datasets following collection.
Combined, these forms of uncertainty result in positional and vertical deviations within
point cloud datasets that inflate the minimum level of detection for topographic differencing
and decrease realistically measurable geomorphic change.

3.4. Geomorphic Change Detection

Repeat high-resolution UAS-SfM datasets can be compared to create DEMs or DSMs
of difference that provide insight into spatial-temporal volumetric changes and landform
morphodynamics. Simply, this style of change analysis subtracts a co-located older surface
(t1) from a newer surface (t2) [72,73]. Positive values indicate an increase in surface
elevation from the older time to the newer time, and vice versa. However, discerning
what is “real” change can sometimes be difficult, as DEM or DSM outputs are subject
to varying types and degrees of uncertainty [5,45,69,72,73]. We utilized the GCD toolset
developed by Riverscapes Consortium ([44–46], http://gcd.riverscapes.xyz/) to conduct
our change analysis. The GCD toolset imports surface rasters and allows users to generate
hillshade, slope, and error rasters to improve analyses. The “error” raster is informed by
user input and typically functions as a cumulative error estimate that is based on survey
instrumentation constraints. An error layer is generated for each raster and the propagated
error is applied to each cell using Equations (7) and (12) from Lane et al. [73]:

σc =
√

σ2
1 + σ2

2 (1)

t =
zt2 − zt1

σc
(2)

where σc is equal to the root sum of squares of uncertainty for each change interval and z
is the elevation of the raster cell for the newer (t2) and older (t1) time steps. The output is a
t-statistic that, assuming normal distribution, can be used as a thresholding level where
values of t > 1.96 (confidence interval of 95% for a two-tailed t-test) are kept as change
that is significant. Values that fall below the confidence threshold are removed from the
output change raster, providing a minimum level of detection to improve the likelihood
that significant change was captured. Primary outputs include raw and thresholded depth
of change, area of change, and volume of change.

The GCD toolset also allows users to input masks to subsample areas of interest. For
this study, three geomorphic units (beach, seaward slope of the foredune, landward slope
of the foredune) and five vegetation units (native control—CON, A. arenaria—AMM, E.
mollis—EM, dune mat—DM, and a mix of dune mat-E. mollis—DM-EM) were delineated
by building upon methods previously used at the site by Rader [74]. Boundaries between
the geomorphic units were defined using landscape metrics, such as slope breaks, slope
aspect, and vegetation [74]. The crest of the foredune represented the boundary between

http://gcd.riverscapes.xyz/
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the seaward and landward slopes, and was automatically delineated for each survey using
the Basin tool in the ArcToolbox Spatial Analyst package. Our approach also used a red-
relief image map [75] that combines slope with positive (surface convexity) and negative
(surface concavity) topographic openness. Visualization of DEMs typically uses colored,
semi-transparent elevation data over a shaded relief map. An advantage to delineating
geomorphic boundaries using the red-relief method over a shaded relief layer is that it
reduces potential bias from shadows cast in complex terrain, such as in a coastal dune
complex. We utilize this method to better visualize the seaward and landward toes of the
foredune. We acknowledge that the position of the seaward and landward toes can be
considered subjective [76], but took precautions to reduce potential bias by requiring a
single analyst to digitize these features to determine a best representative boundary for
each. In some cases, when the seaward toe was eroded and an erosional scarp was present,
the base of the scarp was used as the seaward extent of the foredune. The subset areas
applied to each GCD output reference the earlier collection in the timestep and quantify
change from the initial state of each comparison.

The two study sites provide a unique opportunity to compare GCD outputs in similar
geomorphic systems, with a variety of different, site-dependent factors impacting uncer-
tainty and the accuracy of results. The two primary differences between the Lanphere and
EREP sites are the possible impact of vegetation on the surface models and the potential for
quantifying variance from higher accuracy reference datasets. The EREP foredune was not
vegetated after reconstruction of the dune, whereas the Lanphere foredune was stripped of
its vegetation and replanted with native species that vary in shape, height, and coverage.
The Lanphere site compared concurrently collected aerial (KAP- and UAS-SfM) surfaces to
TLS bare earth surfaces. We consider the TLS data to be of higher accuracy and with more
consistent geocorrectional constraints, providing a reference surface to quality check the
aerial data. While we did not have the ability to directly compare a KAP-SfM surface to a
concurrently collected UAS-SfM surface, the ability to compare to a TLS reference surface
allows us to make inferences regarding the accuracy of SfM reconstruction between aerial
platforms. The EREP site does not have a similar reference dataset to compare against,
but the platforms used (quadcopter and fixed-wing) employed more rigorous collection
strategies, like those at Lanphere.

3.5. Quantifying Vegetation

Quantifying vegetation was not necessary at the EREP site, as vegetation was not
present on the dune until the summer of 2019. However, assessing vegetation at Lanphere
was crucial for comparing sediment erosion and deposition patterns in the treatment plots
to growth and propagation of plant cover. Automated and semi-automated classification
methods were explored, however, due to similarities in color between the sand and veg-
etation during some collection intervals, a manual approach was chosen. This manual
approach allowed the two main treatment methods of interest (E. mollis and the dune mat
herbaceous alliance) to be distinguished. Analysts digitized vegetation across the treatment
plots in two ways: (1) E. mollis plants were digitized with a point feature class to develop a
count using each orthomosaic image, and (2) dune mat plants were digitized as polygons to
calculate an area of coverage and then split using the Intersect tool in the Analysis Toolbox
of ArcMap 10.7.1 and the appropriate geomorphic unit and treatment plot boundaries.
We did not try to distinguish between dune mat herbaceous alliance species, because the
assemblage is made of over 50 different species and many take on similar low-lying forms.
Intersecting the dune mat feature class allowed area per plot and geomorphic unit to be
accurately subdivided, even if the plant extended across boundaries.

After vegetation was digitized, we compared the average state of vegetation (% cover),
relative to the maximum recorded vegetation cover by plot. For example, if the seaward
slope of the DM-EM plot recorded 100 E. mollis plants and the maximum observed across
all time steps for that plot was 500 plants, that observation would be assigned a value
of 20%. Similarly, if the dune mat area occupied 200 m2 and the maximum observed
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area was 250 m2, the observation would be assigned a value of 80%. These values were
averaged for each plot observation interval to provide a proxy for the state of vegetation
propagation. In the example provided, the vegetation state would equal 50%. In this
way, values were normalized to provide plot- and vegetation type-specific context for
interpretation of patterns between vegetation development and sediment erosion and
deposition. These values were then compared to area-normalized volumetric change by
matching the vegetation value with the later date in each GCD interval. A simple linear
regression model of the area-normalized volumetric change (m3 m−2) (dependent) against
the state of vegetation (%) (independent) was calculated using the R package ‘ggplot2’ [77].

4. Results
4.1. Uncertainty Assessments for KAP and UAS Datasets

Uncertainty budgets were compiled for each survey to inform on the possible impact
of uncertainty on geomorphic change calculations. Budgets were generated using reported
GCP or total XYZ error, reported RTK accuracy, and RMSE from point cloud alignment.
GCP error, total XYZ error, and RMSE from point cloud alignment were variable numbers
that were based on each survey. RTK accuracy was assumed a constant that was informed
by industry reported values and the Trimble R10 datasheet. The final cumulative value was
then input into the GCD tool as a uniform error value applied to each pixel of the raster
surface (Table 1). Uncertainty values ranged between ±0.02–0.04 m for all intervals except
the April 2016 KAP dataset (±0.072 m). Uncertainty budgets for surveys compared in the
GCD tool were then propagated to calculate a minimum level of detection, which acted as
a threshold value to remove points that fell outside of a confidence interval of 95%.

Half of the KAP-SfM datasets at the Lanphere site were successfully processed, aligned,
and included as GCD intervals. The July and September 2016 and October 2017 campaigns
were not used in the final datasets, as systematic collection errors led to poor surface
reconstruction during SfM processing. Poor reconstruction of the beach, impacted by
surface homogeneity, waves, and increased moisture, led to higher surface variability and
greater point cloud diffusion, compared to TLS reference surfaces (Section 4.2). There
were also tidally-driven collection constraints that limited the seaward extent that the pilot
could walk the kite and led to fewer images for pattern matching towards the seaward
edges of the area of interest. The September 2016 KAP-SfM point cloud was domed and
attempts to reconcile the dataset were unsuccessful. Doming refers to the deformation of
an SfM point cloud in a radially-distorted manner [78]. The July 2016 and October 2017
KAP-SfM point clouds exhibited low point confidence, with large portions of the beach and
foredune removed during the dense cloud filtering stage. All three of these KAP datasets
were collected during high wind conditions (Table 1), which might have contributed to
their respective shortcomings due to variable overlap, focus, or the number of images
removed. Uncertainty for the KAP-SfM datasets included the highest calculated budget
(±0.072 m) in April 2016. Uncertainty budgets for the January and March 2017 campaigns
were lower than the other KAP datasets (±0.021 m). However, TLS campaigns were not
concurrently collected with these two datasets and September 2016 and May 2017 TLS
campaigns were simultaneously used to align the point clouds, representing a deviation in
alignment methods.

All of the UAS-SfM datasets for the Lanphere and EREP sites were successfully
processed and used to derive GCD outputs. Unlike the KAP-SfM datasets, the UAS-SfM
datasets recreated the beach with higher point confidence, doming was not apparent, and
the surveys benefited from pre-programmed flight planning and onboard GPS systems to
ensure effective and consistent image acquisition. Wind speeds did not appear to impact
the UAS surveys in the same manner as the KAP surveys, despite moderate wind speeds
for many of the fixed-wing collections (Table 1). Better flight stability control and onboard
sensors regulated the fixed-wing flights and reduced overall pitch-yaw-roll variability.
The fixed-wing UAS would automatically terminate acquisition if winds were too high
to ensure safe, reliable flight control and data acquisition. Uncertainty for the UAS-SfM
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datasets ranged from ±0.020–0.031 m at the Lanphere site and ±0.031–0.037 m at the
EREP site.

4.2. Differences between Platforms

Most (7 of 10) of the KAP and UAS surveys at the Lanphere site had concurrent
TLS surveys, which allowed us to characterize differences between surfaces constructed
with aerial datasets and the TLS surfaces. We consider the TLS surfaces to provide a
higher accuracy baseline reference for estimating uncertainty residuals in the KAP- and
UAS-SfM products. After removal of the September 2016 and October 2017 KAP-SfM
datasets, the five remaining datasets (one KAP, one quadcopter UAS, and three fixed-wing
UAS) were compared against the TLS surfaces. The GCD tool was used to compare these
surfaces, with methods similar to those used by Guisado-Pintado et al. [32]. Positive
or negative values represented residuals between the aerial platform data and the TLS-
derived surface that characterized areas of deviation or greater uncertainty in the KAP- or
UAS-SfM surfaces. Output residual values were summed by (1) vegetation treatment plot
(as a combination of seaward and landward slope units) and (2) geomorphic unit (without
vegetation delineation) (Table 2). An additional subset was included to isolate the EM, DM,
and DM-EM plots and distinguish the potential impact the denser vegetation of the AMM
and CON plots may have had on reconstructed surfaces.

The AMM plot consistently featured the highest residual difference from the TLS
surface and greatest area of difference (m2) between all compared surfaces. This plot
was the most densely vegetated and the surface was not sufficiently visible, even after
TLS post-processing, to allow for accurate and consistent reconstruction of the bare earth
surface. Area of difference values, averaged across all concurrently collected comparisons,
were lower for the CON, EM, and DM-EM plots, exhibiting differences of 12.4%, 11.7%,
and 11.5%, respectively (Table 2). The DM plot featured the lowest variability from the
TLS surface, with an average area of difference of 7.3%. The beach exhibited the highest
difference from the TLS surface for the KAP dataset (17.2%) but the lowest of all geomorphic
units for the Oct 2020 WingtraOne UAS dataset (0.3%). The seaward (20.6%) and landward
(26.3%) slopes averaged similar variability (Figure 6). The KAP dataset had the lowest
vegetation density for compared datasets but the highest variability amongst all platforms.
All other UAS surveys had less than half the variability across restored plots with more
than twice the vegetation density as the KAP dataset.

Positive residuals from the TLS surface signified a KAP- or UAS-derived surface that
was higher than the TLS reference surface, and vice versa (Figure 6; Table 2). Residuals for
the KAP-TLS comparison were the highest of all observed values for each vegetation type.
Variance in the AMM plot was hindered by higher point variability and high vegetation
density, resulting in the largest residuals of all plots and comparisons. Residuals for the
UAS datasets were consistently positive for seaward and landward slope surfaces, with the
greatest deviation in the AMM plot. Negative residuals for the beach unit in the May and
September 2019 comparisons were driven by two different factors. A low (0.25 m) scarp,
resulting from a previous high water event, was present along the beach during the May
2019 collection campaign. The TLS surface reconstructed this more accurately than the UAS
surface because scan positions were strategically located to include the steep slope of the
scarp, whereas the UAS-SfM process can struggle to recreate steep scarps, smoothing them
out during processing [79]. The September 2019 beach featured more large woody debris
than had been present in previous collections. The wood was removed more effectively
through automated filtering in the TLS surface because of more low-angle points near the
wood-ground contact, which was not reconstructed with as much detail in the UAS point
cloud. However, nearly all UAS-TLS comparisons featured similar, low (<0.01 m3 m−2)
positive residuals in the plots vegetated with all types of native species that were directly
related to the presence of vegetation or the presence of an erosional scarp.
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Table 2. Comparison between concurrent aerial and TLS datasets, subset by geomorphic unit and vegetation type. An additional subset for the seaward and landward units is provided for
only the EM, DM, and DM-EM (restored) plots.

April 2016 (KAP) October 2018 (UAS) May 2019 (UAS) September 2019 (UAS) October 2020 (UAS)

Vegetation/
Geomorphic Unit ∆ Area (%)

Residual
Difference
(m3m−2)

∆ Area (%)
Residual

Difference
(m3m−2)

∆ Area (%)
Residual

Difference
(m3m−2)

∆ Area (%)
Residual

Difference
(m3m−2)

∆ Area (%)
Residual

Difference
(m3m−2)

CON 9.7 0.004 ± 0.03 14.2 0.011 ± 0.03 11.6 0.009 ± 0.03 14.0 0.009 ± 0.03
AMM 61.7 −0.149 ± 0.07 57.7 0.103 ± 0.03 51.3 0.065 ± 0.03 52.5 0.064 ± 0.03 43.8 0.084 ± 0.03
EM 27.6 0.058 ± 0.07 8.0 0.009 ± 0.04 4.9 0.002 ± 0.03 12.2 0.014 ± 0.04 5.9 0.006 ± 0.03
DM 23.6 0.023 ± 0.07 2.1 0.001 ± 0.04 4.0 0.001 ± 0.03 3.3 0.003 ± 0.04 3.5 0.000 ± 0.03
DM-EM 24.8 0.026 ± 0.06 3.5 0.004 ± 0.04 9.7 0.009 ± 0.03 10.9 0.016 ± 0.04 8.9 0.000 ± 0.03

Beach 35.2 −0.054 ± 0.06 18.9 0.017 ± 0.04 23.4 −0.017 ± 0.03 8.2 −0.007 ± 0.04 0.3 0.000 ± 0.03
Seaward 31.6 −0.063 ± 0.06 18.4 0.031 ± 0.04 18.7 0.019 ± 0.03 21.1 0.026 ± 0.04 12.9 0.016 ± 0.03
Landward 52.6 0.064 ± 0.07 18.1 0.023 ± 0.03 18.4 0.022 ± 0.03 15.8 0.015 ± 0.03 26.9 0.043 ± 0.03

Seaward (Restored) 14.6 0.001 ± 0.06 5.2 0.006 ± 0.04 5.3 0.003 ± 0.03 11.3 0.014 ± 0.04 4.4 0.000 ± 0.03
Landward (Restored) 48.4 0.119 ± 0.07 4.6 0.004 ± 0.03 7.2 0.005 ± 0.03 4.1 0.004 ± 0.03 11.6 0.010 ± 0.03
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Figure 6. Cumulative residual values, characterized by volumetric change normalized by total area, for each treatment plot
and KAP- or UAS-TLS comparison. Shading shows the proportion of change attributed to each geomorphic unit. Higher
deviations persisted in the AMM plot across all collections. The significant deviation captured by the April 2016 KAP-TLS
comparison was, in part, related to the inaccurate reconstruction of the beach and high variability in the A. arenaria surface.

4.3. Geomorphic Change Detection

Spatial-temporal change detection results at the Lanphere and EREP sites were calcu-
lated using the GCD plugin [45] in ArcMap 10.7.1. The primary output from each interval
was a raster surface of positive and negative surface elevation change values. This surface
only included cells that were deemed significant at the 95% confidence limit, as informed by
a t-test, and thresholded using the previously described uncertainty budgets (Section 4.1).
Insignificant values were not removed from consideration and were included as potential
change (±values), signifying results below the minimum level of detection. In this way, all
calculated change for each interval is considered, but primary emphasis is placed on the
values that were “significant”.

The Lanphere GCD intervals spanned from April 2016–October 2020 and included six
collection intervals (Figures 7 and 8; Table 3). No campaigns were conducted in spring 2020
due to travel restrictions during the COVID-19 pandemic. Strong winter storms between
April 2016–January 2017 resulted in 0.9 ± 0.02 m of erosion of the beach. However, net
deposition was recorded in almost all future timesteps, except October 2018–May 2019. A
comparison between the April 2016–October 2020 surfaces showed that the beach accreted
above April 2016 levels by 0.25 ± 0.068 m, while surface change on the seaward slope was
negligible (0.025 ± 0.058 m). The winter of 2016–17 resulted in substantial erosion of the
seaward toe of the foredune and, in some places, the development of an erosive scarp up to
3 m tall. Accretion on the upper beach between March 2017–October 2018 repaired most of
the erosive scarp and minor accretion (0.06 ± 0.03 m) of the seaward slope was observed.
October 2018–September 2019 recorded minimal net accretion, but the final timestep of
September 2019–October 2020 recorded the highest accretion across all timesteps.

Next to the beach, the landward slope of the foredune recorded the most over-
all accretion resulting from sand ramp rebuilding and delivery up the seaward slope
and over the crest. Erosion in the landward slope occurred between January–March
2017 (0.055 ± 0.028 m). The greatest accretion occurred in the March 2017–October 2018
(0.105 ± 0.034 m) interval, with minor accretion recorded from September 2019–October
2020 (0.071 ± 0.034 m) (Figure 8).
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Figure 7. Cross-shore transects at Lanphere (A-A’, A1-A1’) and EREP (B-B’) sites, extracted from
the first and last DSMs at each site. Transect A-A’ shows broadening of the restored foredune and
landward translation of the foredune crest at Lanphere. Transect A1-A1’ shows steepening of the
seaward slope of the invasive foredune at Lanphere. Transect B-B’ shows the difference between the
overwashed and reconstructed states of the foredune at the EREP site.

The EREP GCD results spanned from May 2018–October 2020 and the landscape was
partitioned to include a fourth geomorphic unit for the overwash fan (Figures 7 and 9;
Table 4). During reconstruction of the foredune, in the summer of 2018, sediment from
the overwash fan was pushed by heavy machinery and graded to match the approximate
shape of the surrounding intact foredune. Net volume changes between the foredune
and the overwash fan from May 2018–October 2018 (pre- and post-reconstruction) were
+1928 m3 and −1961 m3, respectively, exhibiting a 1.6% difference in volume. In subsequent
years, area-normalized volumetric differences on the seaward and landward slopes of the
foredune were positive and ranged between 0.051 ± 0.03 m and 0.119 ± 0.04 m (seaward
slope) and between 0.023 ± 0.04 m and 0.069 ± 0.04 m (landward slope) (Table 4). GCD
outputs in the final interval (September 2019–October 2020) show up to 0.266 ± 0.04 m of
beach rebuilding in front of the foredune and accretion of the seaward (0.119 ± 0.04 m) and
landward (0.069 ± 0.04 m) slopes. Further landward extension of the landward slope is
hindered by the presence of large woody debris that was set in place to deter off-highway
vehicle traffic from degrading the foredune. The overwash fan did not exhibit much
measurable geomorphic change (Table 4), but the flattening of bulldozer scars (visible in
Figure 9 Panel B) is evident in the October 2018–May 2019 interval.

4.4. Vegetation and Geomorphic Change

Changes in vegetation cover and density were calculated through manual digitization
and used to inform on potential impacts of vegetation on volumetric changes within
the different treatment plots (Section 3.5; Figure 8; Table 5). Corresponding erosion and
deposition values were provided from the GCD analyses as area-normalized volumetric
change (Figure 8).
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Table 3. GCD outputs for all Lanphere intervals. This table is a complement to the visual depiction of GCD outputs in Figure 8.

Volumetric Change Normalized by Total Area (m3m−2)

Vegetation/
Geomorphic Unit Apr 2016–Jan 2017 Jan 2017–Mar 2017 Mar 2017–Oct 2018 Oct 2018–May 2019 May 2019–Sept 2019 Sept 2019–Oct 2020 Apr 2016–Oct 2020

CON Beach −0.02 ± 0.02 1.14 ± 0.04 −0.22 ± 0.03 0.12 ± 0.03 0.27 ± 0.03
CON Seaward −0.15 ± 0.03 0.09 ± 0.03 −0.03 ± 0.03 0.07 ± 0.04 0.14 ± 0.03

CON Landward −0.21 ± 0.03 0.22 ± 0.04 −0.01 ± 0.04 0.01 ± 0.04 0.01 ± 0.03

AMM Beach −0.79 ± 0.07 0.04 ± 0.02 1.17 ± 0.04 −0.3 ± 0.03 0.16 ± 0.04 0.34 ± 0.04 0.39 ± 0.07
AMM Seaward −0.09 ± 0.06 −0.02 ± 0.02 0.03 ± 0.03 −0.16 ± 0.04 0.09 ± 0.04 0.04 ± 0.03 0.18 ± 0.06

AMM Landward 0.17 ± 0.06 −0.01 ± 0.02 0.03 ± 0.03 −0.07 ± 0.04 0.03 ± 0.04 0.00 ± 0.03 0.11 ± 0.05

EM Beach −1.12 ± 0.07 0.10 ± 0.02 1.06 ± 0.04 −0.35 ± 0.04 0.14 ± 0.04 0.36 ± 0.04 0.20 ± 0.07
EM Seaward −0.44 ± 0.06 −0.03 ± 0.02 0.51 ± 0.03 −0.06 ± 0.03 0.07 ± 0.04 0.16 ± 0.03 −0.11 ± 0.06

EM Landward −0.04 ± 0.05 −0.06 ± 0.03 0.23 ± 0.04 0.02 ± 0.03 0.05 ± 0.04 0.12 ± 0.04 0.32 ± 0.07

DM Beach −0.94 ± 0.07 0.13 ± 0.02 0.71 ± 0.03 −0.14 ± 0.03 0.12 ± 0.04 0.15 ± 0.03 0.23 ± 0.07
DM Seaward −0.52 ± 0.06 0.06 ± 0.02 0.06 ± 0.03 −0.01 ± 0.03 0.04 ± 0.04 0.17 ± 0.04 −0.12 ± 0.06

DM Landward 0.00 ± 0.05 −0.04 ± 0.03 0.04 ± 0.03 0.06 ± 0.04 0.06 ± 0.04 0.14 ± 0.03 0.28 ± 0.07

DM-EM Beach −0.90 ± 0.07 0.08 ± 0.02 0.66 ± 0.04 0.08 ± 0.03 0.03 ± 0.03 0.10 ± 0.03 0.15 ± 0.06
DM-EM Seaward −0.78 ± 0.06 0.05 ± 0.02 0.01 ± 0.03 0.01 ± 0.03 0.06 ± 0.04 0.18 ± 0.03 −0.21 ± 0.05

DM-EM Landward −0.07 ± 0.06 0.05 ± 0.03 −0.01 ± 0.03 0.04 ± 0.04 0.02 ± 0.04 0.12 ± 0.04 0.15 ± 0.06
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Figure 8. GCD outputs for (A) April 2016 to January 2017, (B) January 2017 to March 2017, (C) March 2017 to October 2018,
(D) October 2018 to May 2019, (E) May 2019 to September 2019, (F) September 2019 to October 2020, (G) April 2016 to
October 2020. The dashed line and solid lines show the seaward slope extent and crest position, respectively, from the
earlier time in the comparison. Maps are further subset by the beach (B), seaward slope (S), and landward slope (L), and
dominant vegetation type. The CON plot was removed from calculations for April 2016 comparisons due to artifacts in the
SfM point cloud.
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Figure 9. (A–D) GCD outputs for each timestep from May 2018 through October 2020. All GCD results are underlain by
the orthomosaic of the earlier timestep. Maps are subset by the beach (B), seaward slope (S), and landward slope (L), and
overwash fan (O).

Table 4. GCD outputs for all EREP intervals. This table is a complement to the visual depiction of
GCD outputs in Figure 9.

Volumetric Change Normalized by Total Area (m3 m−2)

Geomorphic
Unit Oct 18–May 18 May 19–Oct 18 Sept 19–May 19 Oct 20–Sept 19

Beach −0.007 ± 0.04 −0.081 ± 0.03 0.004 ± 0.05 0.266 ± 0.04
Seaward 1.500 ± 0.04 0.051 ± 0.03 0.051 ± 0.05 0.119 ± 0.04
Landward 1.597 ± 0.04 0.023 ± 0.04 0.003 ± 0.05 0.069 ± 0.04
Overwash −0.822 ± 0.04 0.000 ± 0.03 0.000 ± 0.04 0.000 ± 0.04

4.4.1. Changes in Vegetation Coverage

The April 2016 surface reflected the initial removal of invasive plants and, as such,
provided a pre-native replanting baseline for assessing changes in vegetation cover. At
this time, there were no E. mollis plants and dune mat coverage extended across only 6%
the entire domain of foredune identified for restoration (Table 5). January 2017 and March
2017 surfaces represent a post-native replanting and pre-growth stage, during which most
of the native species had been planted in the treatment plots, with the exception of some
dune mat planting that would occur later in the year. E. mollis planting resulted in a plot
density of 0.49 plants per m2 in January 2017, decreasing to 0.38 plants per m2 by March.
By the end of the first growing season (October 2017), E. mollis plot density had continued
to decrease, but dune mat planting and natural propagation led to widespread growth,
with the highest coverage in the DM-EM plot (21.6%) (Table 5).

Species have generally expanded in cover and density over the three years following
the end of the first growing season (2017). E. mollis and dune mat both experienced
consistent growth and expansion over the second, third, and fourth growing seasons,
despite apparent decreases in E. mollis plants per m2 and percent coverage of dune mat
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(Table 5). These decreases correspond to increases in the total area of the foredune, through
seaward and landward extension of the dune, rather than to decreases in the count or
coverage of the native species. By the end of the second growing season, some E. mollis
had naturally propagated across (<5 m) the north and south edges of the DM plot and
densities were up in all treatment plots. The third (2019) and fourth (2020) growing seasons
recorded substantial increases in E. mollis in both the EM and DM-EM plots. Dune mat
naturally propagated across much of the EM plot, migrating seaward of the foredune crest
and spreading across much of the seaward slope by the October 2020 survey (visible in the
October 2020 ground photo in Figure 3).

Table 5. E. mollis plant count per m2 and percent of dune mat coverage per plot for the restored foredune plots. The beach
geomorphic unit was excluded from these calculations because it was not the focus of any replanting efforts. Conditions
across the AMM and CON plots were consistent across the study.

Vegetation Plot Apr 2016 Jan 2017 Mar 2017 Oct 2017 Oct 2018 May 2019 Sep 2019 Oct 2020

EM
per m2

EM 0 0.49 0.38 0.31 0.40 1.01 0.88 0.63
DM 0 0.02 0.02 0.00 0.02 0.01 0.04 0.02

DM-EM 0 0.07 0.09 0.05 0.19 0.44 0.34 0.28

DM
(% Total

Area)

EM 6.95 4.13 4.06 10.05 14.01 18.90 18.54 17.59
DM 2.06 0.31 0.11 14.50 17.61 23.57 23.49 23.14

DM-EM 8.53 0.43 0.49 21.64 22.95 29.90 30.24 31.44

4.4.2. Geomorphic Change Within Vegetation Plots

Subsets of the GCD analyses at Lanphere were divided into the three geomorphic
units (beach, seaward slope, landward slope) and five vegetation plots (CON, AMM, EM,
DM, DM-EM), resulting in fifteen subset plots. April 2016 did not include the CON plot,
because the KAP flight did not extend far enough south to fully encompass the plot or
remove edge effects. The growing season prior to planting of the treatment plots (April
2016–January 2017) experienced consistent erosion across most plots and geomorphic units
(Figure 8; Table 3).

Minor erosion was recorded in the January–March 2017 interval, related to winter
erosive events and a lack of vegetation to hinder transport. By the end of the second
growing season (October 2018), the scarp left by erosion during the winter of 2016–2017
had been rebuilt, thereby reconnecting the seaward slope of the foredune with the upper
beach in all plots except the AMM plot dominated by A. arenaria (Figure 8 Panel C).
Seaward slope accretion was most prominent in the EM plot, with 0.51 m ± 0.03 m of
increase observed (Table 3). Erosion between October 2018–May 2019 was consistent across
the seaward slope of most treatment plots, following minor scarping of the seaward toe.
The seaward toe had reconnected to the upper beach by the September 2019 collection, with
accretion recorded on the seaward and landward slopes of all vegetation plots. During the
final interval (September 2020–October 2020), all natively vegetated plots recorded between
0.14–0.18 ± 0.03 m and 0.12–0.14 ± 0.04 m of accretion on the seaward and landward slopes
of the dune, respectively (Figure 8 Panel F). The seaward slope of the AMM plot, which
scarped during the winter storms of 2016–2017, had mostly reconnected with the upper
beach by October 2020. An incipient foredune was beginning to form on the upper beach
by October 2020, with Cakile edentula (American searocket) and some E. mollis present.
Over the entire study, replanted plots recorded erosion of the seaward slope (−0.11 m to
−0.21 m ± 0.03) and accretion on the landward slope (0.15–0.32 ± 0.03 m).

A linear regression model was developed to characterize the relationship between
sediment erosion and deposition observations and vegetation treatment type. The model
shows a weak (R2 = 0.27) positive correlation between the state of vegetation (% relative to
the local plot maximums) and normalized volumes (m3 m−2) for both the seaward and
landward slope of the foredune (Figure 10). A positive correlation between area-normalized
volume and the state of vegetation suggests that, as the proportion of vegetation within



Remote Sens. 2021, 13, 354 22 of 34

a plot increases, relative to the maximum observed vegetation in that plot, so too does
the amount of deposition. There is also a general positive trend over time, such that as
vegetation increases, more sediment deposition is observed.

Vegetation at the EREP site had not developed to a state where vegetation-driven
geomorphic change was measurable. However, the presence of dune mat species through
restoration and natural succession was noted in recent field campaigns during September
2019 and October 2020. The impacts of these plants were not within the range of signifi-
cantly measurable change in the GCD results, but could serve as loci for future growth and
expansion of plant cover. Dune mat plants are visible in the October 2020 orthomosaic and
oblique aerial image panels in Figure 4. A. arenaria is present on either side of the rebuilt
foredune and is also widespread elsewhere along the south spit of the ELC. No efforts
to control A. arenaria have been applied to the area surrounding the rebuilt foredune and
future encroachment could further impact biogeomorphic relationships at the EREP site.

Figure 10. Result of the comparison between geomorphic change values and the calculated state of vegetation values. Points
are varied by shape, relative to the GCD timestep, and size, relative to the state of vegetation calculation. The bounding
polygon represents the 95% confidence interval for each dataset. This plot was created with the R package ‘ggplot2’ [77]
and ‘esquisse’ [80].

5. Discussion
5.1. Cross-Platform Comparison
5.1.1. Variability Between KAP and TLS Methods

We compared the products of our KAP- and UAS-SfM datasets to concurrently col-
lected TLS data (Section 4.2). Two of the removed KAP-SfM datasets (September 2016 and
October 2017) exhibited similar issues that arose during processing: high pitch, yaw, and
roll variability and a trend in unintentional off-nadir imagery. Imagery from the September
2016 collection had a consistent northerly pitch, which led to increasing diffusivity in the
point cloud towards the north, despite thorough manual masking to remove water, the
horizon, and distant points from the sparse and dense clouds. Imagery from October
2017 had a consistent southerly pitch and easterly roll, which led to a lack of points in
the landward slope and few retained points in the upper beach and seaward slope. The
April 2016 KAP-SfM data, despite being successfully aligned to the TLS surface, exhibited
the highest vertical error (±0.072 m) across all datasets, as well as the highest variability
against the TLS surface. The April KAP-SfM surface also struggled to reconstruct the
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flat, homogeneous beach, leading to the presence of artifacts and errant surfaces when
compared to the TLS surface (Figure 11).

Figure 11. Examples of differences between the KAP-SfM and TLS surfaces from April 2016. These examples show the
boundary between the AMM and EM plots (see Figure 3 for reference) and (A) the orthomosaic, (B) the residual surface
created by differences between the KAP-SfM and TLS surfaces, (C) the KAP-SfM DSM, (D) the TLS DEM, (E) the final
KAP-SfM dense point cloud, and (F) the final bare earth TLS point cloud. The beach and Pacific Ocean are to the west and
the foredune is to the right in all panels. Note that both point clouds exhibit gaps. While the TLS point cloud “hole” is related
to the position of the scanner, the KAP-SfM gaps are related to poor surface reconstruction and low confidence points.
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5.1.2. Variability Between UAS and TLS Methods

Our UAS-TLS comparisons featured lower residuals than the KAP-TLS comparison,
however there were still consistent differences between the two platforms (Figure 12).
Similar to findings by Mancini et al. [8], Guisado-Pintado et al. [32], and Rotnicka et al.
[81], our comparison found that the locations of highest variability were located within
the beach unit, particularly where wet and relatively featureless sand was present, as well
as in areas of dense vegetation, particularly in the AMM plot. We also note that two of
the highest residuals were across the seaward slope of the foredune and corresponded
with spring acquisition campaigns when the seaward slope was scarped, suggesting that,
as discussed by James et al. [79], topographic complexity played a role in limiting the
number of convergent points for surface reconstruction on steep slopes. To better highlight
the impact of the denser vegetation typical in the AMM and CON plots, we included a
summation of UAS-TLS residuals for only the restored plots (EM, DM, DM-EM), where
vegetation density was less pronounced. When only the restored plots were compared,
residual values across almost all comparisons between the TLS and UAS-SfM residuals
were reduced by nearly half (Table 2). When comparing differences between the UAS
platforms and concurrent TLS reference surfaces, quality differences were also readily
apparent. To fully assess these differences, it helps to consider the state of the final SfM
products with concurrent TLS collections. The CON, EM, and DM-EM plots exhibited
similar residuals, while the DM plot consistently had the lowest variability, suggesting
that sparser, taller grasses may have been impacting the point cloud, even after efforts to
remove vegetation (Figure 13).

5.2. UAS for Assessing Geomorphic Change in Restored Coastal Dune Landscapes

This study examines the application of a multi-platform (KAP- and UAS-SfM) ap-
proach to detect and interpret sediment erosion and deposition patterns and related geo-
morphic changes across two beach-dune systems that were the focus of restoration efforts
between 2016–2020. A dynamic restoration approach was taken at the Lanphere Dunes to
re-establish natural processes within the system through native revegetation and enhancing
the potential for aeolian activity. The EREP study site required the reconstruction of a
foredune that had experienced a high water breaching event. For the purposes of assessing
performance and effectiveness for detecting and quantifying geomorphic change, we used
three different aerial platforms referenced to ground-based TLS reference surfaces at our
Lanphere study site and two platforms at our EREP study site.

Regional trends in shoreline response, sediment budgets, vegetation cover, and historic
foredune evolution and morphodynamics by Rader et al. [27] and Pickart and Hesp [28]
provide broader scale context on natural cycles of erosion and deposition and impacts of
climatic variability events at the study site. For instance, a north-south trend in sediment
availability and shoreline change rates indicate that shoreline progradation and foredune
stability are the dominant trends at the Lanphere study site. Despite notable erosion in
recent years, foredune recovery via scarp rebuilding to re-establish sand transport from the
beach to the foredune is rapid and recent (2000–2016) shoreline and foredune positions have
remained relatively stable. Pickart and Hesp [28] also identified a decrease in stabilized
forest vegetation and a concurrent increase in herbaceous/scrub vegetation that correlates
with a decrease in dune migration rates in observed areas of the North Spit of the ELC,
including the Lanphere site. The South Spit of the ELC has not been studied in as much
detail, but trends in shoreline change exhibit similar north-south variability [82]. North of
the Eel River estuary, shorelines exhibit higher rates of progradation (+1.39 m−1). However,
south the estuary, where the EREP site is located, shoreline retreat (−0.24 m−1) and dune
erosion are predominant. Considering the observed historical differences in land use,
land cover, ownership/management and geomorphology, the Lanphere and EREP study
sites are fundamentally different systems - the former is more stable or progradational
with stable foredunes, the latter is erosional and with much narrower foredunes. As
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such, restoration efforts at each site are specific to local conditions and land management
strategies.

The Lanphere site required different considerations for characterizing changes in
vegetation and in geomorphic change than at the EREP site. While the EREP site was
primarily unvegetated, and surface reconstruction was not impacted by the presence of
vegetation, the Lanphere site utilized both the high resolution (<0.02 m) orthomosaic
imageries, to quantify dune mat and even locate individual E. mollis plants, and the DSM,
to quantify surface change. We applied these methods to effectively characterize seasonal
changes in vegetation and compare them to seasonal changes in sediment deposition and
erosion (Figure 10). However, while the SfM outputs were able to capture erosion and
slumping of the seaward toe of the foredune on the upper beach, it generally failed to
accurately model the “bare earth” surface of the densely vegetated AMM plot, introducing
inaccuracies in the GCD results, as reflected in generally positive residuals when referenced
to the coincident TLS baseline datasets. In the restored plots, the impact of vegetation on
the change detection results is most pronounced where E. mollis is present. E. mollis, a taller
(<1 m) grass, is poorly reconstructed in the SfM point cloud. Rather than a discrete taller
feature, the grass is often rendered as a low-lying mound (Figure 13) and is not captured
by the vegetation filters applied to strip vegetation from the point clouds. However,
considering the magnitude of deviations from the TLS surfaces in the restored plots across
all KAP- (<0.06 ± 0.07 m) and UAS-TLS (<0.02 ± 0.03 m) comparisons, we were confident
that we effectively captured trends in sediment erosion and deposition and the associated
geomorphic responses within the landform units at Lanphere.

While examples of high variance from the TLS reference surfaces were noted in the
UAS collections (Section 5.1), these were typically restricted to areas of dense vegetation
where, due to a fundamental lack of visibility of the ground surface, both the SfM recon-
struction and TLS elevation model struggled to accurately reconstruct a bare earth surface.
Higher wind conditions and inconsistencies during collections, such as coverage extent,
variable flight altitude, and variable image overlap, proved the biggest downfall across
the six KAP datasets (Table 1). Such inconsistencies are driven by a lack of control during
KAP data collection. Whereas the UAS collection campaigns employed preprogrammed,
automated flight plans that standardized altitude, flight speeds, and regular image overlap,
the KAP collection campaigns were driven by external factors, such as winds that drove the
gliding altitude or the pace of the person walking the kite. As outlined by James et al. [31]
and Singh and Frazier [4], consistency is essential for quality SfM processing, representing a
flaw inherent to the use of KAP datasets for surface modeling and topographic differencing.
While we agree with Duffy et al. [33] that KAP provides a low-cost, highly portable, easy to
deploy and maintain technique for aerial mapping, careful consideration should be taken
to standardize repeat-collection methods if topographic differencing is a desired product.
Methods to improve KAP-SfM efficiency and increase point confidence in complex terrains
could include decreasing the distance between walking passes to increase image overlap,
including off-nadir imagery to improve convergent angle feature reconstruction [4,83], or
choosing a kite suitable for wind conditions to improve flight stability. Such techniques,
regularly used to improve consistency in UAS-SfM point clouds [4], would work well to
improve KAP-SfM point clouds.
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Figure 12. Examples of differences between the UAS-SfM and TLS datasets from May 2019, showing the boundary between
the AMM and EM plots (see Figure 3 for reference) and (A) the orthomosaic, (B) the residual surface created by differences
between the UAS-SfM and TLS surfaces, (C) the UAS-SfM DSM, (D) the TLS DEM, (E) the final UAS-SfM dense point cloud,
and (F) the final bare earth TLS point cloud. The beach and Pacific Ocean are to the west and the foredune is to the right in
all panels. Note that both point clouds are relatively continuous across the study area of interest, however the TLS cloud
features a denser grouping of points along the scarp of the AMM plot, unlike the UAS-SfM point cloud.



Remote Sens. 2021, 13, 354 27 of 34

Figure 13. (A) October 2020 TLS elevation model and (B) October 2020 UAS-SfM elevation model following removal of
vegetation and spurious points. (C) October 2020 orthomosaic with the location of digitized E. mollis points and dune mat
coverage over a stretch of foredune at the Lanphere site. (D) Orthomosaic showing vegetation location and overlain by
positive and negative residuals between the September 2019 to October 2020 timestep.

5.3. Uncertainty Budget Calculation

The detection and quantification of topographic change, using DEMs or DSMs derived
from close-range remote sensing platforms, requires many subjective decisions that include
sensor choice, flight parameters and acquisition planning, georeferencing and geocorrection
methods, processing parameters, and post-processing comparison techniques. Each of
the items listed above represent choices that are made by both the pilot and field crew
who collect the data, as well as the analyst(s) who process the data and develop the DEMs.
When developing an uncertainty budget, each of these choices implies a possible deviation
in methodology across surveys or analysts. Our uncertainty budgets for each unique
acquisition campaign incorporated GCP error (for the quadcopter UAS and KAP surveys)
or total XYZ error (for the fixed-wing UAS surveys), RTK accuracy (both for georeferencing
of GCPs and for the fixed-wing UAS with onboard RTK), and RMSE generated from the
alignment of the point clouds to a reference point cloud (e.g., TLS point clouds at the
Lanphere site, geocorrected May 2018 point cloud at the EREP site).

In developing our uncertainty budget, we assumed that uncertainty would be in-
troduced from a combination of collection and processing methods and that: (1) the
uncertainty can be represented by a global, or uniform model (vs. spatially variable), (2) the
accuracy of data from the aerial platforms can be assessed by alignment and comparison
to concurrently collected TLS data, (3) that KAP- and UAS-SfM products are comparable
when processed with consistent methodology, and (4) that the delineation of geomorphic
units and vegetation treatment types is useful for identifying and interpreting the perfor-
mance of the aerial platforms for detecting change. Others, such as Duffy et al. [33] and
Guisado-Pintado et al. [32], calculated their budget using reported RMS errors. Wheaton
et al. [45] discussed a more encompassing uncertainty budget approach that could include
manufacturer reported equipment precision, measurement error, sampling bias, interpola-
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tion methods, differences from repeat occupation of a control point, and spatial variability.
Bangen et al. [84] built on that and discussed uncertainty budget development and error
propagation, suggesting that error could be introduced by survey methods, sampling
strategy, and surface complexity. In the context of the coastal zone, variability and possible
sources of uncertainty could even extend to weather, tidal, and moisture conditions or
seasonal variability in the complexity of the terrain or vegetation cover [32,81].

While we found examples of study-specific uncertainty budgets, e.g., [32,45,84], we
were unable to find a standardized budget construction method that allows uncertainty
to be compared across different studies. Our calculated error totals (Table 1) were similar
in magnitude to those used by Guisado-Pintado et al. [32], although we came to our
values in a completely different way. This highlights a shortcoming in the current discus-
sion and understanding of propagated error in the method of topographic differencing
and geomorphic change detection. While many [31,38,45,69,73,84–86] have discussed un-
certainty and how to calculate propagated error for topographic differencing, we were
unable to find a consensus amongst publications in the geodesy or geoscience communi-
ties that aimed to standardize the ways in which a budget is constructed, what should
be included, or to what extent possible sources are attributable. Standardization and
community-developed guidelines could reduce the subjectivity inherent in creating an
uncertainty budget, improve cross-study comparability, and strengthen methods for repro-
ducibility and replicability of UAS-SfM studies across the geosciences. Photogrammetric
software, like Agisoft Metashape, and federally managed geocorrection services, like the
NOAA-operated OPUS, include various forms of reported error and uncertainty that can
be used in SfM processing and geocorrectional accuracy. Equipment manufacturers can
also provide precision and accuracy expectations with their products, though this is not
standard practice, and varies between companies. Point cloud processing software, such
as the open-source program CloudCompare (https://www.danielgm.net/cc/), provide
alignment RMSE when aligning point clouds. While these are only some examples of
reported uncertainty, consideration and inclusion of similar products will improve the
reasonable minimum level of detection when calculating topographic differences.

It is helpful to revisit the two previously mentioned (Section 3.3) sources of uncer-
tainty that we considered for geomorphic SfM-related work: (1) collection uncertainty
and (2) processing uncertainty. Collection uncertainty could include equipment precision,
measurement error, sampling bias/strategy, variations in the repeat occupation of a survey
point, or survey method differences, to name a few. These deviations inflate uncertainty
by decreasing the likelihood that a surface was accurately located in space and increasing
the minimum level of detection for topographic differencing. If not properly accounted
for or considered, these sources of uncertainty can propagate and impact the accuracy of
volumetric difference calculations, or overestimate the significance threshold, removing
unnecessary raster cells from the output model. The KAP-SfM datasets provide an example
of a dataset driven by heightened collection uncertainty. For these datasets, the processing
procedure was consistent with all other UAS-SfM datasets, however collection methods
were highly variable, with differences in site extent, image overlap, flight altitude, and
external (wind speed and direction) factors playing a role in inflating uncertainty or render-
ing a dataset unusable. The UAS-SfM datasets exhibited less than half of the uncertainty
reported by the April 2016 KAP-SfM dataset. More comprehensive methods for controlling
and standardizing flight plans, image overlap, and altitude, as well as more rigorous
geocorrection strategies, led to lower collection uncertainties across the four UAS-SfM
datasets. Based on our experiences, we found that standardization was a major driver
for accurate and confident surface reconstruction, explaining why the pre-programmed
UAS-SfM datasets were far less problematic than the KAP-SfM datasets.

Processing uncertainty is driven by decisions during the creation of the SfM dataset
within virtual space, including parameter choices, the filtering of low confidence points,
manual point cloud cleaning efforts, or the accuracy of the point cloud-to-point cloud
alignment process. These variables have the potential to be more subjective and can be
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based on the processing time that an analyst is willing to spend preparing and refining a
dataset. Processing uncertainty in our study was primarily driven by point cloud alignment.
Similar to the factors contributing to collection uncertainty, our processing uncertainty
was inflated in the KAP-SfM datasets because of how lower point confidence translated to
the removal of more points throughout the point cloud and to higher RMSE during the
SfM to TLS alignment step. The UAS-SfM datasets featured lower alignment RMSE than
the KAP-SfM datasets, but still exhibited residual artifacts where vegetation was present,
even following filtering and manual point cloud cleaning efforts. A downfall of automated
classification methods used in our research, that could have contributed to the inability to
detect the vegetation signature, stemmed from seasonal vegetation phenology and the color
of vegetation during the collection campaigns. Our collections occurred in early spring,
before much new plant growth had occurred, and in fall, as vegetation was starting to
senesce. Vegetation color was often a light brown during our collection campaigns, which
became muddled with the color of the surrounding sand, making automatic classification
more difficult and increasing uncertainty within the point clouds.

We propose that, when constructing uncertainty budgets for topographic differencing,
one considers and compounds the primary sources of collection uncertainty (e.g., equip-
ment precision, flight conditions) and processing uncertainty (e.g., point cloud alignment
RMSE, overall GCP or total image error) inherent to their data. Flight conditions (e.g.,
wind speed and direction, lighting) and collection parameters (altitude, image overlap,
capture angle) should also be reported, to better describe external factors that could im-
pact SfM products. Employing this practice requires careful consideration of the possible
influences on a KAP or UAS campaign, and subsequent processing procedures, and can
better contextualize the range of impacts on uncertainty that is possible throughout the
process. Including unique, campaign-specific uncertainty will not only improve reporting
procedures and comparability between datasets, but will also help convey the range of
values that may not be realistically measurable when reporting the results of topographic
differencing. Finally, we realize that developing a standardized method for uncertainty
budgeting requires comprehensive knowledge of the possible influences on an SfM dataset
and that it can be a difficult task to undertake, particularly with the rapid development of
new technologies and methods. A broader commentary on the equipment, procedures, and
decisions made during SfM data collection and processing, and how those factors impact
uncertainty, would greatly serve the geoscience and geodesy communities and further
the development of standard, reproducible, and replicable procedures, much like those
suggested by James et al. [31].

6. Conclusions

We have highlighted necessary considerations when attempting to employ and recon-
cile multiple aerial platforms for assessing geomorphic change detection related to changes
in vegetation in restored coastal dune landscapes. Our two study areas in the Lanphere
Dunes and Eel River Estuary Preserve in northern California present two very different
examples of restored ecosystems with very different goals. Dynamic restoration of the fore-
dune at Lanphere focused on restoring naturally-driven foredune resiliency through native
revegetation. We used the GCD toolset in ArcMap 10.7.1 to quantify sediment erosion and
deposition between collection intervals and related those changes to the different treatment
plots. We found that our multi-platform approach captured significant geomorphic change
across all geomorphic units and treatment plots, though the residual impact of vegetation
led to a potential overestimation of change volumes. Restoration at the EREP site involved
foredune reconstruction that aimed at repairing the natural foredune barrier to preserve
landward interests. At EREP, we were able to quantify significant change across the fore-
dune from its initial construction (summer 2018) through October 2020. Geomorphic
change at the EREP site was not driven by the presence of vegetation and, because of this,
volumetric differences were not dependent on the accuracy of spurious (vegetation) point
removal. We feel that our approach contextualized change at each location and showed that
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a multi-platform approach can effectively characterize sediment erosion and deposition,
as well as vegetation change in restored coastal foredune ecosystems. Finally, we propose
the inclusion of two primary forms of uncertainty, collection and processing uncertainty,
when utilizing KAP- or UAS-SfM products for topographic differencing. Employing this
approach requires careful consideration of where uncertainty arises within an SfM dataset
and how that uncertainty propagates throughout the dataset. Incorporating multiple levels
of uncertainty (e.g., level of GNSS accuracy, total XYZ error, point cloud-point cloud align-
ment) allows for a better understanding of realistic change within a topographic difference
interval and can be a standardized method to compare uncertainty across datasets and in
the broader discipline. Our main findings are:

1. Geomorphic change detection, coupled with SfM datasets, is a valuable tool for geo-
morphologists and land managers to characterize statistically significant changes in
geomorphic systems and, as we have shown, restored systems. However, when using
conventional SfM it is necessary to consider the impacts that vegetation, moisture, and
topographic complexity may have on reconstruction accuracy and point confidence.
Failure to consider these factors may result in the exaggeration of differences between
intervals and/or platforms.

2. When compared to TLS datasets with better constraints on vegetation removal, the
aerial datasets performed well, but struggled in areas of denser vegetation. Even
after efforts to remove vegetation from the constructed dense point cloud, artifacts
were still apparent when comparing concurrently collected surfaces. The UAS data
struggled to accurately capture true geomorphic change in areas of dense vegetation,
but deviations from the TLS datasets were typically on the order of 15% of the total
area and 0.01–0.02 m of area-normalized volumetric difference (m3m−2).

3. Uncertainty budgets for aerial datasets require careful consideration of the possible
avenues for introducing error. This is further complicated by a lack of standardization
or suggested best practices for constructing an uncertainty budget. We viewed inputs
in terms of collection and processing uncertainty and our budgets reflected the sum
of those inputs. However, the variety of uncertainty budgets for geomorphic change
across published research highlights a need for more standard practices.

We suggest that future efforts in the geoscience and geodesy communities focus
on standardizing methodology for SfM processing, similar to the methods proposed by
James et al. [31]. Standardization of these methods should also focus on the impact that
collection- and processing-based uncertainty have on SfM products. Efforts to improve
these methods will not only improve transparency and reporting practices, but would also
hold the rapidly advancing field of SfM photogrammetry for topographic differencing
more accountable for the decisions made during processing and analysis of results. For
coastal geomorphologist and resource managers, it is imperative that reported results
accurately and reasonably describe sediment budgets and geomorphic change to better
prepare for the widespread impact that increased coastal flooding and erosion will have on
communities living along the coast.
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Abbreviations
The following abbreviations are used in this manuscript:

AMM Ammophila arenaria
CON Native control plot
DEM Digital elevation model
DM Dune mat herbaceous alliance
DSM Digital surface model
ELC Eureka littoral cell
EM Elymus mollis
EREP Eel River Estuary Preserve
GCD Geomorphic change detection
GCP Ground control points
GSD Ground sampling distance
KAP Kite aerial photogrammetry
NDVI Normalized difference vegetation index
OPUS Online positioning user service
PPK Post-processing kinematic
SfM Structure from motion
TLS Terrestrial laser scanner
UAS Uncrewed aerial system
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